Ejemplo n.º 1
0
def process_one_slice(flow, grd, i):
    """
    Returns ...

    Use cell-average flow quantities and areas from the EAST boundary faces.
    
    This is a little dodgy, in general, but we gat away with it here
    because the cells have right angles.
    """
    TOL = 5.0e-2
    rho_f1_z_dA = 0.0
    rho_z_dA = 0.0
    m_flux = 0.0
    H_flux = 0.0
    A_f0 = 0.0
    A_f1 = 0.0
    A_mix = 0.0
    A_tot = 0.0
    nj = flow.nj
    nk = flow.nk
    for j in range(nj):
        for k in range(nk):
            vtx = grd.get_vertex_list_for_cell(i, j, k)
            # The EAST cell face has 1, 2, 6, 5 as corners (unit normal out).
            face_centroid = quad_centroid(vtx[1], vtx[2], vtx[6], vtx[5])
            face_normal = quad_normal(vtx[1], vtx[2], vtx[6], vtx[5])
            face_area = quad_area(vtx[1], vtx[2], vtx[6], vtx[5])
            # average conditions in cell
            z = flow.data['pos.z'][i, j, k]
            pressure = flow.data['p'][i, j, k]
            rho = flow.data['rho'][i, j, k]
            e = flow.data['e[0]'][i, j, k]
            f0 = flow.data['massf[0]'][i, j, k]
            f1 = flow.data['massf[1]'][i, j, k]
            rho_z_dA += rho * face_area * z
            rho_f1_z_dA += rho * f1 * face_area * z
            A_tot += face_area
            if f0 > 1.0 - TOL:
                A_f0 += face_area
            elif f0 < TOL:
                A_f1 += face_area
            else:
                A_mix += face_area
            v_x = flow.data['vel.x'][i, j, k]
            v_y = flow.data['vel.y'][i, j, k]
            v_z = flow.data['vel.z'][i, j, k]
            vel_abs = Vector(v_x, v_y, v_z)
            df = face_area * pressure * face_normal
            dm_flux = rho * dot(vel_abs, face_normal) * face_area
            m_flux += dm_flux
            H_flux += dm_flux * (e + pressure / rho + 0.5 *
                                 (v_x * v_x + v_y * v_y + v_z * v_z))
    return m_flux, H_flux, A_f0, A_f1, A_mix, A_tot, rho_z_dA, rho_f1_z_dA
Ejemplo n.º 2
0
 def objective(alpha, x_s=x_s, y_s=y_s):
     """
     Objective function for the optimizer.
     """
     from libprep3 import Bezier, Vector
     bx, by = define_bezier_points(alpha, x_s, y_s)
     bpath = Bezier([Vector(bx[0],by[0]),Vector(bx[1],by[1]),
                     Vector(bx[2],by[2]),Vector(bx[3],by[3])])
     nbez = 1000
     pbez = []
     for i in range(nbez):
         t = 1.0/nbez * i
         pbez.append(bpath.eval(t))
     n = len(x_s)
     sum_sq_err = 0.0
     for j in range(n):
         min_dist = (x_s[j]-pbez[0].x)**2 + (y_s[j]-pbez[0].y)**2
         for i in range(1,nbez):
             dist = (x_s[j]-pbez[i].x)**2 + (y_s[j]-pbez[i].y)**2
             if dist < min_dist: min_dist = dist
         sum_sq_err += min_dist
     # print "alpha=", alpha, "sum_sq_err=", sum_sq_err
     return sum_sq_err
Ejemplo n.º 3
0
print "Begin: Pick up data for tindx=", tindx
from libprep3 import Vector, cross, dot, vabs
from e3_flow import read_all_blocks
from math import sqrt
#
nb = 28
pick_list = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26]  # surface
rho_inf = 6.081e-4  # kg/m**3
p_inf = 18.55  # Pa
u_inf = 2576.0  # m/s
T_inf = 102.2  # K
T_wall = 295.8  # K
from cfpylib.gasdyn import sutherland
mu_inf = sutherland.mu(T_inf, 'N2')
mm = 0.001  # metres
corner1 = Vector(92.08, 42.94) * mm
corner2 = Vector(153.69, 130.925) * mm
#
grid, flow, dim = read_all_blocks(job, nb, tindx, zipFiles=True)
print "Compute properties for cell-centres along the surface"
outfile = open("surface.data", "w")
