Ejemplo n.º 1
0
def khinchin_fixed(prec):
    wp = int(prec + prec**0.5 + 15)
    s = MPZ_ZERO
    fac = from_int(4)
    t = ONE = MPZ_ONE << wp
    pi = mpf_pi(wp)
    pipow = twopi2 = mpf_shift(mpf_mul(pi, pi, wp), 2)
    n = 1
    while 1:
        zeta2n = mpf_abs(mpf_bernoulli(2*n, wp))
        zeta2n = mpf_mul(zeta2n, pipow, wp)
        zeta2n = mpf_div(zeta2n, fac, wp)
        zeta2n = to_fixed(zeta2n, wp)
        term = (((zeta2n - ONE) * t) // n) >> wp
        if term < 100:
            break
        #if not n % 10:
        #    print n, math.log(int(abs(term)))
        s += term
        t += ONE//(2*n+1) - ONE//(2*n)
        n += 1
        fac = mpf_mul_int(fac, (2*n)*(2*n-1), wp)
        pipow = mpf_mul(pipow, twopi2, wp)
    s = (s << wp) // ln2_fixed(wp)
    K = mpf_exp(from_man_exp(s, -wp), wp)
    K = to_fixed(K, prec)
    return K
Ejemplo n.º 2
0
def khinchin_fixed(prec):
    wp = int(prec + prec**0.5 + 15)
    s = MP_ZERO
    fac = from_int(4)
    t = ONE = MP_ONE << wp
    pi = mpf_pi(wp)
    pipow = twopi2 = mpf_shift(mpf_mul(pi, pi, wp), 2)
    n = 1
    while 1:
        zeta2n = mpf_abs(mpf_bernoulli(2 * n, wp))
        zeta2n = mpf_mul(zeta2n, pipow, wp)
        zeta2n = mpf_div(zeta2n, fac, wp)
        zeta2n = to_fixed(zeta2n, wp)
        term = (((zeta2n - ONE) * t) // n) >> wp
        if term < 100:
            break
        #if not n % 100:
        #    print n, nstr(ln(term))
        s += term
        t += ONE // (2 * n + 1) - ONE // (2 * n)
        n += 1
        fac = mpf_mul_int(fac, (2 * n) * (2 * n - 1), wp)
        pipow = mpf_mul(pipow, twopi2, wp)
    s = (s << wp) // ln2_fixed(wp)
    K = mpf_exp(from_man_exp(s, -wp), wp)
    K = to_fixed(K, prec)
    return K
Ejemplo n.º 3
0
def mpc_psi(m, z, prec, rnd=round_fast):
    """
    Computation of the polygamma function of arbitrary integer order
    m >= 0, for a complex argument z.
    """
    if m == 0:
        return mpc_psi0(z, prec, rnd)
    re, im = z
    wp = prec + 20
    sign, man, exp, bc = re
    if not man:
        if re == finf and im == fzero:
            return (fzero, fzero)
        if re == fnan:
            return fnan
    # Recurrence
    w = to_int(re)
    n = int(0.4*wp + 4*m)
    s = mpc_zero
    if w < n:
        for k in xrange(w, n):
            t = mpc_pow_int(z, -m-1, wp)
            s = mpc_add(s, t, wp)
            z = mpc_add_mpf(z, fone, wp)
    zm = mpc_pow_int(z, -m, wp)
    z2 = mpc_pow_int(z, -2, wp)
    # 1/m*(z+N)^m
    integral_term = mpc_div_mpf(zm, from_int(m), wp)
    s = mpc_add(s, integral_term, wp)
    # 1/2*(z+N)^(-(m+1))
    s = mpc_add(s, mpc_mul_mpf(mpc_div(zm, z, wp), fhalf, wp), wp)
    a = m + 1
    b = 2
    k = 1
    # Important: we want to sum up to the *relative* error,
    # not the absolute error, because psi^(m)(z) might be tiny
    magn = mpc_abs(s, 10)
    magn = magn[2]+magn[3]
    eps = mpf_shift(fone, magn-wp+2)
    while 1:
        zm = mpc_mul(zm, z2, wp)
        bern = mpf_bernoulli(2*k, wp)
        scal = mpf_mul_int(bern, a, wp)
        scal = mpf_div(scal, from_int(b), wp)
        term = mpc_mul_mpf(zm, scal, wp)
        s = mpc_add(s, term, wp)
        szterm = mpc_abs(term, 10)
        if k > 2 and mpf_le(szterm, eps):
            break
        #print k, to_str(szterm, 10), to_str(eps, 10)
        a *= (m+2*k)*(m+2*k+1)
        b *= (2*k+1)*(2*k+2)
        k += 1
    # Scale and sign factor
    v = mpc_mul_mpf(s, mpf_gamma(from_int(m+1), wp), prec, rnd)
    if not (m & 1):
        v = mpf_neg(v[0]), mpf_neg(v[1])
    return v
Ejemplo n.º 4
0
def mpc_psi(m, z, prec, rnd=round_fast):
    """
    Computation of the polygamma function of arbitrary integer order
    m >= 0, for a complex argument z.
    """
