Ejemplo n.º 1
0
def twinprime_fixed(prec):
    def I(n):
        return sum(
            moebius(d) << (n // d) for d in xrange(1, n + 1) if not n % d) // n

    wp = 2 * prec + 30
    res = fone
    primes = [from_rational(1, p, wp) for p in [2, 3, 5, 7]]
    ppowers = [mpf_mul(p, p, wp) for p in primes]
    n = 2
    while 1:
        a = mpf_zeta_int(n, wp)
        for i in range(4):
            a = mpf_mul(a, mpf_sub(fone, ppowers[i]), wp)
            ppowers[i] = mpf_mul(ppowers[i], primes[i], wp)
        a = mpf_pow_int(a, -I(n), wp)
        if mpf_pos(a, prec + 10, 'n') == fone:
            break
        #from libmpf import to_str
        #print n, to_str(mpf_sub(fone, a), 6)
        res = mpf_mul(res, a, wp)
        n += 1
    res = mpf_mul(res, from_int(3 * 15 * 35), wp)
    res = mpf_div(res, from_int(4 * 16 * 36), wp)
    return to_fixed(res, prec)
Ejemplo n.º 2
0
def fraction(p, q):
    """Given Python integers p, q, return a lazy mpf with value p/q.
    The value is updated with the precision.

        >>> mp.dps = 15
        >>> a = fraction(1,100)
        >>> b = mpf(1)/100
        >>> print a; print b
        0.01
        0.01
        >>> mp.dps = 30
        >>> print a; print b
        0.01
        0.0100000000000000002081668171172
        >>> mp.dps = 15
    """
    return constant(lambda prec, rnd: from_rational(p, q, prec, rnd),
        '%s/%s' % (p, q))
Ejemplo n.º 3
0
def fraction(p, q):
    """
    Given Python integers `(p, q)`, returns a lazy ``mpf`` representing
    the fraction `p/q`. The value is updated with the precision.

