def worker(gpu_id, images, det_net, args, result_queue):
    os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)

    img_plac = tf.placeholder(dtype=tf.uint8, shape=[None, None,
                                                     3])  # is RGB. not BGR
    img_batch = tf.cast(img_plac, tf.float32)

    img_batch = short_side_resize_for_inference_data(
        img_tensor=img_batch,
        target_shortside_len=cfgs.IMG_SHORT_SIDE_LEN,
        length_limitation=cfgs.IMG_MAX_LENGTH)
    if cfgs.NET_NAME in ['resnet152_v1d', 'resnet101_v1d', 'resnet50_v1d']:
        img_batch = (img_batch / 255 - tf.constant(
            cfgs.PIXEL_MEAN_)) / tf.constant(cfgs.PIXEL_STD)
    else:
        img_batch = img_batch - tf.constant(cfgs.PIXEL_MEAN)

    img_batch = tf.expand_dims(img_batch, axis=0)

    detection_boxes, detection_scores, detection_category = det_net.build_whole_detection_network(
        input_img_batch=img_batch, gtboxes_batch_h=None, gtboxes_batch_r=None)

    init_op = tf.group(tf.global_variables_initializer(),
                       tf.local_variables_initializer())

    restorer, restore_ckpt = det_net.get_restorer()

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        sess.run(init_op)
        if not restorer is None:
            restorer.restore(sess, restore_ckpt)
            print('restore model %d ...' % gpu_id)

        for img_path in images:

            # if 'P0016' not in img_path:
            #     continue

            img = cv2.imread(img_path)

            box_res_rotate = []
            label_res_rotate = []
            score_res_rotate = []

            imgH = img.shape[0]
            imgW = img.shape[1]

            if imgH < args.h_len:
                temp = np.zeros([args.h_len, imgW, 3], np.float32)
                temp[0:imgH, :, :] = img
                img = temp
                imgH = args.h_len

            if imgW < args.w_len:
                temp = np.zeros([imgH, args.w_len, 3], np.float32)
                temp[:, 0:imgW, :] = img
                img = temp
                imgW = args.w_len

            for hh in range(0, imgH, args.h_len - args.h_overlap):
                if imgH - hh - 1 < args.h_len:
                    hh_ = imgH - args.h_len
                else:
                    hh_ = hh
                for ww in range(0, imgW, args.w_len - args.w_overlap):
                    if imgW - ww - 1 < args.w_len:
                        ww_ = imgW - args.w_len
                    else:
                        ww_ = ww
                    src_img = img[hh_:(hh_ + args.h_len),
                                  ww_:(ww_ + args.w_len), :]

                    resized_img, det_boxes_r_, det_scores_r_, det_category_r_ = \
                        sess.run(
                            [img_batch, detection_boxes, detection_scores, detection_category],
                            feed_dict={img_plac: src_img[:, :, ::-1]}
                        )

                    resized_h, resized_w = resized_img.shape[
                        1], resized_img.shape[2]
                    src_h, src_w = src_img.shape[0], src_img.shape[1]

                    if len(det_boxes_r_) > 0:
                        det_boxes_r_ = forward_convert(det_boxes_r_, False)
                        det_boxes_r_[:, 0::2] *= (src_w / resized_w)
                        det_boxes_r_[:, 1::2] *= (src_h / resized_h)
                        det_boxes_r_ = backward_convert(det_boxes_r_, False)

                        for ii in range(len(det_boxes_r_)):
                            box_rotate = det_boxes_r_[ii]
                            box_rotate[0] = box_rotate[0] + ww_
                            box_rotate[1] = box_rotate[1] + hh_
                            box_res_rotate.append(box_rotate)
                            label_res_rotate.append(det_category_r_[ii])
                            score_res_rotate.append(det_scores_r_[ii])

            box_res_rotate = np.array(box_res_rotate)
            label_res_rotate = np.array(label_res_rotate)
            score_res_rotate = np.array(score_res_rotate)

            box_res_rotate_ = []
            label_res_rotate_ = []
            score_res_rotate_ = []
            threshold = {
                'roundabout': 0.1,
                'tennis-court': 0.3,
                'swimming-pool': 0.1,
                'storage-tank': 0.2,
                'soccer-ball-field': 0.3,
                'small-vehicle': 0.2,
                'ship': 0.05,
                'plane': 0.3,
                'large-vehicle': 0.1,
                'helicopter': 0.2,
                'harbor': 0.0001,
                'ground-track-field': 0.3,
                'bridge': 0.0001,
                'basketball-court': 0.3,
                'baseball-diamond': 0.3
            }

            for sub_class in range(1, cfgs.CLASS_NUM + 1):
                index = np.where(label_res_rotate == sub_class)[0]
                if len(index) == 0:
                    continue
                tmp_boxes_r = box_res_rotate[index]
                tmp_label_r = label_res_rotate[index]
                tmp_score_r = score_res_rotate[index]

                tmp_boxes_r = np.array(tmp_boxes_r)
                tmp = np.zeros(
                    [tmp_boxes_r.shape[0], tmp_boxes_r.shape[1] + 1])
                tmp[:, 0:-1] = tmp_boxes_r
                tmp[:, -1] = np.array(tmp_score_r)

                try:
                    inx = nms_rotate.nms_rotate_cpu(
                        boxes=np.array(tmp_boxes_r),
                        scores=np.array(tmp_score_r),
                        iou_threshold=threshold[LABEL_NAME_MAP[sub_class]],
                        max_output_size=500)
                except:
                    # Note: the IoU of two same rectangles is 0, which is calculated by rotate_gpu_nms
                    jitter = np.zeros(
                        [tmp_boxes_r.shape[0], tmp_boxes_r.shape[1] + 1])
                    jitter[:,
                           0] += np.random.rand(tmp_boxes_r.shape[0], ) / 1000
                    inx = rotate_gpu_nms(
                        np.array(tmp, np.float32) +
                        np.array(jitter, np.float32),
                        float(threshold[LABEL_NAME_MAP[sub_class]]), 0)

                box_res_rotate_.extend(np.array(tmp_boxes_r)[inx])
                score_res_rotate_.extend(np.array(tmp_score_r)[inx])
                label_res_rotate_.extend(np.array(tmp_label_r)[inx])