outfile.write(
    "# x(m) s(m) tau_w(Pa) Cf Cf_blasius y_plus p(Pa) Cp q(W/m**2) Ch\n")
for ib in pick_list:
    j = 0  # surface is along the South boundary
    k = 0  # of a 2D grid
    print "# start of block"
    for i in range(flow[ib].ni):
        # Cell closest to surface
        x = flow[ib].data['pos.x'][i, j, k]
        y = flow[ib].data['pos.y'][i, j, k]
Ejemplo n.º 4
0
from e3_flow import read_all_blocks
from math import sqrt
#
nb = 24
pick_list = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22] # blocks against surface
rho_inf = 8.81e-4 # kg/m**3
p_inf = 31.88 # Pa
u_inf =  2304.0 # m/s
T_inf = 120.4 # K
T_wall = 295.2 # K
from cfpylib.gasdyn import sutherland
mu_inf = sutherland.mu(T_inf, 'N2')
mm = 0.001  # metres
R = 32.5*mm
xcorner = 101.7*mm
corner = Vector(xcorner,R)
#
grid, flow, dim = read_all_blocks(job, nb, tindx, zipFiles=True)
print "Compute shear stress for cell-centres along the surface"
outfile = open("surface.data", "w")
outfile.write("# x(m) s(m) tau_w(Pa) Cf Cf_blasius y_plus p(Pa) Cp q(W/m**2) Ch\n")
for ib in pick_list:
    j = 0 # surface is along the South boundary  
    k = 0 # of a 2D grid
    print "# start of block"
    for i in range(flow[ib].ni):
        # Cell closest to surface
        x = flow[ib].data['pos.x'][i,j,k] 
        y = flow[ib].data['pos.y'][i,j,k]
        ctr = Vector(x, y)
        # Get vertices on surface, for this cell.
Ejemplo n.º 5
0
def print_stats_MoA(sliceFileName,jobName,coreRfraction,weight):
    """
    (MoA = Mass- or Area-weighted)
    Display either the mass-weighted or area-weighted statistics
    of flow properties at the nozzle exit.
    """
    print weight.capitalize()+"-Weighted Nozzle-exit statistics:"
    variable_list, data = get_slice_data(sliceFileName)
    #
    # Identify edge of core flow.
    ys = data['pos.y']
    xs = data['pos.x']
    y_edge = ys[-1] * coreRfraction
    #
    # Compute and print area-weighted-average core flow values.
    exclude_list = ['pos.x', 'pos.y', 'pos.z', 'volume', 'vel.z', 'S']
    #
    fout = open(jobName+'-exit.stats'+weight.capitalize(),'w')
    fout.write('CoreRadiusFraction: %10.6f\n' % coreRfraction)
    fout.write('%15s  %12s   %10s  %10s %10s\n' % 
               ("variable","mean-value","minus","plus","std-dev"))
    fout.write(65*'-'+'\n')
    #
    print "%15s  %12s    %10s %10s %10s" % \
        ("variable", "mean-value", "minus", "plus","std-dev")
    print 65*'-'
    u = data['vel.x']; v = data['vel.y']; rho = data['rho']
    for var in variable_list:
        if var in exclude_list: continue
        MassFlux = 0.0; F = 0.0;
        for j in range(len(ys)):
            if ys[j] > y_edge: break
            y1 = 0.5*(ys[j]+ys[j+1])
            x1 = 0.5*(xs[j]+xs[j+1])
            if j == 0:
                y0 = 0.0
                dx = xs[j]-x1
                x0 = xs[j]+dx
            else:
                y0 = 0.5*(ys[j-1]+ys[j])
                x0 = 0.5*(xs[j-1]+xs[j])
            # Area element...
            #d_Area = y1**2 - y0**2
            d_Area = pi*(y0+y1)*sqrt((y1-y0)**2+(x0-x1)**2)
            # Unit normal vector...
            edge = Vector(x0,y0,0.0)-Vector(x1,y1,0.0)
            nhat = Vector(-edge.y, edge.x, 0.0)/vabs(edge)
            # Velocity vector...
            vel = Vector(u[j],v[j],0.0)
            # Weighting factor...
            if weight in ['area']:
                weighting = 1.0
            elif weight in ['mass']:
                weighting = rho[j]*dot(vel,nhat)
            else:
                print "Unknown weighting option given"