    if m == 0:
        return mpc_psi0(z, prec, rnd)
    re, im = z
    wp = prec + 20
    sign, man, exp, bc = re
    if not man:
        if re == finf and im == fzero:
            return (fzero, fzero)
        if re == fnan:
            return fnan
    # Recurrence
    w = to_int(re)
    n = int(0.4 * wp + 4 * m)
    s = mpc_zero
    if w < n:
        for k in xrange(w, n):
            t = mpc_pow_int(z, -m - 1, wp)
            s = mpc_add(s, t, wp)
            z = mpc_add_mpf(z, fone, wp)
    zm = mpc_pow_int(z, -m, wp)
    z2 = mpc_pow_int(z, -2, wp)
    # 1/m*(z+N)^m
    integral_term = mpc_div_mpf(zm, from_int(m), wp)
    s = mpc_add(s, integral_term, wp)
    # 1/2*(z+N)^(-(m+1))
    s = mpc_add(s, mpc_mul_mpf(mpc_div(zm, z, wp), fhalf, wp), wp)
    a = m + 1
    b = 2
    k = 1
    # Important: we want to sum up to the *relative* error,
    # not the absolute error, because psi^(m)(z) might be tiny
    magn = mpc_abs(s, 10)
    magn = magn[2] + magn[3]
    eps = mpf_shift(fone, magn - wp + 2)
    while 1:
        zm = mpc_mul(zm, z2, wp)
        bern = mpf_bernoulli(2 * k, wp)
        scal = mpf_mul_int(bern, a, wp)
        scal = mpf_div(scal, from_int(b), wp)
        term = mpc_mul_mpf(zm, scal, wp)
        s = mpc_add(s, term, wp)
        szterm = mpc_abs(term, 10)
        if k > 2 and mpf_le(szterm, eps):
            break
        #print k, to_str(szterm, 10), to_str(eps, 10)
        a *= (m + 2 * k) * (m + 2 * k + 1)
        b *= (2 * k + 1) * (2 * k + 2)
        k += 1
    # Scale and sign factor
    v = mpc_mul_mpf(s, mpf_gamma(from_int(m + 1), wp), prec, rnd)
    if not (m & 1):
        v = mpf_neg(v[0]), mpf_neg(v[1])
    return v
Ejemplo n.º 5
0
def glaisher_fixed(prec):
    wp = prec + 30
    # Number of direct terms to sum before applying the Euler-Maclaurin
    # formula to the tail. TODO: choose more intelligently
    N = int(0.33*prec + 5)
    ONE = MPZ_ONE << wp
    # Euler-Maclaurin, step 1: sum log(k)/k**2 for k from 2 to N-1
    s = MPZ_ZERO
    for k in range(2, N):
        #print k, N
        s += log_int_fixed(k, wp) // k**2
    logN = log_int_fixed(N, wp)
    #logN = to_fixed(mpf_log(from_int(N), wp+20), wp)
    # E-M step 2: integral of log(x)/x**2 from N to inf
    s += (ONE + logN) // N
    # E-M step 3: endpoint correction term f(N)/2
    s += logN // (N**2 * 2)
    # E-M step 4: the series of derivatives
    pN = N**3
    a = 1
    b = -2
    j = 3
    fac = from_int(2)
    k = 1
    while 1:
        # D(2*k-1) * B(2*k) / fac(2*k) [D(n) = nth derivative]
        D = ((a << wp) + b*logN) // pN
        D = from_man_exp(D, -wp)
        B = mpf_bernoulli(2*k, wp)
        term = mpf_mul(B, D, wp)
        term = mpf_div(term, fac, wp)
        term = to_fixed(term, wp)
        if abs(term) < 100:
            break
        #if not k % 10:
        #    print k, math.log(int(abs(term)), 10)
        s -= term
        # Advance derivative twice
        a, b, pN, j = b-a*j, -j*b, pN*N, j+1
        a, b, pN, j = b-a*j, -j*b, pN*N, j+1
        k += 1
        fac = mpf_mul_int(fac, (2*k)*(2*k-1), wp)
    # A = exp((6*s/pi**2 + log(2*pi) + euler)/12)
    pi = pi_fixed(wp)
    s *= 6
    s = (s << wp) // (pi**2 >> wp)
    s += euler_fixed(wp)
    s += to_fixed(mpf_log(from_man_exp(2*pi, -wp), wp), wp)
    s //= 12
    A = mpf_exp(from_man_exp(s, -wp), wp)
    return to_fixed(A, prec)
Ejemplo n.º 6
0
def glaisher_fixed(prec):
    wp = prec + 30
    # Number of direct terms to sum before applying the Euler-Maclaurin
    # formula to the tail. TODO: choose more intelligently
    N = int(0.33 * prec + 5)
    ONE = MP_ONE << wp
    # Euler-Maclaurin, step 1: sum log(k)/k**2 for k from 2 to N-1
    s = MP_ZERO
    for k in range(2, N):
        #print k, N