            result_dict = {
                'boxes': np.array(box_res_rotate_),
                'scores': np.array(score_res_rotate_),
                'labels': np.array(label_res_rotate_),
                'image_id': img_path
            }
            result_queue.put_nowait(result_dict)
Ejemplo n.º 2
0
def inference(det_net,
              file_paths,
              des_folder,
              h_len,
              w_len,
              h_overlap,
              w_overlap,
              save_res=False):

    if save_res:
        assert cfgs.SHOW_SCORE_THRSHOLD >= 0.5, \
            'please set score threshold (example: SHOW_SCORE_THRSHOLD = 0.5) in cfgs.py'

    else:
        assert cfgs.SHOW_SCORE_THRSHOLD < 0.005, \
            'please set score threshold (example: SHOW_SCORE_THRSHOLD = 0.00) in cfgs.py'

    # 1. preprocess img
    img_plac = tf.placeholder(dtype=tf.uint8, shape=[None, None, 3])
    img_batch = tf.cast(img_plac, tf.float32)
    img_batch = img_batch - tf.constant(cfgs.PIXEL_MEAN)
    img_batch = short_side_resize_for_inference_data(
        img_tensor=img_batch,
        target_shortside_len=cfgs.IMG_SHORT_SIDE_LEN,
        is_resize=False)

    det_boxes_h, det_scores_h, det_category_h, \
    det_boxes_r, det_scores_r, det_category_r = det_net.build_whole_detection_network(input_img_batch=img_batch,
                                                                                      gtboxes_h_batch=None,
                                                                                      gtboxes_r_batch=None)

    init_op = tf.group(tf.global_variables_initializer(),
                       tf.local_variables_initializer())

    restorer, restore_ckpt = det_net.get_restorer()

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        sess.run(init_op)
        if not restorer is None:
            restorer.restore(sess, restore_ckpt)
            print('restore model')

        for count, img_path in enumerate(file_paths):
            start = timer()
            img = cv2.imread(img_path)

            box_res = []
            label_res = []
            score_res = []
            box_res_rotate = []
            label_res_rotate = []

            score_res_rotate = []

            imgH = img.shape[0]
            imgW = img.shape[1]

            if imgH < h_len:
                temp = np.zeros([h_len, imgW, 3], np.float32)
                temp[0:imgH, :, :] = img
                img = temp
                imgH = h_len

            if imgW < w_len:
                temp = np.zeros([imgH, w_len, 3], np.float32)
                temp[:, 0:imgW, :] = img
                img = temp
                imgW = w_len

            for hh in range(0, imgH, h_len - h_overlap):
                if imgH - hh - 1 < h_len:
                    hh_ = imgH - h_len
                else:
                    hh_ = hh
                for ww in range(0, imgW, w_len - w_overlap):
                    if imgW - ww - 1 < w_len:
                        ww_ = imgW - w_len
                    else:
                        ww_ = ww
                    src_img = img[hh_:(hh_ + h_len), ww_:(ww_ + w_len), :]

                    det_boxes_h_, det_scores_h_, det_category_h_, \
                    det_boxes_r_, det_scores_r_, det_category_r_ = \
                        sess.run(
                            [det_boxes_h, det_scores_h, det_category_h,
                             det_boxes_r, det_scores_r, det_category_r],
                            feed_dict={img_plac: src_img[:, :, ::-1]}
                        )

                    if len(det_boxes_h_) > 0:
                        for ii in range(len(det_boxes_h_)):
                            box = det_boxes_h_[ii]
                            box[0] = box[0] + ww_
                            box[1] = box[1] + hh_
                            box[2] = box[2] + ww_
                            box[3] = box[3] + hh_
                            box_res.append(box)
                            label_res.append(det_category_h_[ii])
                            score_res.append(det_scores_h_[ii])
                    if len(det_boxes_r_) > 0:
                        for ii in range(len(det_boxes_r_)):
                            box_rotate = det_boxes_r_[ii]
                            box_rotate[0] = box_rotate[0] + ww_
                            box_rotate[1] = box_rotate[1] + hh_
                            box_res_rotate.append(box_rotate)
                            label_res_rotate.append(det_category_r_[ii])
                            score_res_rotate.append(det_scores_r_[ii])

            box_res = np.array(box_res)
            label_res = np.array(label_res)
            score_res = np.array(score_res)

            box_res_rotate = np.array(box_res_rotate)
            label_res_rotate = np.array(label_res_rotate)
            score_res_rotate = np.array(score_res_rotate)

            box_res_rotate_, label_res_rotate_, score_res_rotate_ = [], [], []
            box_res_, label_res_, score_res_ = [], [], []

            r_threshold = {
                'roundabout': 0.1,
                'tennis-court': 0.3,
                'swimming-pool': 0.1,
                'storage-tank': 0.2,
                'soccer-ball-field': 0.3,
                'small-vehicle': 0.2,
                'ship': 0.05,
                'plane': 0.3,
                'large-vehicle': 0.1,
                'helicopter': 0.2,
                'harbor': 0.0001,
                'ground-track-field': 0.3,
                'bridge': 0.0001,
                'basketball-court': 0.3,
                'baseball-diamond': 0.3
            }

            h_threshold = {
                'roundabout': 0.35,
                'tennis-court': 0.35,
                'swimming-pool': 0.4,
                'storage-tank': 0.3,
                'soccer-ball-field': 0.3,
                'small-vehicle': 0.4,
                'ship': 0.35,
                'plane': 0.35,
                'large-vehicle': 0.4,
                'helicopter': 0.4,
                'harbor': 0.3,
                'ground-track-field': 0.4,
                'bridge': 0.3,
                'basketball-court': 0.4,
                'baseball-diamond': 0.3
            }

            for sub_class in range(1, cfgs.CLASS_NUM + 1):
                index = np.where(label_res_rotate == sub_class)[0]
                if len(index) == 0:
                    continue
                tmp_boxes_r = box_res_rotate[index]
                tmp_label_r = label_res_rotate[index]
                tmp_score_r = score_res_rotate[index]

