def label_stream():

    hotword_detected = False
    countdown = 0

    audio_stream = AudiostreamSource()

    action_detector = AudioRecognition(libpath, action_graph, action_labels)
    hotword_detector = AudioRecognition(libpath, hotword_graph, hotword_labels)
    #
    #action_detector = hotword_detector

    hotword_detector.SetSensitivity(0.5)
    action_detector.SetSensitivity(0.55)
    bufsize = hotword_detector.GetInputDataSize()
    audio_stream.start()

    print("Audio Recognition Version: " + hotword_detector.GetVersionString())
    try:
        while (True):
            frame = audio_stream.read(bufsize, bufsize)

            if (not frame):
                time.sleep(0.01)
                continue

            if (countdown > 0):
                countdown -= 1
                if (countdown == 0):
                    hotword_detected = False
                    print("Stopped Listening")

            if (not hotword_detected):
                prediction = hotword_detector.RunDetection(frame)
                print(hotword_detector.GetPredictionLabel(prediction))
                if (prediction
                        and hotword_detector.GetPredictionLabel(prediction)
                        == 'light'):
                    hotword_detected = True
                    countdown = 20
                    now = datetime.datetime.now().strftime("%d.%b %Y %H:%M:%S")
                    print("Listening")
            else:
                prediction = action_detector.RunDetection(frame)
                if (prediction):
                    label = action_detector.GetPredictionLabel(prediction)

                    if (label == "on"):
                        print("Turning light on")

                    if (label == "off"):
                        print("Turning light off")

                    countdown = 0
                    hotword_detected = False

    except KeyboardInterrupt:
        print("Terminating")
        audio_stream.stop()
        sys.exit(0)
def label_stream(labels, libpath, graph, sensitivity):

    audio_stream = AudiostreamSource()

    extractor = FeatureExtractor(libpath)
    extactor_gain = 1.0

    detector = AudioRecognition(libpath, graph, labels)
    detector.SetSensitivity(sensitivity)

    bufsize = detector.GetInputDataSize()

    print("Audio Recognition Version: " + detector.GetVersionString())

    audio_stream.start()
    try:
        while (True):
            frame = audio_stream.read(bufsize * 2, bufsize * 2)
            if (not frame):
                time.sleep(0.01)
                continue

            features = extractor.signal_to_mel(frame, extactor_gain)

            prediction = detector.RunDetection(features)

            if (prediction):
                now = datetime.datetime.now().strftime("%d.%b %Y %H:%M:%S")
                print(detector.GetPredictionLabel(prediction) + " " + now)
                os.system(play_command + " ./resources/ding.wav")

    except KeyboardInterrupt:
        print("Terminating")
        audio_stream.stop()
        sys.exit(0)
Ejemplo n.º 3
0
def label_stream(labels, libpath, graph, sensitivity):

    audio_stream = AudiostreamSource()
    detector = AudioRecognition(libpath, graph, labels)

    detector.SetSensitivity(sensitivity)
    bufsize = detector.GetInputDataSize()

    play_command = "play -q" if platform.system() == "Darwin" else "aplay"

    print("Audio Recognition Version: " + detector.GetVersionString())

    audio_stream.start()
    try:
        while (True):
            frame = audio_stream.read(bufsize, bufsize)
            if (not frame):
                time.sleep(0.01)
                continue

            prediction = detector.RunDetection(frame)

            if (prediction):
                now = datetime.datetime.now().strftime("%d.%b %Y %H:%M:%S")
                print(detector.GetPredictionLabel(prediction) + " " + now)
                os.system(play_command + " ./ding.wav")

    except KeyboardInterrupt:
        print("Terminating")
        audio_stream.stop()
        sys.exit(0)
	def add_detector(self,graph,labels,sensitivity):
		detector = AudioRecognition(self.libpath,graph,labels)
		detector.SetSensitivity(sensitivity)
		self.detectors.append(detector)
Ejemplo n.º 5
0
def label_stream(labels, libpath, verification_path, graph, sensitivity):
    last_frames = []

    #Keyword spotting has 200ms frames, Verifiyer takes 2 seconds of audio
    max_last_frames = 10

    audio_stream = AudiostreamSource()

    extractor = FeatureExtractor(libpath)

    detector = AudioRecognition(libpath, graph, labels)
    detector.SetSensitivity(sensitivity)

    verifiyer = SpeakerVerification(libpath, verification_path)

    bufsize = detector.GetInputDataSize()

    print("Bufsize: " + str(bufsize))

    print("Audio Recognition Version: " + detector.GetVersionString())

    print(
        "WARNING EXPERIMENTAL: The voice verification module can be use to verify if"
    )
    print(
        "A command is issued by a certian speaker. It processes speech signals with a"
    )
    print("two second length. This experimental version isn't very good yet.")

    print(
        "\n\n During enrolling a fingerprint of your voice is caputred. By default 5 samples"
    )
    print(
        "Will be captured and averaged. The progam will output a similarity score between 0 and 1"
    )
    print("A value of 1 means totally similar, 0 means different.")

    print("Currently a threshold of 0.95 seems good")

    print(
        "This module should not be run on a Pi Zero, as it uses excessive CPU")
    print(
        "Verification can also be helpful to reduce false positives of non speech signals"
    )

    audio_stream.start()
    try:
        while (True):
            frame = audio_stream.read(bufsize * 2, bufsize * 2)
            if (not frame):
                time.sleep(0.01)
                continue

            features = extractor.signal_to_mel(frame)

            last_frames.append(features)
            if len(last_frames) > max_last_frames:
                last_frames.pop(0)

            prediction = detector.RunDetection(features)

            if (prediction):
                now = datetime.datetime.now().strftime("%d.%b %Y %H:%M:%S")
                print(detector.GetPredictionLabel(prediction) + " " + now)
                os.system(play_command + " ./resources/ding.wav")

                detect_frame = bytearray()
                for element in last_frames:
                    detect_frame.extend(element)

                print("Running Verification")

                features = verifiyer.VerifySpeaker(detect_frame)

                if (len(fingerprints) < enrolling):
                    print("Enrolling")
                    fingerprints.append(features)
                else:
                    print("Completed")

                print(features)

                avg_fingerprint = get_averaged_fingerprint()

                if (avg_fingerprint):
                    similarity_score = cosine_similarity(
                        features, avg_fingerprint)
                    print("Similarity: " + str(similarity_score))

                print("Verification Done")

    except KeyboardInterrupt:
        print("Terminating")
        audio_stream.stop()
        sys.exit(0)