Ejemplo n.º 1
0
def eval_ship(img_num, mode):
    with tf.Graph().as_default():

        img_name_batch, img_batch, gtboxes_and_label_batch, num_objects_batch = \
            next_batch(dataset_name=cfgs.DATASET_NAME,
                       batch_size=cfgs.BATCH_SIZE,
                       shortside_len=cfgs.SHORT_SIDE_LEN,
                       is_training=False)

        gtboxes_and_label = tf.py_func(
            back_forward_convert,
            inp=[tf.squeeze(gtboxes_and_label_batch, 0)],
            Tout=tf.float32)
        gtboxes_and_label = tf.reshape(gtboxes_and_label, [-1, 6])

        gtboxes_and_label_minAreaRectangle = get_horizen_minAreaRectangle(
            gtboxes_and_label)

        gtboxes_and_label_minAreaRectangle = tf.reshape(
            gtboxes_and_label_minAreaRectangle, [-1, 5])

        # ***********************************************************************************************
        # *                                         share net                                           *
        # ***********************************************************************************************
        _, share_net = get_network_byname(net_name=cfgs.NET_NAME,
                                          inputs=img_batch,
                                          num_classes=None,
                                          is_training=True,
                                          output_stride=None,
                                          global_pool=False,
                                          spatial_squeeze=False)

        # ***********************************************************************************************
        # *                                            RPN                                              *
        # ***********************************************************************************************
        rpn = build_rpn.RPN(
            net_name=cfgs.NET_NAME,
            inputs=img_batch,
            gtboxes_and_label=None,
            is_training=False,
            share_head=False,
            share_net=share_net,
            stride=cfgs.STRIDE,
            anchor_ratios=cfgs.ANCHOR_RATIOS,
            anchor_scales=cfgs.ANCHOR_SCALES,
            scale_factors=cfgs.SCALE_FACTORS,
            base_anchor_size_list=cfgs.
            BASE_ANCHOR_SIZE_LIST,  # P2, P3, P4, P5, P6
            level=cfgs.LEVEL,
            top_k_nms=cfgs.RPN_TOP_K_NMS,
            rpn_nms_iou_threshold=cfgs.RPN_NMS_IOU_THRESHOLD,
            max_proposals_num=cfgs.MAX_PROPOSAL_NUM,
            rpn_iou_positive_threshold=cfgs.RPN_IOU_POSITIVE_THRESHOLD,
            rpn_iou_negative_threshold=cfgs.RPN_IOU_NEGATIVE_THRESHOLD,
            rpn_mini_batch_size=cfgs.RPN_MINIBATCH_SIZE,
            rpn_positives_ratio=cfgs.RPN_POSITIVE_RATE,
            remove_outside_anchors=False,  # whether remove anchors outside
            rpn_weight_decay=cfgs.WEIGHT_DECAY[cfgs.NET_NAME])

        # rpn predict proposals
        rpn_proposals_boxes, rpn_proposals_scores = rpn.rpn_proposals(
        )  # rpn_score shape: [300, ]

        # ***********************************************************************************************
        # *                                         Fast RCNN                                           *
        # ***********************************************************************************************
        fast_rcnn = build_fast_rcnn1.FastRCNN(
            feature_pyramid=rpn.feature_pyramid,
            rpn_proposals_boxes=rpn_proposals_boxes,
            rpn_proposals_scores=rpn_proposals_scores,
            img_shape=tf.shape(img_batch),
            roi_size=cfgs.ROI_SIZE,
            roi_pool_kernel_size=cfgs.ROI_POOL_KERNEL_SIZE,
            scale_factors=cfgs.SCALE_FACTORS,
            gtboxes_and_label=None,
            gtboxes_and_label_minAreaRectangle=
            gtboxes_and_label_minAreaRectangle,
            fast_rcnn_nms_iou_threshold=cfgs.FAST_RCNN_NMS_IOU_THRESHOLD,
            fast_rcnn_maximum_boxes_per_img=100,
            fast_rcnn_nms_max_boxes_per_class=cfgs.
            FAST_RCNN_NMS_MAX_BOXES_PER_CLASS,
            show_detections_score_threshold=cfgs.FINAL_SCORE_THRESHOLD,
            # show detections which score >= 0.6
            num_classes=cfgs.CLASS_NUM,
            fast_rcnn_minibatch_size=cfgs.FAST_RCNN_MINIBATCH_SIZE,
            fast_rcnn_positives_ratio=cfgs.FAST_RCNN_POSITIVE_RATE,
            fast_rcnn_positives_iou_threshold=cfgs.
            FAST_RCNN_IOU_POSITIVE_THRESHOLD,
            # iou>0.5 is positive, iou<0.5 is negative
            use_dropout=cfgs.USE_DROPOUT,
            weight_decay=cfgs.WEIGHT_DECAY[cfgs.NET_NAME],
            is_training=False,
            level=cfgs.LEVEL)