                tmp_boxes_r = np.array(tmp_boxes_r)
                tmp = np.zeros(
                    [tmp_boxes_r.shape[0], tmp_boxes_r.shape[1] + 1])
                tmp[:, 0:-1] = tmp_boxes_r
                tmp[:, -1] = np.array(tmp_score_r)

                try:
                    inx = nms_rotate.nms_rotate_cpu(
                        boxes=np.array(tmp_boxes_r),
                        scores=np.array(tmp_score_r),
                        iou_threshold=r_threshold[LABEl_NAME_MAP[sub_class]],
                        max_output_size=500)
                except:
                    # Note: the IoU of two same rectangles is 0, which is calculated by rotate_gpu_nms
                    jitter = np.zeros(
                        [tmp_boxes_r.shape[0], tmp_boxes_r.shape[1] + 1])
                    jitter[:,
                           0] += np.random.rand(tmp_boxes_r.shape[0], ) / 1000
                    inx = rotate_gpu_nms(
                        np.array(tmp, np.float32) +
                        np.array(jitter, np.float32),
                        float(r_threshold[LABEl_NAME_MAP[sub_class]]), 0)

                box_res_rotate_.extend(np.array(tmp_boxes_r)[inx])
                score_res_rotate_.extend(np.array(tmp_score_r)[inx])
                label_res_rotate_.extend(np.array(tmp_label_r)[inx])

            for sub_class in range(1, cfgs.CLASS_NUM + 1):
                index = np.where(label_res == sub_class)[0]
                if len(index) == 0:
                    continue
                tmp_boxes_h = box_res[index]
                tmp_label_h = label_res[index]
                tmp_score_h = score_res[index]

                tmp_boxes_h = np.array(tmp_boxes_h)
                tmp = np.zeros(
                    [tmp_boxes_h.shape[0], tmp_boxes_h.shape[1] + 1])
                tmp[:, 0:-1] = tmp_boxes_h
                tmp[:, -1] = np.array(tmp_score_h)

                inx = nms.py_cpu_nms(
                    dets=np.array(tmp, np.float32),
                    thresh=h_threshold[LABEl_NAME_MAP[sub_class]],
                    max_output_size=500)

                box_res_.extend(np.array(tmp_boxes_h)[inx])
                score_res_.extend(np.array(tmp_score_h)[inx])
                label_res_.extend(np.array(tmp_label_h)[inx])

            time_elapsed = timer() - start

            if save_res:
                det_detections_h = draw_box_in_img.draw_box_cv(
                    np.array(img, np.float32) - np.array(cfgs.PIXEL_MEAN),
                    boxes=np.array(box_res_),
                    labels=np.array(label_res_),
                    scores=np.array(score_res_))
                det_detections_r = draw_box_in_img.draw_rotate_box_cv(
                    np.array(img, np.float32) - np.array(cfgs.PIXEL_MEAN),
                    boxes=np.array(box_res_rotate_),
                    labels=np.array(label_res_rotate_),
                    scores=np.array(score_res_rotate_))
                save_dir = os.path.join(des_folder, cfgs.VERSION)
                tools.mkdir(save_dir)
                cv2.imwrite(
                    save_dir + '/' + img_path.split('/')[-1].split('.')[0] +
                    '_h.jpg', det_detections_h)
                cv2.imwrite(
                    save_dir + '/' + img_path.split('/')[-1].split('.')[0] +
                    '_r.jpg', det_detections_r)

                view_bar(
                    '{} cost {}s'.format(
                        img_path.split('/')[-1].split('.')[0], time_elapsed),
                    count + 1, len(file_paths))

            else:
                # eval txt
                CLASS_DOTA = NAME_LABEL_MAP.keys()
                # Task1
                write_handle_r = {}
                write_handle_h_ = {}
                txt_dir_r = os.path.join('txt_output', cfgs.VERSION + '_r')
                txt_dir_h_minAreaRect = os.path.join(
                    'txt_output', cfgs.VERSION + '_h_minAreaRect')
                tools.mkdir(txt_dir_r)
                tools.mkdir(txt_dir_h_minAreaRect)
                for sub_class in CLASS_DOTA:
                    if sub_class == 'back_ground':
                        continue
                    write_handle_r[sub_class] = open(
                        os.path.join(txt_dir_r, 'Task1_%s.txt' % sub_class),
                        'a+')
                    write_handle_h_[sub_class] = open(
                        os.path.join(txt_dir_h_minAreaRect,
                                     'Task2_%s.txt' % sub_class), 'a+')

                rboxes = coordinate_convert.forward_convert(box_res_rotate_,
                                                            with_label=False)

                for i, rbox in enumerate(rboxes):
                    command = '%s %.3f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f\n' % (
                        img_path.split('/')[-1].split('.')[0],
                        score_res_rotate_[i],
                        rbox[0],
                        rbox[1],
                        rbox[2],
                        rbox[3],
                        rbox[4],
                        rbox[5],
                        rbox[6],
                        rbox[7],
                    )
                    command_ = '%s %.3f %.1f %.1f %.1f %.1f\n' % (
                        img_path.split('/')[-1].split('.')[0],
                        score_res_rotate_[i], min(rbox[::2]), min(
                            rbox[1::2]), max(rbox[::2]), max(rbox[1::2]))
                    write_handle_r[LABEl_NAME_MAP[label_res_rotate_[i]]].write(
                        command)
                    write_handle_h_[LABEl_NAME_MAP[
                        label_res_rotate_[i]]].write(command_)

                for sub_class in CLASS_DOTA:
                    if sub_class == 'back_ground':
                        continue
                    write_handle_r[sub_class].close()