        >>> mp.dps = 15
        >>> a = fraction(1,100)
        >>> b = mpf(1)/100
        >>> print a; print b
        0.01
        0.01
        >>> mp.dps = 30
        >>> print a; print b      # a will be accurate
        0.01
        0.0100000000000000002081668171172
        >>> mp.dps = 15
    """
    return constant(lambda prec, rnd: from_rational(p, q, prec, rnd),
        '%s/%s' % (p, q))
Ejemplo n.º 4
0
def twinprime_fixed(prec):
    def I(n):
        return sum(moebius(d)<<(n//d) for d in xrange(1,n+1) if not n%d)//n
    wp = 2*prec + 30
    res = fone
    primes = [from_rational(1,p,wp) for p in [2,3,5,7]]
    ppowers = [mpf_mul(p,p,wp) for p in primes]
    n = 2
    while 1:
        a = mpf_zeta_int(n, wp)
        for i in range(4):
            a = mpf_mul(a, mpf_sub(fone, ppowers[i]), wp)
            ppowers[i] = mpf_mul(ppowers[i], primes[i], wp)
        a = mpf_pow_int(a, -I(n), wp)
        if mpf_pos(a, prec+10, 'n') == fone:
            break
        #from libmpf import to_str
        #print n, to_str(mpf_sub(fone, a), 6)
        res = mpf_mul(res, a, wp)
        n += 1
    res = mpf_mul(res, from_int(3*15*35), wp)
    res = mpf_div(res, from_int(4*16*36), wp)
    return to_fixed(res, prec)
Ejemplo n.º 5
0
def mpf_bernoulli(n, prec, rnd=None):
    """Computation of Bernoulli numbers (numerically)"""
    if n < 2:
        if n < 0:
            raise ValueError("Bernoulli numbers only defined for n >= 0")
        if n == 0:
            return fone
        if n == 1:
            return mpf_neg(fhalf)
    # For odd n > 1, the Bernoulli numbers are zero
    if n & 1:
        return fzero
    # If precision is extremely high, we can save time by computing
    # the Bernoulli number at a lower precision that is sufficient to
    # obtain the exact fraction, round to the exact fraction, and
    # convert the fraction back to an mpf value at the original precision
    if prec > BERNOULLI_PREC_CUTOFF and prec > bernoulli_size(n)*1.1 + 1000:
        p, q = bernfrac(n)
        return from_rational(p, q, prec, rnd or round_floor)
    if n > MAX_BERNOULLI_CACHE:
        return mpf_bernoulli_huge(n, prec, rnd)
    wp = prec + 30
    # Reuse nearby precisions
    wp += 32 - (prec & 31)
    cached = bernoulli_cache.get(wp)
    if cached:
        numbers, state = cached
        if n in numbers:
            if not rnd:
                return numbers[n]
            return mpf_pos(numbers[n], prec, rnd)
        m, bin, bin1 = state
        if n - m > 10:
            return mpf_bernoulli_huge(n, prec, rnd)
    else:
        if n > 10:
            return mpf_bernoulli_huge(n, prec, rnd)
        numbers = {0:fone}
        m, bin, bin1 = state = [2, MPZ(10), MPZ_ONE]
        bernoulli_cache[wp] = (numbers, state)
    while m <= n:
        #print m
        case = m % 6
        # Accurately estimate size of B_m so we can use
        # fixed point math without using too much precision
        szbm = bernoulli_size(m)
        s = 0
        sexp = max(0, szbm)  - wp
        if m < 6:
            a = MPZ_ZERO
        else:
            a = bin1
        for j in xrange(1, m//6+1):
            usign, uman, uexp, ubc = u = numbers[m-6*j]
            if usign:
                uman = -uman
            s += lshift(a*uman, uexp-sexp)
            # Update inner binomial coefficient
            j6 = 6*j
            a *= ((m-5-j6)*(m-4-j6)*(m-3-j6)*(m-2-j6)*(m-1-j6)*(m-j6))
            a //= ((4+j6)*(5+j6)*(6+j6)*(7+j6)*(8+j6)*(9+j6))
        if case == 0: b = mpf_rdiv_int(m+3, f3, wp)
        if case == 2: b = mpf_rdiv_int(m+3, f3, wp)
        if case == 4: b = mpf_rdiv_int(-m-3, f6, wp)
        s = from_man_exp(s, sexp, wp)
        b = mpf_div(mpf_sub(b, s, wp), from_int(bin), wp)
        numbers[m] = b
        m += 2
        # Update outer binomial coefficient
        bin = bin * ((m+2)*(m+3)) // (m*(m-1))
        if m > 6:
            bin1 = bin1 * ((2+m)*(3+m)) // ((m-7)*(m-6))
        state[:] = [m, bin, bin1]
    return numbers[n]
Ejemplo n.º 6
0
 def _mpmath_(self, prec, rounding):
     # XXX
     return mp.make_mpf(from_rational(self[0], self[1], prec, rounding))
Ejemplo n.º 7
0
def mpf_cos_sin(x, prec, rnd=round_fast, which=0, pi=False):
    """
    which:
    0 -- return cos(x), sin(x)
    1 -- return cos(x)
    2 -- return sin(x)
    3 -- return tan(x)

    if pi=True, compute for pi*x
    """
    sign, man, exp, bc = x
    if not man:
        if exp:
            c, s = fnan, fnan
        else:
            c, s = fone, fzero
        if which == 0: return c, s
        if which == 1: return c
        if which == 2: return s
        if which == 3: return s

