Ejemplo n.º 1
0
def anchor_target_layer(gt_boxes_h, gt_boxes_r, anchors, gpu_id=0):

    anchor_states = np.zeros((anchors.shape[0],))
    labels = np.zeros((anchors.shape[0], cfgs.CLASS_NUM))
    if gt_boxes_r.shape[0]:
        # [N, M]

        if cfgs.METHOD == 'H':
            overlaps = bbox_overlaps(np.ascontiguousarray(anchors, dtype=np.float),
                                     np.ascontiguousarray(gt_boxes_h, dtype=np.float))
        else:
            overlaps = rbbx_overlaps(np.ascontiguousarray(anchors, dtype=np.float32),
                                     np.ascontiguousarray(gt_boxes_r[:, :-1], dtype=np.float32), gpu_id)

            # overlaps = get_iou_matrix(np.ascontiguousarray(anchors, dtype=np.float32),
            #                           np.ascontiguousarray(gt_boxes_r[:, :-1], dtype=np.float32))

        argmax_overlaps_inds = np.argmax(overlaps, axis=1)
        max_overlaps = overlaps[np.arange(overlaps.shape[0]), argmax_overlaps_inds]

        # compute box regression targets
        target_boxes = gt_boxes_r[argmax_overlaps_inds]

        if cfgs.USE_ANGLE_COND:
            if cfgs.METHOD == 'R':
                delta_theta = np.abs(target_boxes[:, -2] - anchors[:, -1])
                theta_indices = delta_theta < 15
                positive_indices = (max_overlaps >= cfgs.IOU_POSITIVE_THRESHOLD) & theta_indices
            else:
                positive_indices = max_overlaps >= cfgs.IOU_POSITIVE_THRESHOLD

            ignore_indices = (max_overlaps > cfgs.IOU_NEGATIVE_THRESHOLD) & (max_overlaps < cfgs.IOU_POSITIVE_THRESHOLD)

        else:
            positive_indices = max_overlaps >= cfgs.IOU_POSITIVE_THRESHOLD
            ignore_indices = (max_overlaps > cfgs.IOU_NEGATIVE_THRESHOLD) & ~positive_indices

        anchor_states[ignore_indices] = -1
        anchor_states[positive_indices] = 1

        # compute target class labels
        labels[positive_indices, target_boxes[positive_indices, -1].astype(int) - 1] = 1
    else:
        # no annotations? then everything is background
        target_boxes = np.zeros((anchors.shape[0], gt_boxes_r.shape[1]))

    if cfgs.METHOD == 'H':
        x_c = (anchors[:, 2] + anchors[:, 0]) / 2
        y_c = (anchors[:, 3] + anchors[:, 1]) / 2
        h = anchors[:, 2] - anchors[:, 0] + 1
        w = anchors[:, 3] - anchors[:, 1] + 1
        theta = -90 * np.ones_like(x_c)
        anchors = np.vstack([x_c, y_c, w, h, theta]).transpose()
    target_delta = bbox_transform.rbbox_transform(ex_rois=anchors, gt_rois=target_boxes)

    return np.array(labels, np.float32), np.array(target_delta, np.float32), \
           np.array(anchor_states, np.float32), np.array(target_boxes, np.float32)
Ejemplo n.º 2
0
def refinebox_target_layer(gt_boxes_r,
                           anchors,
                           pos_threshold,
                           neg_threshold,
                           gpu_id=0):

    anchor_states = np.zeros((anchors.shape[0], ))
    labels = np.zeros((anchors.shape[0], cfgs.CLASS_NUM))
    if gt_boxes_r.shape[0]:
        # [N, M]

        # overlaps = get_iou_matrix(np.ascontiguousarray(anchors, dtype=np.float32),
        #                           np.ascontiguousarray(gt_boxes_r[:, :-1], dtype=np.float32))
        #
        overlaps = rbbx_overlaps(
            np.ascontiguousarray(anchors, dtype=np.float32),
            np.ascontiguousarray(gt_boxes_r[:, :-1], dtype=np.float32), gpu_id)

        argmax_overlaps_inds = np.argmax(overlaps, axis=1)
        max_overlaps = overlaps[np.arange(overlaps.shape[0]),
                                argmax_overlaps_inds]

