def AI_loop(): #Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) #Set variables heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) frontWall = ai.wallFeeler(500,heading) left45Wall = ai.wallFeeler(500,heading+45) right45Wall = ai.wallFeeler(500,heading-45) left90Wall = ai.wallFeeler(500,heading+90) right90Wall = ai.wallFeeler(500,heading-90) left135Wall = ai.wallFeeler(500,heading+135) right135Wall = ai.wallFeeler(500,heading-135) backWall = ai.wallFeeler(500,heading-180) trackWall = ai.wallFeeler(500,tracking) result_list = [] risk_list = [] for i in range(8): Degree = tracking+(45*i) Speed = ai.selfSpeed() Distance = ai.wallFeeler(10000,tracking+(45*i)) result = Closing_Rate(Degree, tracking, Speed, Distance) result_list.append(result) ### Fuzzy membership ### closing_rate, distance = Closing_Rate(Degree, tracking, Speed, Distance) low, medium, fast = Fuzzy_Speed(closing_rate) close, far = Fuzzy_Distance(distance) risk = Fuzzy_Risk(low, medium, fast, close, far) risk_list.append(risk) ## Get the direction in deg that is most risky for the robot ## max_risk = max(risk_list) track_risk = (tracking + (risk_list.index(max_risk)*45) % 360) min_risk = min(risk_list) ####### Shooting Ennemies ######## ##Find the closest ennemy## ClosestID = ai.closestShipId() #print(ClosestID) ##Get the closest ennemy direction and speed## ClosestSpeed = ai.enemySpeedId(ClosestID) ClosestDir = ai.enemyTrackingDegId(ClosestID) ## Get the lockheadingdeg ## enemy = ai.lockClose() #print(enemy) head = ai.lockHeadingDeg() #print(head) enemyDist = ai.selfLockDist() #print(enemyDist, ClosestSpeed, ClosestDir, head) int1, int2, int3, int4, int5 = Data(enemyDist, ClosestSpeed, ClosestDir, head, heading, tracking) output = Out(int1, int2, int3, int4, int5) #print(output) if(output > 0.5): addDeg = output * 20 else: addDeg = (output -0.5) * 20 * -1 ## Get the angles on both side between tracking and heading ## dist = (heading - track_risk) % 360 dist2 = (360 - dist) % 360 ## Production system rules based off fuzzy output ## if(dist <= 130 and dist >= 0 and ai.selfSpeed() > 0 and max_risk >= 75): ai.turnLeft(1) #print("turning left") elif(dist2 <= 130 and dist2 >= 0 and ai.selfSpeed() > 0 and max_risk >= 75): ai.turnRight(1) #print("turning right") elif(ai.selfSpeed() <= 10): ai.thrust(1) #print("thrust") elif(trackWall <= 150): ai.thrust(1) #print("thrust") elif(enemyDist <= 400 and heading > (head) and enemyDist != 0): ai.turnRight(1) ai.fireShot() elif(enemyDist <= 400 and heading < (head) and enemyDist != 0): ai.turnLeft(1) ai.fireShot() elif(enemyDist > 400 and heading > (head + addDeg) and enemyDist != 0): ai.turnRight(1) ai.fireShot() elif(enemyDist > 400 and heading < (head + addDeg) and enemyDist != 0): ai.turnLeft(1) ai.fireShot() else: #print("chilling") ai.thrust(0) ai.fireShot()
def AI_loop(): global count_frame, loop, boolean, score, population_size, chromosome_size, population, mutation_prob, crossover_prob, fitness_list, generation, generation_size, first_time, done_learning #Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) ## Get A Chromosome in the Population -- Eventually Will go through each individual in the population ## current_chromosome = population[loop] ## Transform Each Gene insisde A Single Selected Chromosome. 