        fast_rcnn_decode_boxes, fast_rcnn_score, num_of_objects, detection_category, \
        fast_rcnn_decode_boxes_rotate, fast_rcnn_score_rotate, num_of_objects_rotate, detection_category_rotate = \
            fast_rcnn.fast_rcnn_predict()

        if mode == 0:
            fast_rcnn_decode_boxes_rotate = get_horizen_minAreaRectangle(
                fast_rcnn_decode_boxes_rotate, False)

        # train
        init_op = tf.group(tf.global_variables_initializer(),
                           tf.local_variables_initializer())

        restorer, restore_ckpt = restore_model.get_restorer()
        with tf.Session() as sess:
            sess.run(init_op)
            if not restorer is None:
                restorer.restore(sess, restore_ckpt)
                print('restore model')

            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess, coord)

            gtboxes_horizontal_dict = {}
            predict_horizontal_dict = {}
            gtboxes_rotate_dict = {}
            predict_rotate_dict = {}

            for i in range(img_num):

                start = time.time()

                _img_name_batch, _img_batch, _gtboxes_and_label, _gtboxes_and_label_minAreaRectangle, \
                _fast_rcnn_decode_boxes, _fast_rcnn_score, _detection_category, _fast_rcnn_decode_boxes_rotate, \
                _fast_rcnn_score_rotate, _detection_category_rotate \
                    = sess.run([img_name_batch, img_batch, gtboxes_and_label, gtboxes_and_label_minAreaRectangle,
                                fast_rcnn_decode_boxes, fast_rcnn_score, detection_category, fast_rcnn_decode_boxes_rotate,
                                fast_rcnn_score_rotate, detection_category_rotate])
                end = time.time()

                # gtboxes convert dict
                gtboxes_horizontal_dict[str(_img_name_batch[0])] = []
                predict_horizontal_dict[str(_img_name_batch[0])] = []
                gtboxes_rotate_dict[str(_img_name_batch[0])] = []
                predict_rotate_dict[str(_img_name_batch[0])] = []

                gtbox_horizontal_list, predict_horizontal_list = \
                    make_dict_packle(_gtboxes_and_label_minAreaRectangle, _fast_rcnn_decode_boxes,
                                     _fast_rcnn_score, _detection_category)

                if mode == 0:
                    gtbox_rotate_list, predict_rotate_list = \
                        make_dict_packle(_gtboxes_and_label_minAreaRectangle, _fast_rcnn_decode_boxes_rotate,
                                         _fast_rcnn_score_rotate, _detection_category_rotate)
                else:
                    gtbox_rotate_list, predict_rotate_list = \
                        make_dict_packle(_gtboxes_and_label, _fast_rcnn_decode_boxes_rotate,
                                         _fast_rcnn_score_rotate, _detection_category_rotate)

                gtboxes_horizontal_dict[str(
                    _img_name_batch[0])].extend(gtbox_horizontal_list)
                predict_horizontal_dict[str(
                    _img_name_batch[0])].extend(predict_horizontal_list)
                gtboxes_rotate_dict[str(
                    _img_name_batch[0])].extend(gtbox_rotate_list)
                predict_rotate_dict[str(
                    _img_name_batch[0])].extend(predict_rotate_list)

                view_bar(
                    '{} image cost {}s'.format(str(_img_name_batch[0]),
                                               (end - start)), i + 1, img_num)