                break
            # Accumulate total...
            F += data[var][j] * weighting * d_Area
            MassFlux += weighting * d_Area
        mean = F/MassFlux
        # Identify low and high values.
        diff_minus = 0.0
        diff_plus = 0.0
        count = 0.0
        stddev = 0.0
        for j in range(len(ys)):
            if ys[j] > y_edge: break
            diff = data[var][j] - mean
            diff_minus = min(diff, diff_minus)
            diff_plus = max(diff, diff_plus)
            count += 1
            stddev += diff**2
        # Calculate the sample standard deviation
        stddev = (stddev/(count-1))**0.5
        print "%15s  %12.5g    %10.3g %10.3g %10.3g" % \
              (var, mean, diff_minus, diff_plus, stddev)
        fout.write('%15s  %12.5g    %10.3g %10.3g %10.3g\n' % \
              (var, mean, diff_minus, diff_plus, stddev))
    #
    print 65*'-'
    fout.write(65*'-'+'\n')
    fout.close()
    return
Ejemplo n.º 6
0
def print_stats_CMME(sliceFileName,jobName,coreRfraction,gmodelFile):
    """
    Display statistics of flow properties at the nozzle exit using
    conservation of mass, momentum and energy (CMME) method.
 
    The implementation is loosely based on the paper:
    Baurle, R.A. and Gaffney, R.L. (2008)
    "Extraction of One-Dimensional Flow Properties from Multidimensional Data Sets",
    Journal of Propulsion and Power, vol. 24, no. 4, pg. 704

    Equations numbers given in the comments of the code refer to the paper.

    PJ, 22-Aug-2012: Use brute-force to get the effective 1D flow properties.
    
    Assumptions: Geometry is axisymmetric. The fluxes are calculated normal to
      the curve (which may not be straight) over which we are integrating. The
      returned averaged velocity vector is parallel to the averaged unit normal 
      over the curve.
    """
    print "Nozzle-exit statistics (CMME):"
    variable_list, data = get_slice_data(sliceFileName)
    #
    # Identify edge of core flow.
    ys = data['pos.y']
    xs = data['pos.x']
    y_edge = ys[-1] * coreRfraction
    #
    # Over the core region of interest we now want to calculate: 
    # (1) total area; 
    # (2) the unit normal;
    # (3) total mass flux for each species; 
    # (4) total momentum flux; and 
    # (5) total energy flux.
    #
    # First, we need to do a bit of fiddling with variable names in order
    # to get the species names.
    speciesKeys = [k for k in variable_list if k.startswith("mass")]
    # Get a list of just the species names (without the "massf[i]-" prefix)...
    speciesNames = [name.split('-')[1] for name in speciesKeys]
    nsp = len(speciesKeys)
    #
    # Initialise the totals across the slice:
    Area = 0.0 #...area
    nhatTotal = Vector(0.0) #...unit normal
    speciesMassFluxes = zeros((nsp,))
    massFlux = 0.0
    momentumFlux = Vector(0.0)
    energyFlux = 0.0
    # We also need to calculate the mass-weighted Mach number for later use. 
    mach = 0.0
    # Mass-weighted turbulent parameters will also be reported in the stats file.
    tke = 0.0
    omega = 0.0
    dt_chem = 0.0
    #
    # Define the following for ease of use in the integration process below.
    rho = data['rho']
    u = data['vel.x']
    v = data['vel.y']
    p = data['p']
    h0 = data['total_h'] # this includes tke
    a = data['a']
    M = data['M_local']
    #
    # Integrate the conserved properties across the slice.
    for j in range(len(ys)):
        if ys[j] > y_edge: break
        y1 = 0.5*(ys[j]+ys[j+1])
        x1 = 0.5*(xs[j]+xs[j+1])
        if j == 0:
            y0 = 0.0
            dx = xs[j]-x1
            x0 = xs[j]+dx
        else:
            y0 = 0.5*(ys[j-1]+ys[j])
            x0 = 0.5*(xs[j-1]+xs[j])