                # Task2
                write_handle_h = {}
                txt_dir_h = os.path.join('txt_output', cfgs.VERSION + '_h')
                tools.mkdir(txt_dir_h)
                for sub_class in CLASS_DOTA:
                    if sub_class == 'back_ground':
                        continue
                    write_handle_h[sub_class] = open(
                        os.path.join(txt_dir_h, 'Task2_%s.txt' % sub_class),
                        'a+')

                for i, hbox in enumerate(box_res_):
                    command = '%s %.3f %.1f %.1f %.1f %.1f\n' % (
                        img_path.split('/')[-1].split('.')[0], score_res_[i],
                        hbox[0], hbox[1], hbox[2], hbox[3])
                    write_handle_h[LABEl_NAME_MAP[label_res_[i]]].write(
                        command)

                for sub_class in CLASS_DOTA:
                    if sub_class == 'back_ground':
                        continue
                    write_handle_h[sub_class].close()

                view_bar(
                    '{} cost {}s'.format(
                        img_path.split('/')[-1].split('.')[0], time_elapsed),
                    count + 1, len(file_paths))
Ejemplo n.º 3
0
def eval_with_plac(img_dir, det_net, image_ext, draw_imgs=False):

    # 1. preprocess img
    img_plac = tf.placeholder(dtype=tf.uint8, shape=[None, None,
                                                     3])  # is RGB. not GBR
    img_batch = tf.cast(img_plac, tf.float32)
    img_batch = img_batch - tf.constant(cfgs.PIXEL_MEAN)
    img_batch = short_side_resize_for_inference_data(
        img_tensor=img_batch,
        target_shortside_len=cfgs.IMG_SHORT_SIDE_LEN,
        is_resize=False)

    det_boxes_r, det_scores_r, det_category_r = det_net.build_whole_detection_network(
        input_img_batch=img_batch, gtboxes_h_batch=None, gtboxes_r_batch=None)

    init_op = tf.group(tf.global_variables_initializer(),
                       tf.local_variables_initializer())

    restorer, restore_ckpt = det_net.get_restorer()

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        sess.run(init_op)
        if not restorer is None:
            restorer.restore(sess, restore_ckpt)
            print('restore model')

        all_boxes_h = []
        all_boxes_r = []
        imgs = os.listdir(img_dir)
        for i, a_img_name in enumerate(imgs):

            a_img_name = a_img_name.split(image_ext)[0]
            recs = {}
            recs[a_img_name] = parse_rec(
                os.path.join(test_annotation_path, a_img_name + '.xml'))
            #R = [obj for obj in recs[a_img_name]]
            bbox = np.squeeze(np.array([x['bbox'] for x in recs[a_img_name]]))
            #labels = bbox[:, -1]
            if len(bbox.shape) == 1:
                bbox = np.expand_dims(bbox, axis=0)
            labels = bbox[:, -1]

            raw_img = cv2.imread(os.path.join(img_dir, a_img_name + image_ext))
            raw_h, raw_w = raw_img.shape[0], raw_img.shape[1]

            start = time.time()
            resized_img,  \
            det_boxes_r_, det_scores_r_, det_category_r_ = \
                sess.run(
                    [img_batch,
                     det_boxes_r, det_scores_r, det_category_r],
                    feed_dict={img_plac: raw_img}
                )
            end = time.time()
            det_boxes_r_ = det_boxes_r_[det_scores_r_ >= 0.4]
            det_category_r_ = det_category_r_[det_scores_r_ >= 0.4]
            det_scores_r_ = det_scores_r_[det_scores_r_ >= 0.4]

            keep = nms_rotate.nms_rotate_cpu(det_boxes_r_, det_scores_r_, 0.3,
                                             20)
            det_boxes_r_ = det_boxes_r_[keep]
            det_scores_r_ = det_scores_r_[keep]
            det_category_r_ = det_category_r_[keep]
            ##### box_ratio > 2  or < 1/2
            index = (det_boxes_r_[:, 2] / det_boxes_r_[:, 3] >
                     2) | (det_boxes_r_[:, 2] / det_boxes_r_[:, 3] <= 0.5)
            det_boxes_r_ = det_boxes_r_[index]
            det_scores_r_ = det_scores_r_[index]
            det_category_r_ = det_category_r_[index]

            # print("{} cost time : {} ".format(img_name, (end - start)))
            if draw_imgs:
                det_detections_h = draw_box_in_img.draw_rotate_box_cv1(
                    np.squeeze(resized_img, 0),
                    boxes=bbox,
                    labels=labels,
                    scores=np.ones(bbox.shape[0]))
                det_detections_r = draw_box_in_img.draw_rotate_box_cv(
                    np.squeeze(resized_img, 0),
                    boxes=det_boxes_r_,
                    labels=det_category_r_,
                    scores=det_scores_r_)
                save_dir = os.path.join(cfgs.TEST_SAVE_PATH, cfgs.VERSION)
                tools.mkdir(save_dir)
                cv2.imwrite(save_dir + '/' + a_img_name + '_h.jpg',
                            det_detections_h[:, :, ::-1])
                cv2.imwrite(save_dir + '/' + a_img_name + '_r.jpg',
                            det_detections_r[:, :, ::-1])

            # xmin, ymin, xmax, ymax = det_boxes_h_[:, 0], det_boxes_h_[:, 1], \
            #                          det_boxes_h_[:, 2], det_boxes_h_[:, 3]

            if det_boxes_r_.shape[0] != 0:
                resized_h, resized_w = resized_img.shape[1], resized_img.shape[
                    2]
                det_boxes_r_ = forward_convert(det_boxes_r_, False)
                det_boxes_r_[:, 0::2] *= (raw_w / resized_w)
                det_boxes_r_[:, 1::2] *= (raw_h / resized_h)
                det_boxes_r_ = back_forward_convert(det_boxes_r_, False)

            x_c, y_c, w, h, theta = det_boxes_r_[:, 0], det_boxes_r_[:, 1], det_boxes_r_[:, 2], \
                                    det_boxes_r_[:, 3], det_boxes_r_[:, 4]

            # xmin = xmin * raw_w / resized_w
            # xmax = xmax * raw_w / resized_w
            # ymin = ymin * raw_h / resized_h
            # ymax = ymax * raw_h / resized_h