            fw1 = open('gtboxes_horizontal_dict.pkl', 'w')
            fw2 = open('predict_horizontal_dict.pkl', 'w')
            fw3 = open('gtboxes_rotate_dict.pkl', 'w')
            fw4 = open('predict_rotate_dict.pkl', 'w')
            pickle.dump(gtboxes_horizontal_dict, fw1)
            pickle.dump(predict_horizontal_dict, fw2)
            pickle.dump(gtboxes_rotate_dict, fw3)
            pickle.dump(predict_rotate_dict, fw4)
            fw1.close()
            fw2.close()
            fw3.close()
            fw4.close()
            coord.request_stop()
            coord.join(threads)
Ejemplo n.º 2
0
def detect_img(file_paths, des_folder, det_th, h_len, w_len, h_overlap, w_overlap, show_res=False):
    with tf.Graph().as_default():

        img_plac = tf.placeholder(shape=[None, None, 3], dtype=tf.uint8)

        img_tensor = tf.cast(img_plac, tf.float32) - tf.constant([103.939, 116.779, 123.68])
        img_batch = image_preprocess.short_side_resize_for_inference_data(img_tensor,
                                                                          target_shortside_len=cfgs.SHORT_SIDE_LEN,
                                                                          is_resize=False)

        # ***********************************************************************************************
        # *                                         share net                                           *
        # ***********************************************************************************************
        _, share_net = get_network_byname(net_name=cfgs.NET_NAME,
                                          inputs=img_batch,
                                          num_classes=None,
                                          is_training=True,
                                          output_stride=None,
                                          global_pool=False,
                                          spatial_squeeze=False)
        # ***********************************************************************************************
        # *                                            RPN                                              *
        # ***********************************************************************************************
        rpn = build_rpn.RPN(net_name=cfgs.NET_NAME,
                            inputs=img_batch,
                            gtboxes_and_label=None,
                            is_training=False,
                            share_head=cfgs.SHARE_HEAD,
                            share_net=share_net,
                            stride=cfgs.STRIDE,
                            anchor_ratios=cfgs.ANCHOR_RATIOS,
                            anchor_scales=cfgs.ANCHOR_SCALES,
                            scale_factors=cfgs.SCALE_FACTORS,
                            base_anchor_size_list=cfgs.BASE_ANCHOR_SIZE_LIST,  # P2, P3, P4, P5, P6
                            level=cfgs.LEVEL,
                            top_k_nms=cfgs.RPN_TOP_K_NMS,
                            rpn_nms_iou_threshold=cfgs.RPN_NMS_IOU_THRESHOLD,
                            max_proposals_num=cfgs.MAX_PROPOSAL_NUM,
                            rpn_iou_positive_threshold=cfgs.RPN_IOU_POSITIVE_THRESHOLD,
                            rpn_iou_negative_threshold=cfgs.RPN_IOU_NEGATIVE_THRESHOLD,
                            rpn_mini_batch_size=cfgs.RPN_MINIBATCH_SIZE,
                            rpn_positives_ratio=cfgs.RPN_POSITIVE_RATE,
                            remove_outside_anchors=False,  # whether remove anchors outside
                            rpn_weight_decay=cfgs.WEIGHT_DECAY[cfgs.NET_NAME])

        # rpn predict proposals
        rpn_proposals_boxes, rpn_proposals_scores = rpn.rpn_proposals()  # rpn_score shape: [300, ]

        # ***********************************************************************************************
        # *                                         Fast RCNN                                           *
        # ***********************************************************************************************
        fast_rcnn = build_fast_rcnn1.FastRCNN(feature_pyramid=rpn.feature_pyramid,
                                              rpn_proposals_boxes=rpn_proposals_boxes,
                                              rpn_proposals_scores=rpn_proposals_scores,
                                              img_shape=tf.shape(img_batch),
                                              roi_size=cfgs.ROI_SIZE,
                                              roi_pool_kernel_size=cfgs.ROI_POOL_KERNEL_SIZE,
                                              scale_factors=cfgs.SCALE_FACTORS,
                                              gtboxes_and_label=None,
                                              gtboxes_and_label_minAreaRectangle=None,
                                              fast_rcnn_nms_iou_threshold=cfgs.FAST_RCNN_NMS_IOU_THRESHOLD,
                                              fast_rcnn_maximum_boxes_per_img=100,
                                              fast_rcnn_nms_max_boxes_per_class=cfgs.FAST_RCNN_NMS_MAX_BOXES_PER_CLASS,
                                              show_detections_score_threshold=det_th,
                                              # show detections which score >= 0.6
                                              num_classes=cfgs.CLASS_NUM,
                                              fast_rcnn_minibatch_size=cfgs.FAST_RCNN_MINIBATCH_SIZE,
                                              fast_rcnn_positives_ratio=cfgs.FAST_RCNN_POSITIVE_RATE,
                                              fast_rcnn_positives_iou_threshold=cfgs.FAST_RCNN_IOU_POSITIVE_THRESHOLD,
                                              # iou>0.5 is positive, iou<0.5 is negative
                                              use_dropout=cfgs.USE_DROPOUT,
                                              weight_decay=cfgs.WEIGHT_DECAY[cfgs.NET_NAME],
                                              is_training=False,
                                              level=cfgs.LEVEL)