        # We assume the data is axi-symmetric but no
        # assumption is made about the straightness
        # of the plane over which we are integrating.
        # Hence we use a truncated cone for the area.
        d_Area = pi*(y0+y1)*sqrt((y1-y0)**2+(x0-x1)**2)
        Area += d_Area
        # Calculate the outward pointing unit
        # normal vector to the differential area
        # element...
        edge = Vector(x0,y0,0)-Vector(x1,y1,0)
        nhat = Vector(-edge.y, edge.x, 0)/vabs(edge)
        nhatTotal += nhat*d_Area
        # Velocity vector and weighting function...
        vel = Vector(u[j],v[j],0.0)
        weighting = rho[j]*dot(vel,nhat)
        # Total mass, momentum and energy fluxes...
        # Eq'ns (2a), (2b), and (2c) in paper.
        momentumFlux += (weighting*vel + p[j]*nhat)*d_Area
        #h0 = e0[j] + p[j]/rho[j] + 0.5*dot(vel,vel)
        #energyFlux += weighting*h0*d_Area
        energyFlux += weighting*h0[j]*d_Area
        speciesFractions = array([data[species][j] for species in speciesKeys])
        speciesMassFluxes += weighting*speciesFractions*d_Area
        massFlux += weighting*d_Area
        #
        # Mass-weighted parameters...
        mach += M[j]*weighting*d_Area
        if 'tke' in data.keys():
            tke += data['tke'][j]*weighting*d_Area
        if 'omega' in data.keys():
            omega += data['omega'][j]*weighting*d_Area
        if 'dt_chem' in data.keys():
            dt_chem += data['dt_chem'][j]*weighting*d_Area
    # Check the total mass flux...Eq'n (A2)
    assert abs(massFlux - sum(speciesMassFluxes)) <= 1e-7
    #
    # Now, compute the effective 1D flow properties
    # to have the same integral properties.
    #
    # Calculate the overall unit normal vector using Eq'n (10)
    g_nhat = nhatTotal/Area
    # and a scalar momentum flux of the effective 1D flow, Eq'n (A8)
    momentumFluxScalar = dot(momentumFlux,g_nhat)
    # 1D species mass fractions...Eq'n (A4)
    massFrac = speciesMassFluxes/massFlux
    # Mass-weighted Mach number
    aveMach = mach/massFlux
    # and mass-weighted turbulent parameters.
    ave_tke = tke/massFlux #...Eq'n (20) and (A2)
    ave_omega = omega/massFlux
    ave_dt_chem = dt_chem/massFlux
    # and reconstruct the gas state
    gmodel = create_gas_model(gmodelFile)
    gdata = Gas_data(gmodel)
    massfDict = dict([(k,v) for k,v in zip(speciesNames,massFrac)])
    set_massf(gdata,gmodel,massfDict)
    gdata.rho = data['rho'][0]
    gdata.T[0] = data['T[0]'][0]
    gmodel.eval_thermo_state_rhoT(gdata)
    vx = massFlux/(gdata.rho*Area)
    #print "Before optimizer, vx=", vx, "p=", gdata.p, "T=", gdata.T[0], "rho=", gdata.rho
    #
    #print "fm=",massFlux,"fp=",momentumFluxScalar,"fe=",energyFlux
    def error_estimate(params, 
                       gasData=gdata, gasModel=gmodel,
                       fm=massFlux, fp=momentumFluxScalar, fe=energyFlux,
                       tke=ave_tke, Area=Area, mach=aveMach):
        """
        Estimate the badness the current guess for 1D flow properties.
        params : [rho, T, v] 1D flow properties to be evaluated
        """
        rho, T, vx = params
        gasData.T[0] = T
        gasData.rho = rho
        gmodel.eval_thermo_state_rhoT(gasData)