            # boxes_h = np.transpose(np.stack([xmin, ymin, xmax, ymax]))
            boxes_r = np.transpose(np.stack([x_c, y_c, w, h, theta]))
            # dets_h = np.hstack((det_category_h_.reshape(-1, 1),
            #                     det_scores_h_.reshape(-1, 1),
            #                     boxes_h))
            dets_r = np.hstack((det_category_r_.reshape(-1, 1),
                                det_scores_r_.reshape(-1, 1), boxes_r))
            # all_boxes_h.append(dets_h)
            all_boxes_r.append(dets_r)

            tools.view_bar(
                '{} image cost {}s'.format(a_img_name, (end - start)), i + 1,
                len(imgs))

        fw1 = open(cfgs.VERSION + '_detections_h.pkl', 'w')
        fw2 = open(cfgs.VERSION + '_detections_r.pkl', 'w')
        pickle.dump(all_boxes_h, fw1)
        pickle.dump(all_boxes_r, fw2)
Ejemplo n.º 4
0
def eval_with_plac(det_net, args):

    # 1. preprocess img
    img_plac = tf.placeholder(dtype=tf.uint8, shape=[None, None,
                                                     3])  # is RGB. not BGR
    img_batch = tf.cast(img_plac, tf.float32)

    if cfgs.NET_NAME in ['resnet152_v1d', 'resnet101_v1d', 'resnet50_v1d']:
        img_batch = (img_batch / 255 - tf.constant(
            cfgs.PIXEL_MEAN_)) / tf.constant(cfgs.PIXEL_STD)
    else:
        img_batch = img_batch - tf.constant(cfgs.PIXEL_MEAN)

    img_batch = tf.expand_dims(img_batch, axis=0)

    detection_boxes, detection_scores, detection_category, detection_boxes_angle = det_net.build_whole_detection_network(
        input_img_batch=img_batch,
        gtboxes_batch_h=None,
        gtboxes_batch_r=None,
        gt_smooth_label=None)

    init_op = tf.group(tf.global_variables_initializer(),
                       tf.local_variables_initializer())

    restorer, restore_ckpt = det_net.get_restorer()

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        sess.run(init_op)
        if not restorer is None:
            restorer.restore(sess, restore_ckpt)
            print('restore model')

        all_boxes_r = []
        img_short_side_len_list = cfgs.IMG_SHORT_SIDE_LEN if isinstance(
            cfgs.IMG_SHORT_SIDE_LEN, list) else [cfgs.IMG_SHORT_SIDE_LEN]
        img_short_side_len_list = [
            img_short_side_len_list[0]
        ] if not args.multi_scale else img_short_side_len_list
        imgs = os.listdir(args.img_dir)
        pbar = tqdm(imgs)
        for a_img_name in pbar:
            a_img_name = a_img_name.split(args.image_ext)[0]

            raw_img = cv2.imread(
                os.path.join(args.img_dir, a_img_name + args.image_ext))
            raw_h, raw_w = raw_img.shape[0], raw_img.shape[1]

            box_res_rotate = []
            label_res_rotate = []
            score_res_rotate = []

            for short_size in img_short_side_len_list:
                max_len = cfgs.IMG_MAX_LENGTH
                if raw_h < raw_w:
                    new_h, new_w = short_size, min(
                        int(short_size * float(raw_w) / raw_h), max_len)
                else:
                    new_h, new_w = min(int(short_size * float(raw_h) / raw_w),
                                       max_len), short_size
                img_resize = cv2.resize(raw_img, (new_w, new_h))

                resized_img, det_boxes_r_, det_scores_r_, det_category_r_ = \
                    sess.run(
                        [img_batch, detection_boxes_angle, detection_scores, detection_category],
                        feed_dict={img_plac: img_resize[:, :, ::-1]}
                    )
                resized_h, resized_w = resized_img.shape[1], resized_img.shape[
                    2]

                if len(det_boxes_r_) > 0:
                    det_boxes_r_ = forward_convert(det_boxes_r_, False)
                    det_boxes_r_[:, 0::2] *= (raw_w / resized_w)
                    det_boxes_r_[:, 1::2] *= (raw_h / resized_h)

                    for ii in range(len(det_boxes_r_)):
                        box_rotate = det_boxes_r_[ii]
                        box_res_rotate.append(box_rotate)
                        label_res_rotate.append(det_category_r_[ii])
                        score_res_rotate.append(det_scores_r_[ii])
            box_res_rotate = np.array(box_res_rotate)
            label_res_rotate = np.array(label_res_rotate)
            score_res_rotate = np.array(score_res_rotate)

            box_res_rotate_ = []
            label_res_rotate_ = []
            score_res_rotate_ = []
            threshold = {'car': 0.2, 'plane': 0.3}

            for sub_class in range(1, cfgs.CLASS_NUM + 1):
                index = np.where(label_res_rotate == sub_class)[0]
                if len(index) == 0:
                    continue
                tmp_boxes_r = box_res_rotate[index]
                tmp_label_r = label_res_rotate[index]
                tmp_score_r = score_res_rotate[index]

                tmp_boxes_r_ = backward_convert(tmp_boxes_r, False)

                try:
                    inx = nms_rotate.nms_rotate_cpu(
                        boxes=np.array(tmp_boxes_r_),
                        scores=np.array(tmp_score_r),
                        iou_threshold=threshold[LABEL_NAME_MAP[sub_class]],
                        max_output_size=150)
                except:
                    tmp_boxes_r_ = np.array(tmp_boxes_r_)
                    tmp = np.zeros(
                        [tmp_boxes_r_.shape[0], tmp_boxes_r_.shape[1] + 1])
                    tmp[:, 0:-1] = tmp_boxes_r_
                    tmp[:, -1] = np.array(tmp_score_r)
                    # Note: the IoU of two same rectangles is 0, which is calculated by rotate_gpu_nms
                    jitter = np.zeros(
                        [tmp_boxes_r_.shape[0], tmp_boxes_r_.shape[1] + 1])
                    jitter[:,
                           0] += np.random.rand(tmp_boxes_r_.shape[0], ) / 1000
                    inx = rotate_gpu_nms(
                        np.array(tmp, np.float32) +
                        np.array(jitter, np.float32),
                        float(threshold[LABEL_NAME_MAP[sub_class]]), 0)

                box_res_rotate_.extend(np.array(tmp_boxes_r)[inx])
                score_res_rotate_.extend(np.array(tmp_score_r)[inx])
                label_res_rotate_.extend(np.array(tmp_label_r)[inx])