        s += log_int_fixed(k, wp) // k**2
    logN = log_int_fixed(N, wp)
    #logN = to_fixed(mpf_log(from_int(N), wp+20), wp)
    # E-M step 2: integral of log(x)/x**2 from N to inf
    s += (ONE + logN) // N
    # E-M step 3: endpoint correction term f(N)/2
    s += logN // (N**2 * 2)
    # E-M step 4: the series of derivatives
    pN = N**3
    a = 1
    b = -2
    j = 3
    fac = from_int(2)
    k = 1
    while 1:
        # D(2*k-1) * B(2*k) / fac(2*k) [D(n) = nth derivative]
        D = ((a << wp) + b * logN) // pN
        D = from_man_exp(D, -wp)
        B = mpf_bernoulli(2 * k, wp)
        term = mpf_mul(B, D, wp)
        term = mpf_div(term, fac, wp)
        term = to_fixed(term, wp)
        if abs(term) < 100:
            break
        #if not k % 10:
        #    print k, math.log(int(abs(term)), 10)
        s -= term
        # Advance derivative twice
        a, b, pN, j = b - a * j, -j * b, pN * N, j + 1
        a, b, pN, j = b - a * j, -j * b, pN * N, j + 1
        k += 1
        fac = mpf_mul_int(fac, (2 * k) * (2 * k - 1), wp)
    # A = exp((6*s/pi**2 + log(2*pi) + euler)/12)
    pi = pi_fixed(wp)
    s *= 6
    s = (s << wp) // (pi**2 >> wp)
    s += euler_fixed(wp)
    s += to_fixed(mpf_log(from_man_exp(2 * pi, -wp), wp), wp)
    s //= 12
    A = mpf_exp(from_man_exp(s, -wp), wp)
    return to_fixed(A, prec)
Ejemplo n.º 7
0
def mertens_fixed(prec):
    wp = prec + 20
    m = 2
    s = mpf_euler(wp)
    while 1:
        t = mpf_zeta_int(m, wp)
        if t == fone:
            break
        t = mpf_log(t, wp)
        t = mpf_mul_int(t, moebius(m), wp)
        t = mpf_div(t, from_int(m), wp)
        s = mpf_add(s, t)
        m += 1
    return to_fixed(s, prec)
Ejemplo n.º 8
0
def mertens_fixed(prec):
    wp = prec + 20
    m = 2
    s = mpf_euler(wp)
    while 1:
        t = mpf_zeta_int(m, wp)
        if t == fone:
            break
        t = mpf_log(t, wp)
        t = mpf_mul_int(t, moebius(m), wp)
        t = mpf_div(t, from_int(m), wp)
        s = mpf_add(s, t)
        m += 1
    return to_fixed(s, prec)
Ejemplo n.º 9
0
def calc_spouge_coefficients(a, prec):
    wp = prec + int(a*1.4)
    c = [0] * a
    # b = exp(a-1)
    b = mpf_exp(from_int(a-1), wp)
    # e = exp(1)
    e = mpf_exp(fone, wp)
    # sqrt(2*pi)
    sq2pi = mpf_sqrt(mpf_shift(mpf_pi(wp), 1), wp)
    c[0] = to_fixed(sq2pi, prec)
    for k in xrange(1, a):
        # c[k] = ((-1)**(k-1) * (a-k)**k) * b / sqrt(a-k)
        term = mpf_mul_int(b, ((-1)**(k-1) * (a-k)**k), wp)
        term = mpf_div(term, mpf_sqrt(from_int(a-k), wp), wp)
        c[k] = to_fixed(term, prec)
        # b = b / (e * k)
        b = mpf_div(b, mpf_mul(e, from_int(k), wp), wp)
    return c
Ejemplo n.º 10
0
def calc_spouge_coefficients(a, prec):
    wp = prec + int(a * 1.4)
    c = [0] * a
    # b = exp(a-1)
    b = mpf_exp(from_int(a - 1), wp)
    # e = exp(1)
    e = mpf_exp(fone, wp)
    # sqrt(2*pi)
    sq2pi = mpf_sqrt(mpf_shift(mpf_pi(wp), 1), wp)
    c[0] = to_fixed(sq2pi, prec)
    for k in xrange(1, a):
        # c[k] = ((-1)**(k-1) * (a-k)**k) * b / sqrt(a-k)
        term = mpf_mul_int(b, ((-1)**(k - 1) * (a - k)**k), wp)
        term = mpf_div(term, mpf_sqrt(from_int(a - k), wp), wp)
        c[k] = to_fixed(term, prec)
        # b = b / (e * k)
        b = mpf_div(b, mpf_mul(e, from_int(k), wp), wp)
    return c
Ejemplo n.º 11
0
Archivo: libmpc.py Proyecto: vks/sympy
def mpc_mul_int(z, n, prec, rnd=round_fast):
    a, b = z
    re = mpf_mul_int(a, n, prec, rnd)
    im = mpf_mul_int(b, n, prec, rnd)
    return re, im
Ejemplo n.º 12
0
    sexp = aexp + dexp
    sbc = abc + dbc - 4
    if sbc < 4: sbc = bct[int(sman)]
    else:       sbc += bct[int(sman>>sbc)]
    s = ssign, sman, sexp, sbc