        p = gasData.p
        h = gasModel.mixture_enthalpy(gasData) #...1D static enthalpy
        M = vx/gasData.a
        # Relative errors in each conserved quantity.
        # The "+1.0" items are to avoid (unlikely) problems with zero values
        # for the given quantities.
        fm_err = abs(fm - rho*vx*Area)/(abs(fm)+1.0)
        fp_err = abs(fp - (rho*vx*vx*Area + p*Area))/(abs(fp)+1.0)
        fe_err = abs(fe - rho*vx*Area*(h+0.5*vx*vx+tke))/(abs(fe)+1.0)
        mach_err = abs(M - mach)/(abs(mach)+1.0)
        # The overall error estimate is a weighted sum.
        return fm_err + fp_err + fe_err + 0.1*mach_err
    #
    print "Optimize estimate of 1D flow properties"
    flow_params, fx, conv_flag, nfe, nres = minimize(error_estimate, 
                                                     [gdata.rho, gdata.T[0], vx],
                                                     [0.01, 10.0, 10.0], maxfe=1000)
    rho, T, vx = flow_params
    #print "fx=", fx
    #print "convergence-flag=", conv_flag
    #print "number-of-fn-evaluations=", nfe
    #print "number-of-restarts=", nres
    if conv_flag != 1:
        print "WARNING! Optimizer did not converge properly."
    gdata.T[0] = T
    gdata.rho = rho
    gmodel.eval_thermo_state_rhoT(gdata)
    p = gdata.p
    #print "After optimizer, vx=", vx, "p=", p, "T=", T, "rho=", rho
    g = gmodel.gamma(gdata)
    R = gmodel.R(gdata)
    M = vx/gdata.a
    total_h = energyFlux/massFlux
    #
    gmodel.eval_transport_coefficients(gdata)
    properties = {}
    properties['rho'] = rho
    properties['vel.x'] = vx
    properties['vel.y'] = 0.0
    properties['p'] = p
    properties['a'] = gdata.a
    properties['mu'] = gdata.mu
    properties['k[0]'] = gdata.k[0]
    properties['e[0]'] = gdata.e[0]
    properties['T[0]'] = T
    properties['M_local'] = M
    properties['total_h'] = total_h
    properties['gamma'] = g
    properties['R'] = R
    for k in range(nsp):
        properties[speciesKeys[k]] = massFrac[k]
    # Calculate Pitot pressure using Rayleigh formula...
    if M > 1.0:
        t1 = (g+1)*M*M/2
        t2 = (g+1)/(2*g*M*M - (g-1));
        pitot_p = p * pow(t1,(g/(g-1))) * pow(t2,(1/(g-1)));
    else:
        t1 = 1 + 0.5*(g-1)*M*M
        pitot_p = p * pow(t1,(g/(g-1)))
    properties['pitot_p'] = pitot_p
    # Calculate total pressure (as isentropic process)...
    t1 = 1 + 0.5*(g-1)*M*M
    total_p = p * pow(t1,(g/(g-1)))
    properties['total_p'] = total_p
    #
    # Calculate the turbulent viscosity and thermal
    # conductivity using definitions given in:
    #    Chan, W.Y.K., Jacobs, P.A., Nap, J.P., Mee, D.J.,
    #    Kirchhartz, R.M. (2011)
    #    "The k-w turbulence model in Eilmer3: User guide
    #    test cases", Research Report Number 2010/11
    properties['mu_t'] = properties['rho']*ave_tke/ave_omega
    Pr_t = 8.0/9.0 #...turbulent Prandtl number.
    Cp = gmodel.Cp(gdata)
    properties['k_t'] =  Cp*properties['mu_t']/Pr_t
    # Finally, add the remaining mass-weighted turbulent
    # and chemistry parameters...
    properties['tke'] =  ave_tke
    properties['omega'] = ave_omega
    properties['dt_chem'] = ave_dt_chem
    #
    # Now we have all the one-dimensionalised flow properties,
    # calculate the statistics and write a summary.
    #
    fout = open(jobName+'-exit.stats','w')
    if conv_flag != 1:
        fout.write('WARNING! Optimizer did not converge properly\n')
    fout.write('CoreRadiusFraction: %10.6f\n' % coreRfraction)
    fout.write('%15s  %12s   %10s  %10s %10s\n' % \
                   ("variable","mean-value","minus","plus","std-dev"))
    fout.write(65*'-')
    fout.write('\n')
    print "%15s  %12s    %10s %10s %10s" % \
        ("variable", "mean-value", "minus", "plus","std-dev")
    print 65*'-'
    #
    exclude_list = ['pos.x', 'pos.y', 'pos.z', 'volume', 'vel.z', 'S']
    for var in variable_list:
        if var in exclude_list: continue
        # Identify the low and high values
        diff_minus = 0.0
        diff_plus = 0.0
        count = 0.0
        stddev = 0.0
        for j in range(len(ys)):
            if ys[j] > y_edge: break
            diff = data[var][j] - properties[var]
            diff_minus = min(diff, diff_minus)
            diff_plus = max(diff, diff_plus)
            count += 1
            stddev += diff**2
        # Calculate the sample standard deviation
        stddev = (stddev/(count-1))**0.5
        print "%15s  %12.5g    %10.3g %10.3g %10.3g" % \
              (var, properties[var], diff_minus, diff_plus, stddev)
        fout.write('%15s  %12.5g    %10.3g %10.3g %10.3g\n' % \
              (var, properties[var], diff_minus, diff_plus, stddev))
    #
    print 65*'-'
    fout.write(65*'-'+'\n')
    fout.close()
    return
Ejemplo n.º 7
0
def process_one_slice(flow, grd, i):
    """
    Returns ...