        fast_rcnn_decode_boxes, fast_rcnn_score, num_of_objects, detection_category, \
        fast_rcnn_decode_boxes_rotate, fast_rcnn_score_rotate, num_of_objects_rotate, detection_category_rotate = \
            fast_rcnn.fast_rcnn_predict()

        init_op = tf.group(
            tf.global_variables_initializer(),
            tf.local_variables_initializer()
        )

        restorer, restore_ckpt = restore_model.get_restorer()

        config = tf.ConfigProto()
        # config.gpu_options.per_process_gpu_memory_fraction = 0.5
        config.gpu_options.allow_growth = True

        with tf.Session(config=config) as sess:
            sess.run(init_op)
            if not restorer is None:
                restorer.restore(sess, restore_ckpt)
                print('restore model')

            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess, coord)

            for img_path in file_paths:
                start = timer()
                img = cv2.imread(img_path)

                box_res = []
                label_res = []
                score_res = []
                box_res_rotate = []
                label_res_rotate = []
                score_res_rotate = []

                imgH = img.shape[0]
                imgW = img.shape[1]
                for hh in range(0, imgH, h_len - h_overlap):
                    h_size = min(h_len, imgH - hh)
                    if h_size < 10:
                        break
                    for ww in range(0, imgW, w_len - w_overlap):
                        w_size = min(w_len, imgW - ww)
                        if w_size < 10:
                            break

                        src_img = img[hh:(hh + h_size), ww:(ww + w_size), :]

                        boxes, labels, scores = sess.run([fast_rcnn_decode_boxes, detection_category, fast_rcnn_score],
                                                         feed_dict={img_plac: src_img})

                        boxes_rotate, labels_rotate, scores_rotate = sess.run([fast_rcnn_decode_boxes_rotate,
                                                                               detection_category_rotate,
                                                                               fast_rcnn_score_rotate],
                                                                              feed_dict={img_plac: src_img})

                        if len(boxes) > 0:
                            for ii in range(len(boxes)):
                                box = boxes[ii]
                                box[0] = box[0] + hh
                                box[1] = box[1] + ww
                                box[2] = box[2] + hh
                                box[3] = box[3] + ww
                                box_res.append(box)
                                label_res.append(labels[ii])
                                score_res.append(scores[ii])
                        if len(boxes_rotate) > 0:
                            for ii in range(len(boxes_rotate)):
                                box_rotate = boxes_rotate[ii]
                                box_rotate[0] = box_rotate[0] + hh
                                box_rotate[1] = box_rotate[1] + ww
                                box_res_rotate.append(box_rotate)
                                label_res_rotate.append(labels_rotate[ii])
                                score_res_rotate.append(scores_rotate[ii])

                # inx = nms_rotate.nms_rotate_cpu(boxes=np.array(box_res_rotate), scores=np.array(score_res_rotate),
                #                                 iou_threshold=0.5, max_output_size=100)
                # box_res_rotate = np.array(box_res_rotate)[inx]
                # score_res_rotate = np.array(score_res_rotate)[inx]
                # label_res_rotate = np.array(label_res_rotate)[inx]

                time_elapsed = timer() - start
                print("{} detection time : {:.4f} sec".format(img_path.split('/')[-1].split('.')[0], time_elapsed))