        # compute box regression targets
        target_boxes = gt_boxes_r[argmax_overlaps_inds]

        if cfgs.USE_ANGLE_COND:
            delta_theta = np.abs(target_boxes[:, -2] - anchors[:, -1])
            theta_indices = delta_theta < 15
            positive_indices = (max_overlaps >= pos_threshold) & theta_indices
            ignore_indices = (max_overlaps > neg_threshold) & (max_overlaps <
                                                               pos_threshold)

        else:
            positive_indices = max_overlaps >= pos_threshold
            ignore_indices = (max_overlaps > neg_threshold) & ~positive_indices
        anchor_states[ignore_indices] = -1
        anchor_states[positive_indices] = 1

        # compute target class labels
        labels[positive_indices,
               target_boxes[positive_indices, -1].astype(int) - 1] = 1
    else:
        # no annotations? then everything is background
        target_boxes = np.zeros((anchors.shape[0], gt_boxes_r.shape[1]))

    target_delta = bbox_transform.rbbox_transform(
        ex_rois=anchors,
        gt_rois=target_boxes,
        scale_factors=cfgs.ANCHOR_SCALE_FACTORS)

    return np.array(labels, np.float32), np.array(target_delta, np.float32), \
           np.array(anchor_states, np.float32), np.array(target_boxes, np.float32)
Ejemplo n.º 3
0
def refinebox_target_layer(gt_boxes_r, gt_encode_label, anchors, pos_threshold, neg_threshold, gpu_id=0):

    anchor_states = np.zeros((anchors.shape[0],))
    labels = np.zeros((anchors.shape[0], cfgs.CLASS_NUM))
    if gt_boxes_r.shape[0]:
        # [N, M]

        # if cfgs.ANGLE_RANGE == 180:
        #     gt_boxes_r_ = coordinate_present_convert(gt_boxes_r[:, :-1], 1)
        #
        #     overlaps = rbbx_overlaps(np.ascontiguousarray(anchors, dtype=np.float32),
        #                              np.ascontiguousarray(gt_boxes_r_, dtype=np.float32), gpu_id)
        # else:
        overlaps = rbbx_overlaps(np.ascontiguousarray(anchors, dtype=np.float32),
                                 np.ascontiguousarray(gt_boxes_r[:, :-1], dtype=np.float32), gpu_id)

        # overlaps = np.clip(overlaps, 0.0, 1.0)

        argmax_overlaps_inds = np.argmax(overlaps, axis=1)
        max_overlaps = overlaps[np.arange(overlaps.shape[0]), argmax_overlaps_inds]

        # compute box regression targets
        target_boxes = gt_boxes_r[argmax_overlaps_inds]
        target_encode_label = gt_encode_label[argmax_overlaps_inds]

        positive_indices = max_overlaps >= pos_threshold
        ignore_indices = (max_overlaps > neg_threshold) & ~positive_indices
        anchor_states[ignore_indices] = -1
        anchor_states[positive_indices] = 1

        # compute target class labels
        labels[positive_indices, target_boxes[positive_indices, -1].astype(int) - 1] = 1
    else:
        # no annotations? then everything is background
        target_boxes = np.zeros((anchors.shape[0], gt_boxes_r.shape[1]))
        target_encode_label = np.zeros((anchors.shape[0], gt_encode_label.shape[1]))

    if cfgs.ANGLE_RANGE == 180:
        anchors = coordinate_present_convert(anchors, mode=-1)
        target_boxes = coordinate_present_convert(target_boxes, mode=-1)

    target_delta = bbox_transform.rbbox_transform(ex_rois=anchors, gt_rois=target_boxes,
                                                  scale_factors=cfgs.ANCHOR_SCALE_FACTORS)