0s & 1s Are Turned Into Intergers For Fuzzy Sets to understand ## ## Each Value obtained is used to calculate the risk of each 45 degree around the agent ## ## Each value has its own "jump" variable which refers to the distance from each possible points/values ## ## The start and end represents the possible start point and end point for each variable and they depend on ## what the variiable is. It is to ensure a viable fuzzy set and fuzzy functions that these restrictions are applied. ## frontAlert = current_chromosome[0:5] frontAlertValue = transform(frontAlert, 25) backAlert = current_chromosome[5:9] backAlertValue = transform(backAlert, 25) speedAlert = current_chromosome[9:13] #4 bits speedAlertValue = transform(speedAlert, 1) #1 jumps per value EnemyAlert = current_chromosome[13:18] #5 bits EnemyAlertValue = transform(EnemyAlert, 50) #50 jumps per value TrackSlowAlert = current_chromosome[18:22] #4 bits TrackSlowAlertValue = transform(TrackSlowAlert, 25) #25 jumps per value TrackFastAlert = current_chromosome[22:26] #4 bits TrackFastAlertValue = transform(TrackFastAlert, 25) #25 jumps per value BulletAlert = current_chromosome[26:32] #4 bits BulletAlertValue = transform(BulletAlert, 15) #15 jumps per value ## Get values of variables for Wall Feelers, Head & Tracking ## heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) frontWall = ai.wallFeeler(500,heading) left45Wall = ai.wallFeeler(500,heading+45) right45Wall = ai.wallFeeler(500,heading-45) left90Wall = ai.wallFeeler(500,heading+90) right90Wall = ai.wallFeeler(500,heading-90) left135Wall = ai.wallFeeler(500,heading+135) right135Wall = ai.wallFeeler(500,heading-135) backWall = ai.wallFeeler(500,heading-180) trackWall = ai.wallFeeler(500,tracking) ####### Getters Variable Regarding Important Information About Enemies ######## ##Find the closest ennemy## enemy = ai.lockClose() ## Get the lockheadingdeg of enemy ## head = ai.lockHeadingDeg() ## Get the dstance from enemy ## enemyDist = ai.selfLockDist() ## If the Enemy is Dead ## if(ai.selfAlive() == 0 and boolean == False): ## Calculate Fitness Current Population ## score_previous = score score_current = ai.selfScore() fitness_value = fitness(population, count_frame, score_previous, score_current) fitness_list.append(fitness_value) ## If it went through the whole population and ready to move to next generation ## if((loop+1) == population_size): ## Output the fitness of population to allow user to see if learning is happening ## print("Generation:", generation) print("Agent Fitness:") print(fitness_list) print("Average Fitness:", statistics.mean(fitness_list)) print("Best Fitness:", max(fitness_list)) ## Finding the optimal chromosome to output it in data file ## string_maxChromosome = "" for chrom_max in range(chromosome_size): string_maxChromosome = string_maxChromosome + str(population[fitness_list.index(max(fitness_list))][chrom_max]) ## Formatting entire population in a big string to register it in excel file## string_population = "" for pop in range(population_size): for pop_chrom in range(chromosome_size): string_population = string_population + str(population[pop][pop_chrom]) if(pop != (population_size-1)): string_population = string_population + "," ## Formatting entire population's fitness in a big string to register it in excel file## string_fitness = "" for fit in range(len(fitness_list)): string_fitness = string_fitness + str(fitness_list[fit]) if(fit != (len(fitness_list)-1)): string_fitness = string_fitness + "," ## Output Data into Excel File ## titles = ["Generation", "Average Fitness", "Best Fitness","Population Size", "Chromosome Size", "Crossover Probability", "Mutation Probability", "Best Chromosome", "Entire Population Chromosome", "Entire Population Fitness"] data = [generation, statistics.mean(fitness_list), max(fitness_list), population_size, chromosome_size, crossover_prob, mutation_prob, string_maxChromosome, string_population, string_fitness] first_time = Save_Data("Tiger_Training_Data.xls", 0, titles, data, first_time) ## Select Next Generation -- Apply Crossover & Mutation ## new_population = select(population, fitness_list) new_population = crossover(new_population, chromosome_size, population_size, crossover_prob) new_population = mutate(new_population, chromosome_size, mutation_prob) population = new_population loop = 0 count_frame = 0 generation += 1 fitness_list.clear() ### DONE -- QUIT ### if (generation == generation_size): quitAI() ## Move to the next individual in population ## else: loop += 1 count_frame = 0 boolean = True else: ## The agent is Alive ## if(ai.selfAlive() == 1): ### Turning Rules ### if frontWall <= frontAlertValue and (left45Wall < right45Wall) and ai.selfSpeed() > speedAlertValue: ai.turnRight(1) elif frontWall <= frontAlertValue and (left45Wall > right45Wall) and ai.selfSpeed() > speedAlertValue: ai.turnLeft(1) elif left90Wall <= frontAlertValue and ai.selfSpeed() > speedAlertValue: ai.turnRight(1) elif right90Wall <= frontAlertValue and ai.selfSpeed() > speedAlertValue: ai.turnLeft(1) ### Thrust commands #### elif ai.selfSpeed() <= speedAlertValue and (frontWall >= frontAlertValue) and (left45Wall >= frontAlertValue) and (right45Wall >= frontAlertValue) and (right90Wall >= frontAlertValue) and (left90Wall >= frontAlertValue) and (left135Wall >= backAlertValue) and (right135Wall >= backAlertValue) and (backWall >= backAlertValue): ai.thrust(1) elif trackWall <= TrackFastAlertValue and ai.selfSpeed() >= speedAlertValue: ai.thrust(1) elif trackWall <= TrackSlowAlertValue and ai.selfSpeed() <= speedAlertValue: ai.thrust(1) elif backWall <= TrackFastAlertValue and ai.selfSpeed() >= speedAlertValue: ai.thrust(1) elif backWall <= TrackSlowAlertValue and ai.selfSpeed() <= speedAlertValue: ai.thrust(1) elif left135Wall <= TrackFastAlertValue and ai.selfSpeed() >= speedAlertValue: ai.thrust(1) elif left135Wall <= TrackSlowAlertValue and ai.selfSpeed() <= speedAlertValue: ai.thrust(1) elif right135Wall <= TrackFastAlertValue and ai.selfSpeed() >= speedAlertValue: ai.thrust(1) elif right135Wall <= TrackSlowAlertValue and ai.selfSpeed() <= speedAlertValue: ai.thrust(1) ##### Bullet Avoidance Commands ##### elif ai.shotAlert(0) >= 0 and ai.shotAlert(0) <= BulletAlertValue: if ai.angleDiff(heading, ai.shotVelDir(0)) > 0 and ai.selfSpeed() <= speedAlertValue: ai.turnLeft(1) ai.thrust(1) elif ai.angleDiff(heading, ai.shotVelDir(0)) < 0 and ai.selfSpeed() <= speedAlertValue: ai.turnRight(1) ai.thrust(1) elif ai.angleDiff(heading, ai.shotVelDir(0)) > 0 and ai.selfSpeed() > speedAlertValue: ai.turnLeft(1) else: ai.turnRight(1) ##### Shooting Ennemy Commands ##### elif enemyDist <= EnemyAlertValue and heading > (head) and ai.selfSpeed() > speedAlertValue: ai.turnRight(1) ai.fireShot() elif enemyDist <= EnemyAlertValue and heading < (head) and ai.selfSpeed() > speedAlertValue: ai.turnLeft(1) ai.fireShot() elif ai.selfSpeed() < speedAlertValue: ai.thrust(1) else: ai.thrust(0) count_frame += 3 boolean = False