    Use cell-average flow quantities and areas from the EAST boundary faces.
    """
    m_flux = 0.0
    mf_flux = 0.0
    mfR_flux = 0.0
    H_flux = 0.0
    Circ = 0.0
    prec = 0.0
    z_pen = 0.0
    nj = flow.nj
    nk = flow.nk
    f0stoic = 0.02876
    f0lim = 0.1 * f0stoic  # limiting mass fraction defining edge of jet
    for j in range(nj):
        for k in range(nk):
            vtx = grd.get_vertex_list_for_cell(i, j, k)
            # The EAST cell face has 1, 2, 6, 5 as corners (unit normal out).
            face_centroid = quad_centroid(vtx[1], vtx[2], vtx[6], vtx[5])
            face_normal = quad_normal(vtx[1], vtx[2], vtx[6], vtx[5])
            face_area = quad_area(vtx[1], vtx[2], vtx[6], vtx[5])
            # average conditions in cell
            y = flow.data['pos.y'][i, j, k]
            z = flow.data['pos.z'][i, j, k]
            pressure = flow.data['p'][i, j, k]
            rho = flow.data['rho'][i, j, k]
            e = flow.data['e[0]'][i, j, k]
            a = flow.data['a'][i, j, k]
            v_x = flow.data['vel.x'][i, j, k]
            v_y = flow.data['vel.y'][i, j, k]
            v_z = flow.data['vel.z'][i, j, k]
            if j == 0:
                if k == 0:
                    yp = flow.data['pos.y'][i, j + 1, k]
                    zp = flow.data['pos.z'][i, j, k + 1]
                    v_yp = flow.data['vel.y'][i, j, k + 1]
                    v_zp = flow.data['vel.z'][i, j + 1, k]
                    vort_x = (v_zp - v_z) / (yp - y) - (v_yp - v_y) / (zp - z)
                elif k == nk - 1:
                    yp = flow.data['pos.y'][i, j + 1, k]
                    zm = flow.data['pos.z'][i, j, k - 1]
                    v_zp = flow.data['vel.z'][i, j + 1, k]
                    v_ym = flow.data['vel.y'][i, j, k - 1]
                    vort_x = (v_zp - v_z) / (yp - y) - (v_y - v_ym) / (z - zm)
                else:
                    yp = flow.data['pos.y'][i, j + 1, k]
                    zp = flow.data['pos.z'][i, j, k + 1]
                    zm = flow.data['pos.z'][i, j, k - 1]
                    v_zp = flow.data['vel.z'][i, j + 1, k]
                    v_yp = flow.data['vel.y'][i, j, k + 1]
                    v_ym = flow.data['vel.y'][i, j, k - 1]
                    vort_x = 0.5 * (2.0 * (v_zp - v_z) / (yp - y) -
                                    (v_yp - v_y) / (zp - z) - (v_y - v_ym) /
                                    (z - zm))
            elif j == nj - 1:
                if k == 0:
                    ym = flow.data['pos.y'][i, j - 1, k]
                    zp = flow.data['pos.z'][i, j, k + 1]
                    v_yp = flow.data['vel.y'][i, j, k + 1]
                    v_zm = flow.data['vel.z'][i, j - 1, k]
                    vort_x = (v_zm - v_z) / (ym - y) - (v_yp - v_y) / (zp - z)
                elif k == nk - 1:
                    ym = flow.data['pos.y'][i, j - 1, k]
                    zm = flow.data['pos.z'][i, j, k - 1]
                    v_zm = flow.data['vel.z'][i, j - 1, k]
                    v_ym = flow.data['vel.y'][i, j, k - 1]
                    vort_x = (v_zm - v_z) / (ym - y) - (v_y - v_ym) / (z - zm)
                else:
                    ym = flow.data['pos.y'][i, j - 1, k]
                    zp = flow.data['pos.z'][i, j, k + 1]
                    zm = flow.data['pos.z'][i, j, k - 1]