                mkdir(des_folder)
                img_np = draw_box_cv(np.array(img, np.float32) - np.array([103.939, 116.779, 123.68]),
                                     boxes=np.array(box_res),
                                     labels=np.array(label_res),
                                     scores=np.array(score_res))
                img_np_rotate = draw_rotate_box_cv(np.array(img, np.float32) - np.array([103.939, 116.779, 123.68]),
                                                   boxes=np.array(box_res_rotate),
                                                   labels=np.array(label_res_rotate),
                                                   scores=np.array(score_res_rotate))
                cv2.imwrite(des_folder + '/{}_horizontal_fpn.jpg'.format(img_path.split('/')[-1].split('.')[0]), img_np)
                cv2.imwrite(des_folder + '/{}_rotate_fpn.jpg'.format(img_path.split('/')[-1].split('.')[0]), img_np_rotate)

            coord.request_stop()
            coord.join(threads)
Ejemplo n.º 3
0
def inference():
    with tf.Graph().as_default():

        img_plac = tf.placeholder(shape=[None, None, 3], dtype=tf.uint8)

        img_tensor = tf.cast(img_plac, tf.float32) - tf.constant([103.939, 116.779, 123.68])
        img_batch = image_preprocess.short_side_resize_for_inference_data(img_tensor,
                                                                          target_shortside_len=cfgs.SHORT_SIDE_LEN)

        # ***********************************************************************************************
        # *                                         share net                                           *
        # ***********************************************************************************************
        _, share_net = get_network_byname(net_name=cfgs.NET_NAME,
                                          inputs=img_batch,
                                          num_classes=None,
                                          is_training=True,
                                          output_stride=None,
                                          global_pool=False,
                                          spatial_squeeze=False)
        # ***********************************************************************************************
        # *                                            RPN                                              *
        # ***********************************************************************************************
        rpn = build_rpn.RPN(net_name=cfgs.NET_NAME,
                            inputs=img_batch,
                            gtboxes_and_label=None,
                            is_training=False,
                            share_head=cfgs.SHARE_HEAD,
                            share_net=share_net,
                            stride=cfgs.STRIDE,
                            anchor_ratios=cfgs.ANCHOR_RATIOS,
                            anchor_scales=cfgs.ANCHOR_SCALES,
                            scale_factors=cfgs.SCALE_FACTORS,
                            base_anchor_size_list=cfgs.BASE_ANCHOR_SIZE_LIST,  # P2, P3, P4, P5, P6
                            level=cfgs.LEVEL,
                            top_k_nms=cfgs.RPN_TOP_K_NMS,
                            rpn_nms_iou_threshold=cfgs.RPN_NMS_IOU_THRESHOLD,
                            max_proposals_num=cfgs.MAX_PROPOSAL_NUM,
                            rpn_iou_positive_threshold=cfgs.RPN_IOU_POSITIVE_THRESHOLD,
                            rpn_iou_negative_threshold=cfgs.RPN_IOU_NEGATIVE_THRESHOLD,
                            rpn_mini_batch_size=cfgs.RPN_MINIBATCH_SIZE,
                            rpn_positives_ratio=cfgs.RPN_POSITIVE_RATE,
                            remove_outside_anchors=False,  # whether remove anchors outside
                            rpn_weight_decay=cfgs.WEIGHT_DECAY[cfgs.NET_NAME])

        # rpn predict proposals
        rpn_proposals_boxes, rpn_proposals_scores = rpn.rpn_proposals()  # rpn_score shape: [300, ]

        # ***********************************************************************************************
        # *                                         Fast RCNN                                           *
        # ***********************************************************************************************
        fast_rcnn = build_fast_rcnn1.FastRCNN(feature_pyramid=rpn.feature_pyramid,
                                              rpn_proposals_boxes=rpn_proposals_boxes,
                                              rpn_proposals_scores=rpn_proposals_scores,
                                              img_shape=tf.shape(img_batch),
                                              roi_size=cfgs.ROI_SIZE,
                                              roi_pool_kernel_size=cfgs.ROI_POOL_KERNEL_SIZE,
                                              scale_factors=cfgs.SCALE_FACTORS,
                                              gtboxes_and_label=None,
                                              gtboxes_and_label_minAreaRectangle=None,
                                              fast_rcnn_nms_iou_threshold=cfgs.FAST_RCNN_NMS_IOU_THRESHOLD,
                                              fast_rcnn_maximum_boxes_per_img=100,
                                              fast_rcnn_nms_max_boxes_per_class=cfgs.FAST_RCNN_NMS_MAX_BOXES_PER_CLASS,
                                              show_detections_score_threshold=cfgs.FINAL_SCORE_THRESHOLD,
                                              # show detections which score >= 0.6
                                              num_classes=cfgs.CLASS_NUM,
                                              fast_rcnn_minibatch_size=cfgs.FAST_RCNN_MINIBATCH_SIZE,
                                              fast_rcnn_positives_ratio=cfgs.FAST_RCNN_POSITIVE_RATE,
                                              fast_rcnn_positives_iou_threshold=cfgs.FAST_RCNN_IOU_POSITIVE_THRESHOLD,
                                              # iou>0.5 is positive, iou<0.5 is negative
                                              use_dropout=cfgs.USE_DROPOUT,
                                              weight_decay=cfgs.WEIGHT_DECAY[cfgs.NET_NAME],
                                              is_training=False,
                                              level=cfgs.LEVEL)