    mag = bc + exp
    wp = prec + 10

    # Extremely small?
    if mag < 0:
        if mag < -wp:
            if pi:
                x = mpf_mul(x, mpf_pi(wp))
            c = mpf_perturb(fone, 1, prec, rnd)
            s = mpf_perturb(x, 1 - sign, prec, rnd)
            if which == 0: return c, s
            if which == 1: return c
            if which == 2: return s
            if which == 3: return mpf_perturb(x, sign, prec, rnd)
    if pi:
        if exp >= -1:
            if exp == -1:
                c = fzero
                s = (fone, fnone)[bool(man & 2) ^ sign]
            elif exp == 0:
                c, s = (fnone, fzero)
            else:
                c, s = (fone, fzero)
            if which == 0: return c, s
            if which == 1: return c
            if which == 2: return s
            if which == 3: return mpf_div(s, c, prec, rnd)
        # Subtract nearest half-integer (= mod by pi/2)
        n = ((man >> (-exp - 2)) + 1) >> 1
        man = man - (n << (-exp - 1))
        mag2 = bitcount(man) + exp
        wp = prec + 10 - mag2
        offset = exp + wp
        if offset >= 0:
            t = man << offset
        else:
            t = man >> (-offset)
        t = (t * pi_fixed(wp)) >> wp
    else:
        t, n, wp = mod_pi2(man, exp, mag, wp)
    c, s = cos_sin_basecase(t, wp)
    m = n & 3
    if m == 1: c, s = -s, c
    elif m == 2: c, s = -c, -s
    elif m == 3: c, s = s, -c
    if sign:
        s = -s
    if which == 0:
        c = from_man_exp(c, -wp, prec, rnd)
        s = from_man_exp(s, -wp, prec, rnd)
        return c, s
    if which == 1:
        return from_man_exp(c, -wp, prec, rnd)
    if which == 2:
        return from_man_exp(s, -wp, prec, rnd)
    if which == 3:
        return from_rational(s, c, prec, rnd)
Ejemplo n.º 8
0
def mpf_expint(n, x, prec, rnd=round_fast, gamma=False):
    """
    E_n(x), n an integer, x real

    With gamma=True, computes Gamma(n,x)   (upper incomplete gamma function)

    Returns (real, None) if real, otherwise (real, imag)
    The imaginary part is an optional branch cut term