            box_res_rotate_ = np.array(box_res_rotate_)
            score_res_rotate_ = np.array(score_res_rotate_)
            label_res_rotate_ = np.array(label_res_rotate_)

            if args.draw_imgs:
                detected_indices = score_res_rotate_ >= cfgs.VIS_SCORE
                detected_scores = score_res_rotate_[detected_indices]
                detected_boxes = box_res_rotate_[detected_indices]
                detected_boxes = backward_convert(detected_boxes,
                                                  with_label=False)
                detected_categories = label_res_rotate_[detected_indices]

                det_detections_r = draw_box_in_img.draw_boxes_with_label_and_scores(
                    np.array(raw_img, np.float32),
                    boxes=detected_boxes,
                    labels=detected_categories,
                    scores=detected_scores,
                    method=1,
                    in_graph=False,
                    is_csl=True)

                save_dir = os.path.join('test_ucas_aod', cfgs.VERSION,
                                        'ucas_aod_img_vis')
                tools.mkdir(save_dir)

                cv2.imwrite(save_dir + '/{}.jpg'.format(a_img_name),
                            det_detections_r[:, :, ::-1])

            if box_res_rotate_.shape[0] != 0:
                box_res_rotate_ = backward_convert(box_res_rotate_, False)

            x_c, y_c, w, h, theta = box_res_rotate_[:, 0], box_res_rotate_[:, 1], box_res_rotate_[:, 2], \
                                    box_res_rotate_[:, 3], box_res_rotate_[:, 4]

            boxes_r = np.transpose(np.stack([x_c, y_c, w, h, theta]))
            dets_r = np.hstack((label_res_rotate_.reshape(-1, 1),
                                score_res_rotate_.reshape(-1, 1), boxes_r))
            all_boxes_r.append(dets_r)

            pbar.set_description("Eval image %s" % a_img_name)

        # fw1 = open(cfgs.VERSION + '_detections_r.pkl', 'wb')
        # pickle.dump(all_boxes_r, fw1)
        return all_boxes_r
Ejemplo n.º 5
0
def detect_img(file_paths, des_folder, det_th, h_len, w_len, h_overlap, w_overlap, show_res=False):
    with tf.Graph().as_default():

        img_plac = tf.placeholder(shape=[None, None, 3], dtype=tf.uint8)

        img_tensor = tf.cast(img_plac, tf.float32) - tf.constant([103.939, 116.779, 123.68])
        img_batch = image_preprocess.short_side_resize_for_inference_data(img_tensor,
                                                                          target_shortside_len=cfgs.SHORT_SIDE_LEN)

        # ***********************************************************************************************
        # *                                         share net                                           *
        # ***********************************************************************************************
        _, share_net = get_network_byname(net_name=cfgs.NET_NAME,
                                          inputs=img_batch,
                                          num_classes=None,
                                          is_training=True,
                                          output_stride=None,
                                          global_pool=False,
                                          spatial_squeeze=False)
        # ***********************************************************************************************
        # *                                            RPN                                              *
        # ***********************************************************************************************
        rpn = build_rpn.RPN(net_name=cfgs.NET_NAME,
                            inputs=img_batch,
                            gtboxes_and_label=None,
                            is_training=False,
                            share_head=cfgs.SHARE_HEAD,
                            share_net=share_net,
                            stride=cfgs.STRIDE,
                            anchor_ratios=cfgs.ANCHOR_RATIOS,
                            anchor_scales=cfgs.ANCHOR_SCALES,
                            scale_factors=cfgs.SCALE_FACTORS,
                            base_anchor_size_list=cfgs.BASE_ANCHOR_SIZE_LIST,  # P2, P3, P4, P5, P6
                            level=cfgs.LEVEL,
                            top_k_nms=cfgs.RPN_TOP_K_NMS,
                            rpn_nms_iou_threshold=cfgs.RPN_NMS_IOU_THRESHOLD,
                            max_proposals_num=cfgs.MAX_PROPOSAL_NUM,
                            rpn_iou_positive_threshold=cfgs.RPN_IOU_POSITIVE_THRESHOLD,
                            rpn_iou_negative_threshold=cfgs.RPN_IOU_NEGATIVE_THRESHOLD,
                            rpn_mini_batch_size=cfgs.RPN_MINIBATCH_SIZE,
                            rpn_positives_ratio=cfgs.RPN_POSITIVE_RATE,
                            remove_outside_anchors=False,  # whether remove anchors outside
                            rpn_weight_decay=cfgs.WEIGHT_DECAY[cfgs.NET_NAME])

        # rpn predict proposals
        rpn_proposals_boxes, rpn_proposals_scores = rpn.rpn_proposals()  # rpn_score shape: [300, ]

        # ***********************************************************************************************
        # *                                         Fast RCNN                                           *
        # ***********************************************************************************************
        fast_rcnn = build_fast_rcnn.FastRCNN(feature_pyramid=rpn.feature_pyramid,
                                             rpn_proposals_boxes=rpn_proposals_boxes,
                                             rpn_proposals_scores=rpn_proposals_scores,
                                             img_shape=tf.shape(img_batch),
                                             img_batch=img_batch,
                                             roi_size=cfgs.ROI_SIZE,
                                             roi_pool_kernel_size=cfgs.ROI_POOL_KERNEL_SIZE,
                                             scale_factors=cfgs.SCALE_FACTORS,
                                             gtboxes_and_label=None,
                                             gtboxes_and_label_minAreaRectangle=None,
                                             fast_rcnn_nms_iou_threshold=cfgs.FAST_RCNN_NMS_IOU_THRESHOLD,
                                             fast_rcnn_maximum_boxes_per_img=100,
                                             fast_rcnn_nms_max_boxes_per_class=cfgs.FAST_RCNN_NMS_MAX_BOXES_PER_CLASS,
                                             show_detections_score_threshold=det_th,
                                             # show detections which score >= 0.6
                                              num_classes=cfgs.CLASS_NUM,
                                             fast_rcnn_minibatch_size=cfgs.FAST_RCNN_MINIBATCH_SIZE,
                                             fast_rcnn_positives_ratio=cfgs.FAST_RCNN_POSITIVE_RATE,
                                             fast_rcnn_positives_iou_threshold=cfgs.FAST_RCNN_IOU_POSITIVE_THRESHOLD,
                                             # iou>0.5 is positive, iou<0.5 is negative
                                              use_dropout=cfgs.USE_DROPOUT,
                                             weight_decay=cfgs.WEIGHT_DECAY[cfgs.NET_NAME],
                                             is_training=False,
                                             level=cfgs.LEVEL,
                                             head_quadrant=None)