        fast_rcnn_decode_boxes, fast_rcnn_score, num_of_objects, detection_category, \
        fast_rcnn_decode_boxes_rotate, fast_rcnn_score_rotate, num_of_objects_rotate, detection_category_rotate = \
            fast_rcnn.fast_rcnn_predict()

        init_op = tf.group(
            tf.global_variables_initializer(),
            tf.local_variables_initializer()
        )

        restorer, restore_ckpt = restore_model.get_restorer()

        config = tf.ConfigProto()
        # config.gpu_options.per_process_gpu_memory_fraction = 0.5
        config.gpu_options.allow_growth = True
        with tf.Session(config=config) as sess:
            sess.run(init_op)
            if not restorer is None:
                restorer.restore(sess, restore_ckpt)
                print('restore model')

            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess, coord)

            imgs, img_names = get_imgs()
            for i, img in enumerate(imgs):

                start = time.time()

                _img_batch, _fast_rcnn_decode_boxes, _fast_rcnn_score, _detection_category, \
                _fast_rcnn_decode_boxes_rotate,  _fast_rcnn_score_rotate, _detection_category_rotate = \
                    sess.run([img_batch, fast_rcnn_decode_boxes, fast_rcnn_score, detection_category,
                              fast_rcnn_decode_boxes_rotate, fast_rcnn_score_rotate, detection_category_rotate],
                             feed_dict={img_plac: img})
                end = time.time()

                img_np = np.squeeze(_img_batch, axis=0)

                img_horizontal_np = draw_box_cv(img_np,
                                                boxes=_fast_rcnn_decode_boxes,
                                                labels=_detection_category,
                                                scores=_fast_rcnn_score)

                img_rotate_np = draw_rotate_box_cv(img_np,
                                                   boxes=_fast_rcnn_decode_boxes_rotate,
                                                   labels=_detection_category_rotate,
                                                   scores=_fast_rcnn_score_rotate)
                mkdir(cfgs.INFERENCE_SAVE_PATH)
                cv2.imwrite(cfgs.INFERENCE_SAVE_PATH + '/{}_horizontal_fpn.jpg'.format(img_names[i]), img_horizontal_np)
                cv2.imwrite(cfgs.INFERENCE_SAVE_PATH + '/{}_rotate_fpn.jpg'.format(img_names[i]), img_rotate_np)
                view_bar('{} cost {}s'.format(img_names[i], (end - start)), i + 1, len(imgs))
            coord.request_stop()
            coord.join(threads)
Ejemplo n.º 4
0
def test(img_num):
    with tf.Graph().as_default():

        img_name_batch, img_batch, gtboxes_and_label_batch, num_objects_batch = \
            next_batch(dataset_name=cfgs.DATASET_NAME,
                       batch_size=cfgs.BATCH_SIZE,
                       shortside_len=cfgs.SHORT_SIDE_LEN,
                       is_training=False)

        gtboxes_and_label = tf.py_func(back_forward_convert,
                                       inp=[tf.squeeze(gtboxes_and_label_batch, 0)],
                                       Tout=tf.float32)
        gtboxes_and_label = tf.reshape(gtboxes_and_label, [-1, 6])

        gtboxes_and_label_minAreaRectangle = get_horizen_minAreaRectangle(gtboxes_and_label)

        gtboxes_and_label_minAreaRectangle = tf.reshape(gtboxes_and_label_minAreaRectangle, [-1, 5])