    """
    sign, man, exp, bc = x
    if not man:
        if gamma:
            if x == fzero:
                # Actually gamma function pole
                if n <= 0:
                    return finf, None
                return mpf_gamma_int(n, prec, rnd), None
            if x == finf:
                return fzero, None
            # TODO: could return finite imaginary value at -inf
            return fnan, fnan
        else:
            if x == fzero:
                if n > 1:
                    return from_rational(1, n-1, prec, rnd), None
                else:
                    return finf, None
            if x == finf:
                return fzero, None
            return fnan, fnan
    n_orig = n
    if gamma:
        n = 1-n
    wp = prec + 20
    xmag = exp + bc
    # Beware of near-poles
    if xmag < -10:
        raise NotImplementedError
    nmag = bitcount(abs(n))
    have_imag = n > 0 and sign
    negx = mpf_neg(x)
    # Skip series if direct convergence
    if n == 0 or 2*nmag - xmag < -wp:
        if gamma:
            v = mpf_exp(negx, wp)
            re = mpf_mul(v, mpf_pow_int(x, n_orig-1, wp), prec, rnd)
        else:
            v = mpf_exp(negx, wp)
            re = mpf_div(v, x, prec, rnd)
    else:
        # Finite number of terms, or...
        can_use_asymptotic_series = -3*wp < n <= 0
        # ...large enough?
        if not can_use_asymptotic_series:
            xi = abs(to_int(x))
            m = min(max(1, xi-n), 2*wp)
            siz = -n*nmag + (m+n)*bitcount(abs(m+n)) - m*xmag - (144*m//100)
            tol = -wp-10
            can_use_asymptotic_series = siz < tol
        if can_use_asymptotic_series:
            r = ((-MPZ_ONE) << (wp+wp)) // to_fixed(x, wp)
            m = n
            t = r*m
            s = MPZ_ONE << wp
            while m and t:
                s += t
                m += 1
                t = (m*r*t) >> wp
            v = mpf_exp(negx, wp)
            if gamma:
                # ~ exp(-x) * x^(n-1) * (1 + ...)
                v = mpf_mul(v, mpf_pow_int(x, n_orig-1, wp), wp)
            else:
                # ~ exp(-x)/x * (1 + ...)
                v = mpf_div(v, x, wp)
            re = mpf_mul(v, from_man_exp(s, -wp), prec, rnd)
        elif n == 1:
            re = mpf_neg(mpf_ei(negx, prec, rnd))
        elif n > 0 and n < 3*wp:
            T1 = mpf_neg(mpf_ei(negx, wp))
            if gamma:
                if n_orig & 1:
                    T1 = mpf_neg(T1)
            else:
                T1 = mpf_mul(T1, mpf_pow_int(negx, n-1, wp), wp)
            r = t = to_fixed(x, wp)
            facs = [1] * (n-1)
            for k in range(1,n-1):
                facs[k] = facs[k-1] * k
            facs = facs[::-1]
            s = facs[0] << wp
            for k in range(1, n-1):
                if k & 1:
                    s -= facs[k] * t
                else:
                    s += facs[k] * t
                t = (t*r) >> wp
            T2 = from_man_exp(s, -wp, wp)
            T2 = mpf_mul(T2, mpf_exp(negx, wp))
            if gamma:
                T2 = mpf_mul(T2, mpf_pow_int(x, n_orig, wp), wp)
            R = mpf_add(T1, T2)
            re = mpf_div(R, from_int(ifac(n-1)), prec, rnd)
        else:
            raise NotImplementedError
    if have_imag:
        M = from_int(-ifac(n-1))
        if gamma:
            im = mpf_div(mpf_pi(wp), M, prec, rnd)
        else:
            im = mpf_div(mpf_mul(mpf_pi(wp), mpf_pow_int(negx, n_orig-1, wp), wp), M, prec, rnd)
        return re, im
    else:
        return re, None
Ejemplo n.º 9
0
def mpf_bernoulli(n, prec, rnd=None):
    """Computation of Bernoulli numbers (numerically)"""
    if n < 2:
        if n < 0:
            raise ValueError("Bernoulli numbers only defined for n >= 0")
        if n == 0:
            return fone
        if n == 1:
            return mpf_neg(fhalf)
    # For odd n > 1, the Bernoulli numbers are zero
    if n & 1:
        return fzero
    # If precision is extremely high, we can save time by computing
    # the Bernoulli number at a lower precision that is sufficient to
    # obtain the exact fraction, round to the exact fraction, and
    # convert the fraction back to an mpf value at the original precision
    if prec > BERNOULLI_PREC_CUTOFF and prec > bernoulli_size(n) * 1.1 + 1000:
        p, q = bernfrac(n)
        return from_rational(p, q, prec, rnd or round_floor)
    if n > MAX_BERNOULLI_CACHE:
        return mpf_bernoulli_huge(n, prec, rnd)
    wp = prec + 30
    # Reuse nearby precisions
    wp += 32 - (prec & 31)
    cached = bernoulli_cache.get(wp)
    if cached:
        numbers, state = cached
        if n in numbers:
            if not rnd:
                return numbers[n]
            return mpf_pos(numbers[n], prec, rnd)
        m, bin, bin1 = state
        if n - m > 10:
            return mpf_bernoulli_huge(n, prec, rnd)
    else:
        if n > 10:
            return mpf_bernoulli_huge(n, prec, rnd)
        numbers = {0: fone}
        m, bin, bin1 = state = [2, MP_BASE(10), MP_ONE]
        bernoulli_cache[wp] = (numbers, state)
    while m <= n:
        #print m
        case = m % 6
        # Accurately estimate size of B_m so we can use
        # fixed point math without using too much precision
        szbm = bernoulli_size(m)
        s = 0
        sexp = max(0, szbm) - wp
        if m < 6:
            a = MP_ZERO
        else:
            a = bin1
        for j in xrange(1, m // 6 + 1):
            usign, uman, uexp, ubc = u = numbers[m - 6 * j]
            if usign:
                uman = -uman
            s += lshift(a * uman, uexp - sexp)
            # Update inner binomial coefficient
            j6 = 6 * j
            a *= ((m - 5 - j6) * (m - 4 - j6) * (m - 3 - j6) * (m - 2 - j6) *
                  (m - 1 - j6) * (m - j6))
            a //= ((4 + j6) * (5 + j6) * (6 + j6) * (7 + j6) * (8 + j6) *
                   (9 + j6))
        if case == 0: b = mpf_rdiv_int(m + 3, f3, wp)
        if case == 2: b = mpf_rdiv_int(m + 3, f3, wp)
        if case == 4: b = mpf_rdiv_int(-m - 3, f6, wp)
        s = from_man_exp(s, sexp, wp)
        b = mpf_div(mpf_sub(b, s, wp), from_int(bin), wp)
        numbers[m] = b
        m += 2
        # Update outer binomial coefficient
        bin = bin * ((m + 2) * (m + 3)) // (m * (m - 1))
        if m > 6:
            bin1 = bin1 * ((2 + m) * (3 + m)) // ((m - 7) * (m - 6))
        state[:] = [m, bin, bin1]
Ejemplo n.º 10
0
def mpf_expint(n, x, prec, rnd=round_fast, gamma=False):
    """
    E_n(x), n an integer, x real