def AI_loop(): #Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) #Set variables for Wall feelers, heading and tracking of the agent ## heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) frontWall = ai.wallFeeler(500, heading) left45Wall = ai.wallFeeler(500, heading + 45) right45Wall = ai.wallFeeler(500, heading - 45) left90Wall = ai.wallFeeler(500, heading + 90) right90Wall = ai.wallFeeler(500, heading - 90) left135Wall = ai.wallFeeler(500, heading + 135) right135Wall = ai.wallFeeler(500, heading - 135) backWall = ai.wallFeeler(500, heading - 180) trackWall = ai.wallFeeler(500, tracking) ## Create an array that represents the closing rate of each 45 degree of the full 360 degrees surrounding the agent ## result_list = [] ## Array of the same size, but contains the risk of each direction ## risk_list = [] for i in range(8): Degree = tracking + (45 * i) Speed = ai.selfSpeed() Distance = ai.wallFeeler(10000, tracking + (45 * i)) result = Closing_Rate(Degree, tracking, Speed, Distance) result_list.append(result) ### Calculate the Fuzzy membership ### ### 1. Fuzzy Membership For Closing Rate (Speed + Tracking Involved) ### ### 2. Fuzzy Membership For Distance From Walls ### closing_rate, distance = Closing_Rate(Degree, tracking, Speed, Distance) low, medium, fast = Fuzzy_Speed( closing_rate, closingRate_SlowTopAlertValue, closingRate_SlowBottomAlertValue, closingRate_MediumBottomLeftAlertValue, closingRate_MediumTopLeftAlertValue, closingRate_MediumTopRightAlertValue, closingRate_MediumBottomRightAlertValue, closingRate_FastBottomAlertValue, closingRate_FastTopAlertValue) close, far = Fuzzy_Distance(distance, Distance_CloseTopAlertValue, Distance_CloseBottomAlertValue, Distance_FarBottomAlertValue, Distance_FarTopAlertValue) #print("close-far", close, far) risk = Fuzzy_Risk(low, medium, fast, close, far) risk_list.append(risk) ## Get the direction in deg that is most risky for the robot as well as the least risky direction ## max_risk = max(risk_list) track_risk = (tracking + (risk_list.index(max_risk) * 45) % 360) min_risk = min( risk_list ) ## Note: Biase Towards Left Side since min get the first min when risk might be equal ## ####### Getters Variable Regarding Important Information About Enemies ######## ##Find the closest ennemy## enemy = ai.lockClose() ## Get the lockheadingdeg of enemy ## head = ai.lockHeadingDeg() ## Get the dstance from enemy ## enemyDist = ai.selfLockDist() ## Get the angles on both side between tracking and heading to decide which way to turn ## dist = (heading - track_risk) % 360 dist2 = (360 - dist) % 360 ###### Production System Rules ###### ## Turning Rules ## if (dist <= 130 and dist >= 0 and ai.selfSpeed() > 0 and max_risk >= 75): ai.turnLeft(1) elif (dist2 <= 130 and dist2 >= 0 and ai.selfSpeed() > 0 and max_risk >= 75): ai.turnRight(1) elif (trackWall <= 150): ai.thrust(1) ##### Bullet Avoidance Commands ##### elif (ai.shotAlert(0) >= 0 and ai.shotAlert(0) <= 50): if (ai.shotVelDir(0) != -1 and ai.angleDiff(heading, ai.shotVelDir(0)) > 0 and ai.selfSpeed() <= 5): ai.turnLeft(1) ai.thrust(1) elif (ai.shotVelDir(0) != -1 and ai.angleDiff(heading, ai.shotVelDir(0)) < 0 and ai.selfSpeed() <= 5): ai.turnRight(1) ai.thrust(1) elif (ai.shotVelDir(0) != -1 and ai.angleDiff(heading, ai.shotVelDir(0)) > 0 and ai.selfSpeed() > 5): ai.turnLeft(1) else: ai.turnRight(1) ##### Shooting Ennemy Commands ##### elif (enemyDist <= 3000 and heading > (head) and enemyDist != 0 and ai.selfSpeed() > 2): ai.turnRight(1) ai.fireShot() elif (enemyDist <= 3000 and heading < (head) and enemyDist != 0 and ai.selfSpeed() > 2): ai.turnLeft(1) ai.fireShot() ## Rules if nothing is happening ## elif (ai.selfSpeed() < 5): ai.thrust(1) else: ai.thrust(0)