        # ***********************************************************************************************
        # *                                         share net                                           *
        # ***********************************************************************************************
        _, share_net = get_network_byname(net_name=cfgs.NET_NAME,
                                          inputs=img_batch,
                                          num_classes=None,
                                          is_training=True,
                                          output_stride=None,
                                          global_pool=False,
                                          spatial_squeeze=False)

        # ***********************************************************************************************
        # *                                            RPN                                              *
        # ***********************************************************************************************
        rpn = build_rpn.RPN(net_name=cfgs.NET_NAME,
                            inputs=img_batch,
                            gtboxes_and_label=None,
                            is_training=False,
                            share_head=cfgs.SHARE_HEAD,
                            share_net=share_net,
                            stride=cfgs.STRIDE,
                            anchor_ratios=cfgs.ANCHOR_RATIOS,
                            anchor_scales=cfgs.ANCHOR_SCALES,
                            scale_factors=cfgs.SCALE_FACTORS,
                            base_anchor_size_list=cfgs.BASE_ANCHOR_SIZE_LIST,  # P2, P3, P4, P5, P6
                            level=cfgs.LEVEL,
                            top_k_nms=cfgs.RPN_TOP_K_NMS,
                            rpn_nms_iou_threshold=cfgs.RPN_NMS_IOU_THRESHOLD,
                            max_proposals_num=cfgs.MAX_PROPOSAL_NUM,
                            rpn_iou_positive_threshold=cfgs.RPN_IOU_POSITIVE_THRESHOLD,
                            rpn_iou_negative_threshold=cfgs.RPN_IOU_NEGATIVE_THRESHOLD,
                            rpn_mini_batch_size=cfgs.RPN_MINIBATCH_SIZE,
                            rpn_positives_ratio=cfgs.RPN_POSITIVE_RATE,
                            remove_outside_anchors=False,  # whether remove anchors outside
                            rpn_weight_decay=cfgs.WEIGHT_DECAY[cfgs.NET_NAME])

        # rpn predict proposals
        rpn_proposals_boxes, rpn_proposals_scores = rpn.rpn_proposals()  # rpn_score shape: [300, ]

        # ***********************************************************************************************
        # *                                         Fast RCNN                                           *
        # ***********************************************************************************************
        fast_rcnn = build_fast_rcnn1.FastRCNN(feature_pyramid=rpn.feature_pyramid,
                                              rpn_proposals_boxes=rpn_proposals_boxes,
                                              rpn_proposals_scores=rpn_proposals_scores,
                                              img_shape=tf.shape(img_batch),
                                              roi_size=cfgs.ROI_SIZE,
                                              roi_pool_kernel_size=cfgs.ROI_POOL_KERNEL_SIZE,
                                              scale_factors=cfgs.SCALE_FACTORS,
                                              gtboxes_and_label=None,
                                              gtboxes_and_label_minAreaRectangle=gtboxes_and_label_minAreaRectangle,
                                              fast_rcnn_nms_iou_threshold=cfgs.FAST_RCNN_NMS_IOU_THRESHOLD,
                                              fast_rcnn_maximum_boxes_per_img=100,
                                              fast_rcnn_nms_max_boxes_per_class=cfgs.FAST_RCNN_NMS_MAX_BOXES_PER_CLASS,
                                              show_detections_score_threshold=cfgs.FINAL_SCORE_THRESHOLD,
                                              # show detections which score >= 0.6
                                              num_classes=cfgs.CLASS_NUM,
                                              fast_rcnn_minibatch_size=cfgs.FAST_RCNN_MINIBATCH_SIZE,
                                              fast_rcnn_positives_ratio=cfgs.FAST_RCNN_POSITIVE_RATE,
                                              fast_rcnn_positives_iou_threshold=cfgs.FAST_RCNN_IOU_POSITIVE_THRESHOLD,
                                              # iou>0.5 is positive, iou<0.5 is negative
                                              use_dropout=cfgs.USE_DROPOUT,
                                              weight_decay=cfgs.WEIGHT_DECAY[cfgs.NET_NAME],
                                              is_training=False,
                                              level=cfgs.LEVEL)

        fast_rcnn_decode_boxes, fast_rcnn_score, num_of_objects, detection_category, \
        fast_rcnn_decode_boxes_rotate, fast_rcnn_score_rotate, num_of_objects_rotate, detection_category_rotate = \
            fast_rcnn.fast_rcnn_predict()