    With gamma=True, computes Gamma(n,x)   (upper incomplete gamma function)

    Returns (real, None) if real, otherwise (real, imag)
    The imaginary part is an optional branch cut term

    """
    sign, man, exp, bc = x
    if not man:
        if gamma:
            if x == fzero:
                # Actually gamma function pole
                if n <= 0:
                    return finf
                return mpf_gamma_int(n, prec, rnd)
            if x == finf:
                return fzero, None
            # TODO: could return finite imaginary value at -inf
            return fnan, fnan
        else:
            if x == fzero:
                if n > 1:
                    return from_rational(1, n - 1, prec, rnd), None
                else:
                    return finf, None
            if x == finf:
                return fzero, None
            return fnan, fnan
    n_orig = n
    if gamma:
        n = 1 - n
    wp = prec + 20
    xmag = exp + bc
    # Beware of near-poles
    if xmag < -10:
        raise NotImplementedError
    nmag = bitcount(abs(n))
    have_imag = n > 0 and sign
    negx = mpf_neg(x)
    # Skip series if direct convergence
    if n == 0 or 2 * nmag - xmag < -wp:
        if gamma:
            v = mpf_exp(negx, wp)
            re = mpf_mul(v, mpf_pow_int(x, n_orig - 1, wp), prec, rnd)
        else:
            v = mpf_exp(negx, wp)
            re = mpf_div(v, x, prec, rnd)
    else:
        # Finite number of terms, or...
        can_use_asymptotic_series = -3 * wp < n <= 0
        # ...large enough?
        if not can_use_asymptotic_series:
            xi = abs(to_int(x))
            m = min(max(1, xi - n), 2 * wp)
            siz = -n * nmag + (m + n) * bitcount(abs(m + n)) - m * xmag - (
                144 * m // 100)
            tol = -wp - 10
            can_use_asymptotic_series = siz < tol
        if can_use_asymptotic_series:
            r = ((-MP_ONE) << (wp + wp)) // to_fixed(x, wp)
            m = n
            t = r * m
            s = MP_ONE << wp
            while m and t:
                s += t
                m += 1
                t = (m * r * t) >> wp
            v = mpf_exp(negx, wp)
            if gamma:
                # ~ exp(-x) * x^(n-1) * (1 + ...)
                v = mpf_mul(v, mpf_pow_int(x, n_orig - 1, wp), wp)
            else:
                # ~ exp(-x)/x * (1 + ...)
                v = mpf_div(v, x, wp)
            re = mpf_mul(v, from_man_exp(s, -wp), prec, rnd)
        elif n == 1:
            re = mpf_neg(mpf_ei(negx, prec, rnd))
        elif n > 0 and n < 3 * wp:
            T1 = mpf_neg(mpf_ei(negx, wp))
            if gamma:
                if n_orig & 1:
                    T1 = mpf_neg(T1)
            else:
                T1 = mpf_mul(T1, mpf_pow_int(negx, n - 1, wp), wp)
            r = t = to_fixed(x, wp)
            facs = [1] * (n - 1)
            for k in range(1, n - 1):
                facs[k] = facs[k - 1] * k
            facs = facs[::-1]
            s = facs[0] << wp
            for k in range(1, n - 1):
                if k & 1:
                    s -= facs[k] * t
                else:
                    s += facs[k] * t
                t = (t * r) >> wp
            T2 = from_man_exp(s, -wp, wp)
            T2 = mpf_mul(T2, mpf_exp(negx, wp))
            if gamma:
                T2 = mpf_mul(T2, mpf_pow_int(x, n_orig, wp), wp)
            R = mpf_add(T1, T2)
            re = mpf_div(R, from_int(int_fac(n - 1)), prec, rnd)
        else:
            raise NotImplementedError
    if have_imag:
        M = from_int(-int_fac(n - 1))
        if gamma:
            im = mpf_div(mpf_pi(wp), M, prec, rnd)
        else:
            im = mpf_div(
                mpf_mul(mpf_pi(wp), mpf_pow_int(negx, n_orig - 1, wp), wp), M,
                prec, rnd)
        return re, im
    else:
        return re, None
Ejemplo n.º 11
0
def mpf_cos_sin(x, prec, rnd=round_fast, which=0, pi=False):
    """
    which:
    0 -- return cos(x), sin(x)
    1 -- return cos(x)
    2 -- return sin(x)
    3 -- return tan(x)