    return mpf_add(p, q, prec, rnd), mpf_add(r, s, prec, rnd)


def mpc_mul_mpf((a, b), p, prec, rnd=round_fast):
    re = mpf_mul(a, p, prec, rnd)
    im = mpf_mul(b, p, prec, rnd)
    return re, im

def mpc_mul_int((a, b), n, prec, rnd=round_fast):
    re = mpf_mul_int(a, n, prec, rnd)
    im = mpf_mul_int(b, n, prec, rnd)
    return re, im

def mpc_div((a, b), (c, d), prec, rnd=round_fast):
    wp = prec + 10
    # mag = c*c + d*d
    mag = mpf_add(mpf_mul(c, c), mpf_mul(d, d), wp)
    # (a*c+b*d)/mag, (b*c-a*d)/mag
    t = mpf_add(mpf_mul(a,c), mpf_mul(b,d), wp)
    u = mpf_sub(mpf_mul(b,c), mpf_mul(a,d), wp)
    return mpf_div(t,mag,prec,rnd), mpf_div(u,mag,prec,rnd)

def mpc_div_mpf((a, b), p, prec, rnd=round_fast):
    re = mpf_div(a, p, prec, rnd)
    im = mpf_div(b, p, prec, rnd)
Ejemplo n.º 13
0
    sbc = abc + dbc - 4
    if sbc < 4: sbc = bct[int(sman)]
    else: sbc += bct[int(sman >> sbc)]
    s = ssign, sman, sexp, sbc

    return mpf_add(p, q, prec, rnd), mpf_add(r, s, prec, rnd)


def mpc_mul_mpf((a, b), p, prec, rnd=round_fast):
    re = mpf_mul(a, p, prec, rnd)
    im = mpf_mul(b, p, prec, rnd)
    return re, im


def mpc_mul_int((a, b), n, prec, rnd=round_fast):
    re = mpf_mul_int(a, n, prec, rnd)
    im = mpf_mul_int(b, n, prec, rnd)
    return re, im


def mpc_div((a, b), (c, d), prec, rnd=round_fast):
    wp = prec + 10
    # mag = c*c + d*d
    mag = mpf_add(mpf_mul(c, c), mpf_mul(d, d), wp)
    # (a*c+b*d)/mag, (b*c-a*d)/mag
    t = mpf_add(mpf_mul(a, c), mpf_mul(b, d), wp)
    u = mpf_sub(mpf_mul(b, c), mpf_mul(a, d), wp)
    return mpf_div(t, mag, prec, rnd), mpf_div(u, mag, prec, rnd)


def mpc_div_mpf((a, b), p, prec, rnd=round_fast):
Ejemplo n.º 14
0
def mpc_mul_int(z, n, prec, rnd=round_fast):
    a, b = z
    re = mpf_mul_int(a, n, prec, rnd)
    im = mpf_mul_int(b, n, prec, rnd)
    return re, im