def AI_loop(): #Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) ## Get values of variables for Wall Feelers, Head & Tracking ## heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) frontWall = ai.wallFeeler(500, heading) left45Wall = ai.wallFeeler(500, heading + 45) right45Wall = ai.wallFeeler(500, heading - 45) left90Wall = ai.wallFeeler(500, heading + 90) right90Wall = ai.wallFeeler(500, heading - 90) left135Wall = ai.wallFeeler(500, heading + 135) right135Wall = ai.wallFeeler(500, heading - 135) backWall = ai.wallFeeler(500, heading - 180) trackWall = ai.wallFeeler(500, tracking) ####### Getters Variable Regarding Important Information About Enemies ######## ##Find the closest ennemy## enemy = ai.lockClose() ## Get the lockheadingdeg of enemy ## head = ai.lockHeadingDeg() ## Get the dstance from enemy ## enemyDist = ai.selfLockDist() ##### Production System Rules ###### ### Turning Rules ### if frontWall <= frontAlertValue and ( left45Wall < right45Wall) and ai.selfSpeed() > speedAlertValue: ai.turnRight(1) elif frontWall <= frontAlertValue and ( left45Wall > right45Wall) and ai.selfSpeed() > speedAlertValue: ai.turnLeft(1) elif left90Wall <= frontAlertValue and ai.selfSpeed() > speedAlertValue: ai.turnRight(1) elif right90Wall <= frontAlertValue and ai.selfSpeed() > speedAlertValue: ai.turnLeft(1) ### Thrust commands #### elif ai.selfSpeed() <= speedAlertValue and ( frontWall >= frontAlertValue) and (left45Wall >= frontAlertValue) and ( right45Wall >= frontAlertValue) and (right90Wall >= frontAlertValue) and ( left90Wall >= frontAlertValue) and (left135Wall >= backAlertValue) and ( right135Wall >= backAlertValue) and (backWall >= backAlertValue): ai.thrust(1) elif trackWall <= TrackFastAlertValue and ai.selfSpeed( ) >= speedAlertValue: ai.thrust(1) elif trackWall <= TrackSlowAlertValue and ai.selfSpeed( ) <= speedAlertValue: ai.thrust(1) elif backWall <= TrackFastAlertValue and ai.selfSpeed() >= speedAlertValue: ai.thrust(1) elif backWall <= TrackSlowAlertValue and ai.selfSpeed() <= speedAlertValue: ai.thrust(1) elif left135Wall <= TrackFastAlertValue and ai.selfSpeed( ) >= speedAlertValue: ai.thrust(1) elif left135Wall <= TrackSlowAlertValue and ai.selfSpeed( ) <= speedAlertValue: ai.thrust(1) elif right135Wall <= TrackFastAlertValue and ai.selfSpeed( ) >= speedAlertValue: ai.thrust(1) elif right135Wall <= TrackSlowAlertValue and ai.selfSpeed( ) <= speedAlertValue: ai.thrust(1) ##### Bullet Avoidance Commands ##### elif ai.shotAlert(0) >= 0 and ai.shotAlert(0) <= BulletAlertValue: if ai.angleDiff( heading, ai.shotVelDir(0)) > 0 and ai.selfSpeed() <= speedAlertValue: ai.turnLeft(1) ai.thrust(1) elif ai.angleDiff( heading, ai.shotVelDir(0)) < 0 and ai.selfSpeed() <= speedAlertValue: ai.turnRight(1) ai.thrust(1) elif ai.angleDiff( heading, ai.shotVelDir(0)) > 0 and ai.selfSpeed() > speedAlertValue: ai.turnLeft(1) else: ai.turnRight(1) ##### Shooting Ennemy Commands ##### elif enemyDist <= EnemyAlertValue and heading > ( head) and ai.selfSpeed() > speedAlertValue: ai.turnRight(1) ai.fireShot() elif enemyDist <= EnemyAlertValue and heading < ( head) and ai.selfSpeed() > speedAlertValue: ai.turnLeft(1) ai.fireShot() elif ai.selfSpeed() < speedAlertValue: ai.thrust(1) else: ai.thrust(0)