    if pi=True, compute for pi*x
    """
    sign, man, exp, bc = x
    if not man:
        if exp:
            c, s = fnan, fnan
        else:
            c, s = fone, fzero
        if which == 0:
            return c, s
        if which == 1:
            return c
        if which == 2:
            return s
        if which == 3:
            return s

    mag = bc + exp
    wp = prec + 10

    # Extremely small?
    if mag < 0:
        if mag < -wp:
            if pi:
                x = mpf_mul(x, mpf_pi(wp))
            c = mpf_perturb(fone, 1, prec, rnd)
            s = mpf_perturb(x, 1 - sign, prec, rnd)
            if which == 0:
                return c, s
            if which == 1:
                return c
            if which == 2:
                return s
            if which == 3:
                return mpf_perturb(x, sign, prec, rnd)
    if pi:
        if exp >= -1:
            if exp == -1:
                c = fzero
                s = (fone, fnone)[bool(man & 2) ^ sign]
            elif exp == 0:
                c, s = (fnone, fzero)
            else:
                c, s = (fone, fzero)
            if which == 0:
                return c, s
            if which == 1:
                return c
            if which == 2:
                return s
            if which == 3:
                return mpf_div(s, c, prec, rnd)
        # Subtract nearest half-integer (= mod by pi/2)
        n = ((man >> (-exp - 2)) + 1) >> 1
        man = man - (n << (-exp - 1))
        mag2 = bitcount(man) + exp
        wp = prec + 10 - mag2
        offset = exp + wp
        if offset >= 0:
            t = man << offset
        else:
            t = man >> (-offset)
        t = (t * pi_fixed(wp)) >> wp
    else:
        t, n, wp = mod_pi2(man, exp, mag, wp)
    c, s = cos_sin_basecase(t, wp)
    m = n & 3
    if m == 1:
        c, s = -s, c
    elif m == 2:
        c, s = -c, -s
    elif m == 3:
        c, s = s, -c
    if sign:
        s = -s
    if which == 0:
        c = from_man_exp(c, -wp, prec, rnd)
        s = from_man_exp(s, -wp, prec, rnd)
        return c, s
    if which == 1:
        return from_man_exp(c, -wp, prec, rnd)
    if which == 2:
        return from_man_exp(s, -wp, prec, rnd)
    if which == 3:
        return from_rational(s, c, prec, rnd)
Ejemplo n.º 12
0
 def _mpmath_(self, prec, rounding):
     # XXX
     return mp.make_mpf(from_rational(self[0], self[1], prec, rounding))