                    v_zm = flow.data['vel.z'][i, j - 1, k]
                    v_yp = flow.data['vel.y'][i, j, k + 1]
                    v_ym = flow.data['vel.y'][i, j, k - 1]
                    vort_x = 0.5 * (2.0 * (v_zm - v_z) / (ym - y) -
                                    (v_yp - v_y) / (zp - z) - (v_y - v_ym) /
                                    (z - zm))
            elif k == 0:
                yp = flow.data['pos.y'][i, j + 1, k]
                zp = flow.data['pos.z'][i, j, k + 1]
                ym = flow.data['pos.y'][i, j - 1, k]
                v_yp = flow.data['vel.y'][i, j, k + 1]
                v_zp = flow.data['vel.z'][i, j + 1, k]
                v_zm = flow.data['vel.z'][i, j - 1, k]
                vort_x = 0.5 * ((v_zp - v_z) / (yp - y) + (v_z - v_zm) /
                                (y - ym) - 2.0 * (v_yp - v_y) / (zp - z))
            elif k == nk - 1:
                yp = flow.data['pos.y'][i, j + 1, k]
                ym = flow.data['pos.y'][i, j - 1, k]
                zm = flow.data['pos.z'][i, j, k - 1]
                v_zp = flow.data['vel.z'][i, j + 1, k]
                v_ym = flow.data['vel.y'][i, j, k - 1]
                v_zm = flow.data['vel.z'][i, j - 1, k]
                vort_x = 0.5 * ((v_zp - v_z) / (yp - y) + (v_z - v_zm) /
                                (y - ym) - 2.0 * (v_y - v_ym) / (z - zm))
            else:
                yp = flow.data['pos.y'][i, j + 1, k]
                zp = flow.data['pos.z'][i, j, k + 1]
                ym = flow.data['pos.y'][i, j - 1, k]
                zm = flow.data['pos.z'][i, j, k - 1]
                v_yp = flow.data['vel.y'][i, j, k + 1]
                v_zp = flow.data['vel.z'][i, j + 1, k]
                v_ym = flow.data['vel.y'][i, j, k - 1]
                v_zm = flow.data['vel.z'][i, j - 1, k]
                vort_x = 0.5 * ((v_zp - v_z) / (yp - y) + (v_z - v_zm) /
                                (y - ym) - (v_yp - v_y) / (zp - z) -
                                (v_y - v_ym) / (z - zm))
            Circ += math.fabs(vort_x) * face_area
            vel_abs = Vector(v_x, v_y, v_z)
            M = math.sqrt(v_x * v_x + v_y * v_y + v_z * v_z) / a
            gam = 1.4
            p0 = pressure * math.pow(1.0 + 0.5 * (gam - 1.0) * M * M, gam /
                                     (gam - 1.0))
            df = face_area * pressure * face_normal
            dm_flux = rho * dot(vel_abs, face_normal) * face_area
            m_flux += dm_flux
            f0 = flow.data['massf[0]-H2'][i, j, k]
            f1 = flow.data['massf[1]-air'][i, j, k]
            mf_flux += f0 * dm_flux
            if f0 < 0.02961 * f1:
                mfR_flux += f0 * dm_flux
            else:
                mfR_flux += 0.02961 * f1 * dm_flux
            if f0 > f0lim:
                if z > z_pen:
                    z_pen = z
                    zp = flow.data['pos.z'][i, j, k + 1]
                    f0p = flow.data['massf[0]-H2'][i, j, k + 1]
                    if f0p < f0lim:
                        z_pen = (f0lim - f0) / (f0p - f0) * (zp - z) + z
            prec += p0 * dm_flux
            H_flux += dm_flux * (e + pressure / rho + 0.5 *
                                 math.sqrt(v_x * v_x + v_y * v_y + v_z * v_z))
    return m_flux, H_flux, mf_flux, mfR_flux, prec, Circ, z_pen