    return np.array(labels, np.float32), np.array(target_delta[:, :-1], np.float32), \
           np.array(anchor_states, np.float32), np.array(target_boxes, np.float32), \
           np.array(target_encode_label, np.float32)
Ejemplo n.º 4
0
def anchor_target_layer(gt_boxes_h_batch,
                        gt_boxes_r_batch,
                        gt_encode_label_batch,
                        anchor_batch,
                        gpu_id=0):

    all_labels, all_target_delta, all_anchor_states, all_target_boxes, all_target_encode_label = [], [], [], [], []
    for i in range(cfgs.BATCH_SIZE):
        anchors = np.array(anchor_batch[i], np.float32)
        gt_boxes_h = gt_boxes_h_batch[i, :, :]
        gt_boxes_r = gt_boxes_r_batch[i, :, :]
        gt_encode_label = gt_encode_label_batch[i, :, :]
        anchor_states = np.zeros((anchors.shape[0], ))
        labels = np.zeros((anchors.shape[0], cfgs.CLASS_NUM))
        if gt_boxes_r.shape[0]:
            # [N, M]

            if cfgs.METHOD == 'H':
                overlaps = bbox_overlaps(
                    np.ascontiguousarray(anchors, dtype=np.float),
                    np.ascontiguousarray(gt_boxes_h, dtype=np.float))
            else:
                overlaps = rbbx_overlaps(
                    np.ascontiguousarray(anchors, dtype=np.float32),
                    np.ascontiguousarray(gt_boxes_r[:, :-1], dtype=np.float32),
                    gpu_id)

            argmax_overlaps_inds = np.argmax(overlaps, axis=1)
            max_overlaps = overlaps[np.arange(overlaps.shape[0]),
                                    argmax_overlaps_inds]

            # compute box regression targets
            target_boxes = gt_boxes_r[argmax_overlaps_inds]
            target_encode_label = gt_encode_label[argmax_overlaps_inds]

            positive_indices = max_overlaps >= cfgs.IOU_POSITIVE_THRESHOLD
            ignore_indices = (max_overlaps >
                              cfgs.IOU_NEGATIVE_THRESHOLD) & ~positive_indices

            anchor_states[ignore_indices] = -1
            anchor_states[positive_indices] = 1

            # compute target class labels
            labels[positive_indices,
                   target_boxes[positive_indices, -1].astype(int) - 1] = 1
        else:
            # no annotations? then everything is background
            target_boxes = np.zeros((anchors.shape[0], gt_boxes_r.shape[1]))
            target_encode_label = np.zeros(
                (anchors.shape[0], gt_encode_label.shape[1]))

        if cfgs.METHOD == 'H':
            x_c = (anchors[:, 2] + anchors[:, 0]) / 2
            y_c = (anchors[:, 3] + anchors[:, 1]) / 2
            h = anchors[:, 2] - anchors[:, 0] + 1
            w = anchors[:, 3] - anchors[:, 1] + 1
            theta = -90 * np.ones_like(x_c)
            anchors = np.vstack([x_c, y_c, w, h, theta]).transpose()

        if cfgs.ANGLE_RANGE == 180:
            anchors = coordinate_present_convert(anchors, mode=-1)
            target_boxes = coordinate_present_convert(target_boxes, mode=-1)
        target_delta = bbox_transform.rbbox_transform(ex_rois=anchors,
                                                      gt_rois=target_boxes)

        all_labels.append(labels)
        all_target_delta.append(target_delta)
        all_anchor_states.append(anchor_states)
        all_target_boxes.append(target_boxes)
        all_target_encode_label.append(target_encode_label)

    return np.array(all_labels, np.float32), np.array(all_target_delta, np.float32)[:, :, :-1], \
           np.array(all_anchor_states, np.float32), np.array(all_target_boxes, np.float32), \
           np.array(all_target_encode_label, np.float32)