        fast_rcnn_decode_boxes, fast_rcnn_score, num_of_objects, detection_category, \
        fast_rcnn_decode_boxes_rotate, fast_rcnn_score_rotate, fast_rcnn_head_quadrant, \
        num_of_objects_rotate, detection_category_rotate = fast_rcnn.fast_rcnn_predict()

        init_op = tf.group(
            tf.global_variables_initializer(),
            tf.local_variables_initializer()
        )

        restorer, restore_ckpt = restore_model.get_restorer()

        config = tf.ConfigProto()
        # config.gpu_options.per_process_gpu_memory_fraction = 0.5
        config.gpu_options.allow_growth = True

        # ***********************************************************************************************
        # *                                         运行定义好的图                                        *
        # ***********************************************************************************************

        with tf.Session(config=config) as sess:
            sess.run(init_op)
            if not restorer is None:
                restorer.restore(sess, restore_ckpt)
                print('restore model')

            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess, coord)

            for img_path in file_paths:
                start = timer()
                # gdal.AllRegister()
                # ds = gdal.Open(img_path, gdalconst.GA_ReadOnly)
                # if ds is None:
                #     print("Image %s open failed!" % img_path)
                #     sys.exit()
                img = cv2.imread(img_path)

                box_res = []
                label_res = []
                score_res = []
                box_res_rotate = []
                label_res_rotate = []
                score_res_rotate = []
                head_rotate = []
                # imgH = ds.RasterYSize
                # imgW = ds.RasterXSize
                imgH = img.shape[0]
                imgW = img.shape[1]
                for hh in range(0, imgH, h_len):
                    h_size = min(h_len, imgH - hh - h_overlap)
                    if h_size < 10:
                        break
                    for ww in range(0, imgW, w_len):
                        w_size = min(w_len, imgW - ww - w_overlap)
                        if w_size < 10:
                            break

                        # src_img = ds.ReadAsArray(ww, hh, w_size, h_size)
                        src_img = img[hh:(hh + h_size), ww:(ww + w_size), :]
                        # if len(src_img.shape) == 2:
                        #     src_img = cv2.cvtColor(src_img, cv2.COLOR_GRAY2RGB)
                        # else:
                        #     src_img = chw2hwc(src_img)

                        boxes, labels, scores = sess.run([fast_rcnn_decode_boxes, detection_category, fast_rcnn_score],
                                                         feed_dict={img_plac: src_img})

                        boxes_rotate, labels_rotate, scores_rotate, _fast_rcnn_head_quadrant = \
                            sess.run([fast_rcnn_decode_boxes_rotate, detection_category_rotate,
                                      fast_rcnn_score_rotate,
                                      fast_rcnn_head_quadrant],
                                     feed_dict={img_plac: src_img})
                        if show_res:
                            visualize_detection(src_img, boxes, scores) # 可视化检测结果
                        if len(boxes) > 0:
                            for ii in range(len(boxes)):
                                box = boxes[ii]
                                box[0] = box[0] + hh
                                box[1] = box[1] + ww
                                box[2] = box[2] + hh
                                box[3] = box[3] + ww
                                box_res.append(box)
                                label_res.append(labels[ii])
                                score_res.append(scores[ii])
                        if len(boxes_rotate) > 0:
                            for ii in range(len(boxes_rotate)):
                                box_rotate = boxes_rotate[ii]
                                box_rotate[0] = box_rotate[0] + hh
                                box_rotate[1] = box_rotate[1] + ww
                                box_res_rotate.append(box_rotate)
                                label_res_rotate.append(labels_rotate[ii])
                                score_res_rotate.append(scores_rotate[ii])
                                head_rotate.append(_fast_rcnn_head_quadrant[ii])

                inx = nms_rotate.nms_rotate_cpu(boxes=np.array(box_res_rotate), scores=np.array(score_res_rotate),
                                                iou_threshold=0.5, max_output_size=100)
                box_res_rotate = np.array(box_res_rotate)[inx]
                score_res_rotate = np.array(score_res_rotate)[inx]
                label_res_rotate = np.array(label_res_rotate)[inx]
                head_rotate = np.array(head_rotate)[inx]

                # ds = None
                time_elapsed = timer() - start
                print("{} detection time : {:.4f} sec".format(img_path.split('/')[-1].split('.')[0], time_elapsed))

                # if target_name == 'aircraft':
                # img = cv2.imread(img_path)
                # if len(img.shape) == 2:
                #     img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
                # elif len(img.shape) == 3:
                #     img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
                #     img[:, :, 0] = img[:, :, 1] = img[:, :, 2] = img_gray
                mkdir(des_folder)
                img_np = draw_box_cv(np.array(img, np.float32) - np.array([103.939, 116.779, 123.68]),
                                     boxes=np.array(box_res),
                                     labels=np.array(label_res),
                                     scores=np.array(score_res))
                img_np_rotate = draw_rotate_box_cv(np.array(img, np.float32) - np.array([103.939, 116.779, 123.68]),
                                                   boxes=np.array(box_res_rotate),
                                                   labels=np.array(label_res_rotate),
                                                   scores=np.array(score_res_rotate),
                                                   head=np.argmax(head_rotate, axis=1))
                cv2.imwrite(des_folder + '/{}_horizontal_fpn.jpg'.format(img_path.split('/')[-1].split('.')[0]), img_np)
                cv2.imwrite(des_folder + '/{}_rotate_fpn.jpg'.format(img_path.split('/')[-1].split('.')[0]), img_np_rotate)
                # clip_obj_imgs(src_img, box_res, label_res, score_res, des_folder)
                # print(img_path)
                # det_xml_path =img_path.replace(".tif", ".det.xml")
                # obj_to_det_xml(img_path, box_res, label_res, score_res, det_xml_path)