def AI_loop(): global count_frame, loop, boolean, score, population_size, chromosome_size, population, mutation_prob, crossover_prob, fitness_list, generation, generation_size, first_time, done_learning #Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) ## Get A Chromosome in the Population -- Eventually Will go through each individual in the population ## current_chromosome = population[loop] ## Transform Each Gene insisde A Single Selected Chromosome. 0s & 1s Are Turned Into Intergers For Fuzzy Sets to understand ## ## Each Value obtained is used to calculate the risk of each 45 degree around the agent ## ## Each value has its own "jump" variable which refers to the distance from each possible points/values ## ## The start and end represents the possible start point and end point for each variable and they depend on ## what the variiable is. It is to ensure a viable fuzzy set and fuzzy functions that these restrictions are applied. ## closingRate_SlowTopAlert = current_chromosome[0:4] closingRate_SlowTopAlertValue = transform_fuzzy(closingRate_SlowTopAlert, 1, 0, 16) closingRate_MediumTopLeftAlert = current_chromosome[4:8] closingRate_MediumTopLeftAlertValue = transform_fuzzy( closingRate_MediumTopLeftAlert, 1, (closingRate_SlowTopAlertValue + 1), (closingRate_SlowTopAlertValue + 1) + 16) closingRate_MediumTopRightAlert = current_chromosome[8:12] closingRate_MediumTopRightAlertValue = transform_fuzzy( closingRate_MediumTopRightAlert, 1, (closingRate_MediumTopLeftAlertValue + 1), (closingRate_MediumTopLeftAlertValue + 1) + 16) closingRate_FastTopAlert = current_chromosome[12:16] closingRate_FastTopAlertValue = transform_fuzzy( closingRate_FastTopAlert, 1, (closingRate_MediumTopRightAlertValue + 1), (closingRate_MediumTopRightAlertValue + 1) + 16) closingRate_SlowBottomAlert = current_chromosome[16:20] start = (closingRate_SlowTopAlertValue + (((closingRate_MediumTopLeftAlertValue - closingRate_SlowTopAlertValue) // 2) + 1)) end = (start + (1 * (2**(len(closingRate_SlowBottomAlert))))) closingRate_SlowBottomAlertValue = transform_fuzzy( closingRate_SlowBottomAlert, 1, start, end) closingRate_MediumBottomLeftAlert = current_chromosome[20:24] end = (closingRate_MediumTopLeftAlertValue - (((closingRate_MediumTopLeftAlertValue - closingRate_SlowTopAlertValue) // 2) + 1)) start = end - (1 * (2**(len(closingRate_MediumBottomLeftAlert)))) if (end < 0): end = 0 if (start < 0): start = 0 jump = (end - start) // (2**(len(closingRate_MediumBottomLeftAlert))) closingRate_MediumBottomLeftAlertValue = transform_fuzzy( closingRate_MediumBottomLeftAlert, jump, start, end) closingRate_MediumBottomRightAlert = current_chromosome[24:28] start = (closingRate_MediumTopRightAlertValue + (((closingRate_FastTopAlertValue - closingRate_MediumTopRightAlertValue) // 2) + 1)) end = start + (1 * (2**(len(closingRate_MediumBottomRightAlert)))) closingRate_MediumBottomRightAlertValue = transform_fuzzy( closingRate_MediumBottomRightAlert, 1, start, end) closingRate_FastBottomAlert = current_chromosome[28:32] end = (closingRate_FastTopAlertValue - (((closingRate_FastTopAlertValue - closingRate_MediumTopRightAlertValue) // 2) + 1)) start = end - (1 * (2**(len(closingRate_FastBottomAlert)))) if (end < 0): end = 0 if (start < 0): start = 0 jump = (end - start) // (2**(len(closingRate_FastBottomAlert))) closingRate_FastBottomAlertValue = transform_fuzzy( closingRate_FastBottomAlert, jump, start, end) Distance_CloseTopAlert = current_chromosome[32:37] Distance_CloseTopAlertValue = transform_fuzzy( Distance_CloseTopAlert, 50, 0, (50 * (2**len(Distance_CloseTopAlert)))) Distance_FarTopAlert = current_chromosome[37:42] Distance_FarTopAlertValue = transform_fuzzy( Distance_CloseTopAlert, 50, (Distance_CloseTopAlertValue + 50), (Distance_CloseTopAlertValue + 50) + (50 * (2**len(Distance_CloseTopAlert)))) Distance_CloseBottomAlert = current_chromosome[42:47] start = (Distance_CloseTopAlertValue + (( (Distance_FarTopAlertValue - Distance_CloseTopAlertValue) // 2) + 1)) end = Distance_FarTopAlertValue jump = (end - start) // (2**(len(Distance_CloseBottomAlert))) Distance_CloseBottomAlertValue = transform_fuzzy(Distance_CloseBottomAlert, jump, start, end) Distance_FarBottomAlert = current_chromosome[47:52] end = (Distance_FarTopAlertValue - (( (Distance_FarTopAlertValue - Distance_CloseTopAlertValue) // 2) + 1)) start = Distance_CloseTopAlertValue jump = (end - start) // (2**(len(Distance_FarBottomAlert))) Distance_FarBottomAlertValue = transform_fuzzy(Distance_FarBottomAlert, jump, start, end) #Set variables for Wall feelers, heading and tracking of the agent ## heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) frontWall = ai.wallFeeler(500, heading) left45Wall = ai.wallFeeler(500, heading + 45) right45Wall = ai.wallFeeler(500, heading - 45) left90Wall = ai.wallFeeler(500, heading + 90) right90Wall = ai.wallFeeler(500, heading - 90) left135Wall = ai.wallFeeler(500, heading + 135) right135Wall = ai.wallFeeler(500, heading - 135) backWall = ai.wallFeeler(500, heading - 180) trackWall = ai.wallFeeler(500, tracking) ## Create an array that represents the closing rate of each 45 degree of the full 360 degrees surrounding the agent ## result_list = [] ## Array of the same size, but contains the risk of each direction ## risk_list = [] for i in range(8): Degree = tracking + (45 * i) Speed = ai.selfSpeed() Distance = ai.wallFeeler(10000, tracking + (45 * i)) result = Closing_Rate(Degree, tracking, Speed, Distance) result_list.append(result) ### Calculate the Fuzzy membership ### ### 1. Fuzzy Membership For Closing Rate (Speed + Tracking Involved) ### ### 2. Fuzzy Membership For Distance From Walls ### closing_rate, distance = Closing_Rate(Degree, tracking, Speed, Distance) low, medium, fast = Fuzzy_Speed( closing_rate, closingRate_SlowTopAlertValue, closingRate_SlowBottomAlertValue, closingRate_MediumBottomLeftAlertValue, closingRate_MediumTopLeftAlertValue, closingRate_MediumTopRightAlertValue, closingRate_MediumBottomRightAlertValue, closingRate_FastBottomAlertValue, closingRate_FastTopAlertValue) close, far = Fuzzy_Distance(distance, Distance_CloseTopAlertValue, Distance_CloseBottomAlertValue, Distance_FarBottomAlertValue, Distance_FarTopAlertValue) #print("close-far", close, far) risk = Fuzzy_Risk(low, medium, fast, close, far) risk_list.append(risk) ## Get the direction in deg that is most risky for the robot as well as the least risky direction ## max_risk = max(risk_list) track_risk = (tracking + (risk_list.index(max_risk) * 45) % 360) min_risk = min( risk_list ) ## Note: Biase Towards Left Side since min get the first min when risk might be equal ## ####### Getters Variable Regarding Important Information About Enemies ######## ##Find the closest ennemy## enemy = ai.lockClose() ## Get the lockheadingdeg of enemy ## head = ai.lockHeadingDeg() ## Get the dstance from enemy ## enemyDist = ai.selfLockDist() ## If the Enemy is Dead ## if (ai.selfAlive() == 0 and boolean == False): ## Calculate Fitness Current Individual ## score_previous = score score_current = ai.selfScore() fitness_value = fitness(population, count_frame, score_previous, score_current) fitness_list.append(fitness_value) ## If it went through the whole population and ready to move to next generation ## if ((loop + 1) == population_size): ## Output the fitness of population to allow user to see if learning is happening ## print("Generation:", generation) print("Agent Fitness:") print(fitness_list) print("Average Fitness:", statistics.mean(fitness_list)) print("Best Fitness:", max(fitness_list)) ## Finding the optimal chromosome to output it in data file ## string_maxChromosome = "" for chrom_max in range(chromosome_size): string_maxChromosome = string_maxChromosome + str( population[fitness_list.index( max(fitness_list))][chrom_max]) ## Formatting entire population in a big string to register it in excel file## string_population = "" for pop in range(population_size): for pop_chrom in range(chromosome_size): string_population = string_population + str( population[pop][pop_chrom]) if (pop != (population_size - 1)): string_population = string_population + "," ## Formatting entire population's fitness in a big string to register it in excel file## string_fitness = "" for fit in range(len(fitness_list)): string_fitness = string_fitness + str(fitness_list[fit]) if (fit != (len(fitness_list) - 1)): string_fitness = string_fitness + "," ## Output Data into Excel File ## titles = [ "Generation", "Average Fitness", "Best Fitness", "Population Size", "Chromosome Size", "Crossover Probability", "Mutation Probability", "Best Chromosome", "Entire Population Chromosome", "Entire Population Fitness" ] data = [ generation, statistics.mean(fitness_list), max(fitness_list), population_size, chromosome_size, crossover_prob, mutation_prob, string_maxChromosome, string_population, string_fitness ] first_time = Save_Data("Dumpster_Training_Data.xls", 0, titles, data, first_time) ## Select Population For Next Generation -- Apply Crossover & Mutation ## new_population = select(population, fitness_list) new_population = crossover(new_population, chromosome_size, population_size, crossover_prob) new_population = mutate(new_population, chromosome_size, mutation_prob) population = new_population loop = 0 count_frame = 0 generation += 1 fitness_list.clear() ### DONE -- QUIT ### if (generation == generation_size): quitAI() ## Move to the next individual in population ## else: loop += 1 count_frame = 0 boolean = True else: ## The agent is Alive ## if (ai.selfAlive() == 1): ## Get the angles on both side between tracking and heading to decide which way to turn ## dist = (heading - track_risk) % 360 dist2 = (360 - dist) % 360 ###### Production System Rules ###### ## Turning Rules ## if (dist <= 130 and dist >= 0 and ai.selfSpeed() > 0 and max_risk >= 75): ai.turnLeft(1) elif (dist2 <= 130 and dist2 >= 0 and ai.selfSpeed() > 0 and max_risk >= 75): ai.turnRight(1) elif (ai.selfSpeed() <= 10): ai.thrust(1) elif (trackWall <= 150): ai.thrust(1) ##### Bullet Avoidance Commands ##### elif (ai.shotAlert(0) >= 0 and ai.shotAlert(0) <= 50): if (ai.shotVelDir(0) != -1 and ai.angleDiff(heading, ai.shotVelDir(0)) > 0 and ai.selfSpeed() <= 5): ai.turnLeft(1) ai.thrust(1) elif (ai.shotVelDir(0) != -1 and ai.angleDiff(heading, ai.shotVelDir(0)) < 0 and ai.selfSpeed() <= 5): ai.turnRight(1) ai.thrust(1) elif (ai.shotVelDir(0) != -1 and ai.angleDiff(heading, ai.shotVelDir(0)) > 0 and ai.selfSpeed() > 5): ai.turnLeft(1) else: ai.turnRight(1) ##### Shooting Ennemy Commands ##### elif (enemyDist <= 3000 and heading > (head) and enemyDist != 0 and ai.selfSpeed() > 5): ai.turnRight(1) ai.fireShot() elif (enemyDist <= 3000 and heading < (head) and enemyDist != 0 and ai.selfSpeed() > 5): ai.turnLeft(1) ai.fireShot() ## Rules if nothing is happening ## elif (ai.selfSpeed() < 5): ai.thrust(1) else: ai.thrust(0) count_frame += 3 boolean = False