            coord.request_stop()
            coord.join(threads)
def worker(gpu_id, images, det_net, result_queue):
    os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
    # 1. preprocess img
    img_plac = tf.placeholder(dtype=tf.uint8, shape=[None, None,
                                                     3])  # is RGB. not BGR
    img_batch = tf.cast(img_plac, tf.float32)

    if cfgs.NET_NAME in ['resnet152_v1d', 'resnet101_v1d', 'resnet50_v1d']:
        img_batch = (img_batch / 255 - tf.constant(
            cfgs.PIXEL_MEAN_)) / tf.constant(cfgs.PIXEL_STD)
    else:
        img_batch = img_batch - tf.constant(cfgs.PIXEL_MEAN)

    img_batch = tf.expand_dims(img_batch, axis=0)

    detection_boxes, detection_scores, detection_category, detection_boxes_angle = det_net.build_whole_detection_network(
        input_img_batch=img_batch,
        gtboxes_batch_h=None,
        gtboxes_batch_r=None,
        gt_smooth_label=None,
        gpu_id=0)

    init_op = tf.group(tf.global_variables_initializer(),
                       tf.local_variables_initializer())

    restorer, restore_ckpt = det_net.get_restorer()

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        sess.run(init_op)
        if not restorer is None:
            restorer.restore(sess, restore_ckpt)
            print('restore model %d ...' % gpu_id)
        for a_img in images:
            raw_img = cv2.imread(a_img)
            raw_h, raw_w = raw_img.shape[0], raw_img.shape[1]

            det_boxes_r_all, det_scores_r_all, det_category_r_all = [], [], []

            img_short_side_len_list = cfgs.IMG_SHORT_SIDE_LEN if isinstance(
                cfgs.IMG_SHORT_SIDE_LEN, list) else [cfgs.IMG_SHORT_SIDE_LEN]
            img_short_side_len_list = [
                img_short_side_len_list[0]
            ] if not args.multi_scale else img_short_side_len_list

            for short_size in img_short_side_len_list:
                max_len = cfgs.IMG_MAX_LENGTH
                if raw_h < raw_w:
                    new_h, new_w = short_size, min(
                        int(short_size * float(raw_w) / raw_h), max_len)
                else:
                    new_h, new_w = min(int(short_size * float(raw_h) / raw_w),
                                       max_len), short_size
                img_resize = cv2.resize(raw_img, (new_w, new_h))

                resized_img, detected_boxes, detected_scores, detected_categories = \
                    sess.run(
                        [img_batch, detection_boxes_angle, detection_scores, detection_category],
                        feed_dict={img_plac: img_resize[:, :, ::-1]}
                    )

                detected_indices = detected_scores >= cfgs.VIS_SCORE
                detected_scores = detected_scores[detected_indices]
                detected_boxes = detected_boxes[detected_indices]
                detected_categories = detected_categories[detected_indices]

                if detected_boxes.shape[0] == 0:
                    continue
                resized_h, resized_w = resized_img.shape[1], resized_img.shape[
                    2]
                detected_boxes = forward_convert(detected_boxes, False)
                detected_boxes[:, 0::2] *= (raw_w / resized_w)
                detected_boxes[:, 1::2] *= (raw_h / resized_h)
                # detected_boxes = backward_convert(detected_boxes, False)

                det_boxes_r_all.extend(detected_boxes)
                det_scores_r_all.extend(detected_scores)
                det_category_r_all.extend(detected_categories)
            det_boxes_r_all = np.array(det_boxes_r_all)
            det_scores_r_all = np.array(det_scores_r_all)
            det_category_r_all = np.array(det_category_r_all)

            box_res_rotate_ = []
            label_res_rotate_ = []
            score_res_rotate_ = []

            if det_scores_r_all.shape[0] != 0:
                for sub_class in range(1, cfgs.CLASS_NUM + 1):
                    index = np.where(det_category_r_all == sub_class)[0]
                    if len(index) == 0:
                        continue
                    tmp_boxes_r = det_boxes_r_all[index]
                    tmp_label_r = det_category_r_all[index]
                    tmp_score_r = det_scores_r_all[index]

                    tmp_boxes_r_ = backward_convert(tmp_boxes_r, False)

                    try:
                        inx = nms_rotate.nms_rotate_cpu(
                            boxes=np.array(tmp_boxes_r_),
                            scores=np.array(tmp_score_r),
                            iou_threshold=cfgs.NMS_IOU_THRESHOLD,
                            max_output_size=5000)
                    except:
                        tmp_boxes_r_ = np.array(tmp_boxes_r_)
                        tmp = np.zeros(
                            [tmp_boxes_r_.shape[0], tmp_boxes_r_.shape[1] + 1])
                        tmp[:, 0:-1] = tmp_boxes_r_
                        tmp[:, -1] = np.array(tmp_score_r)
                        # Note: the IoU of two same rectangles is 0, which is calculated by rotate_gpu_nms
                        jitter = np.zeros(
                            [tmp_boxes_r_.shape[0], tmp_boxes_r_.shape[1] + 1])
                        jitter[:, 0] += np.random.rand(
                            tmp_boxes_r_.shape[0], ) / 1000
                        inx = rotate_gpu_nms(
                            np.array(tmp, np.float32) +
                            np.array(jitter, np.float32),
                            float(cfgs.NMS_IOU_THRESHOLD), 0)

                    box_res_rotate_.extend(np.array(tmp_boxes_r)[inx])
                    score_res_rotate_.extend(np.array(tmp_score_r)[inx])
                    label_res_rotate_.extend(np.array(tmp_label_r)[inx])

            box_res_rotate_ = np.array(box_res_rotate_)
            score_res_rotate_ = np.array(score_res_rotate_)
            label_res_rotate_ = np.array(label_res_rotate_)

            result_dict = {
                'scales': [1, 1],
                'boxes': box_res_rotate_,
                'scores': score_res_rotate_,
                'labels': label_res_rotate_,
                'image_id': a_img
            }
            result_queue.put_nowait(result_dict)