        # train
        init_op = tf.group(
            tf.global_variables_initializer(),
            tf.local_variables_initializer()
        )

        restorer, restore_ckpt = restore_model.get_restorer()

        config = tf.ConfigProto()
        # config.gpu_options.per_process_gpu_memory_fraction = 0.5
        config.gpu_options.allow_growth = True
        with tf.Session(config=config) as sess:
            sess.run(init_op)
            if not restorer is None:
                restorer.restore(sess, restore_ckpt)
                print('restore model')

            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess, coord)

            for i in range(img_num):

                start = time.time()

                _img_name_batch, _img_batch, _gtboxes_and_label, _gtboxes_and_label_minAreaRectangle, \
                _fast_rcnn_decode_boxes, _fast_rcnn_score, _detection_category, _fast_rcnn_decode_boxes_rotate, \
                _fast_rcnn_score_rotate, _detection_category_rotate \
                    = sess.run([img_name_batch, img_batch, gtboxes_and_label, gtboxes_and_label_minAreaRectangle,
                                fast_rcnn_decode_boxes, fast_rcnn_score, detection_category, fast_rcnn_decode_boxes_rotate,
                                fast_rcnn_score_rotate, detection_category_rotate])
                end = time.time()

                _img_batch = np.squeeze(_img_batch, axis=0)

                _img_batch_fpn_horizonal = help_utils.draw_box_cv(_img_batch,
                                                                  boxes=_fast_rcnn_decode_boxes,
                                                                  labels=_detection_category,
                                                                  scores=_fast_rcnn_score)

                _img_batch_fpn_rotate = help_utils.draw_rotate_box_cv(_img_batch,
                                                                      boxes=_fast_rcnn_decode_boxes_rotate,
                                                                      labels=_detection_category_rotate,
                                                                      scores=_fast_rcnn_score_rotate)
                mkdir(cfgs.TEST_SAVE_PATH)
                cv2.imwrite(cfgs.TEST_SAVE_PATH + '/{}_horizontal_fpn.jpg'.format(str(_img_name_batch[0])), _img_batch_fpn_horizonal)
                cv2.imwrite(cfgs.TEST_SAVE_PATH + '/{}_rotate_fpn.jpg'.format(str(_img_name_batch[0])), _img_batch_fpn_rotate)

                temp_label_horizontal = np.reshape(_gtboxes_and_label[:, -1:], [-1, ]).astype(np.int64)
                temp_label_rotate = np.reshape(_gtboxes_and_label[:, -1:], [-1, ]).astype(np.int64)

                _img_batch_gt_horizontal = help_utils.draw_box_cv(_img_batch,
                                                                  boxes=_gtboxes_and_label_minAreaRectangle[:, :-1],
                                                                  labels=temp_label_horizontal,
                                                                  scores=None)

                _img_batch_gt_rotate = help_utils.draw_rotate_box_cv(_img_batch,
                                                                     boxes=_gtboxes_and_label[:, :-1],
                                                                     labels=temp_label_rotate,
                                                                     scores=None)

                cv2.imwrite(cfgs.TEST_SAVE_PATH + '/{}_horizontal_gt.jpg'.format(str(_img_name_batch[0])), _img_batch_gt_horizontal)
                cv2.imwrite(cfgs.TEST_SAVE_PATH + '/{}_rotate_gt.jpg'.format(str(_img_name_batch[0])), _img_batch_gt_rotate)

#view_bar('{} image cost {}s'.format(str(_img_name_batch[0]), (end - start)), i + 1, img_num)
                print('{} image cost {}s'.format(str(_img_name_batch[0]), (end - start)) + str(i + 1)+'/'+str(img_num))

            coord.request_stop()
            coord.join(threads)
Ejemplo n.º 5
0
def train():
    with tf.Graph().as_default():
        with tf.name_scope('get_batch'):
            img_name_batch, img_batch, gtboxes_and_label_batch, num_objects_batch = \
                next_batch(dataset_name=cfgs.DATASET_NAME,
                           batch_size=cfgs.BATCH_SIZE,
                           shortside_len=cfgs.SHORT_SIDE_LEN,
                           is_training=True)
            gtboxes_and_label = tf.py_func(back_forward_convert,
                                           inp=[tf.squeeze(gtboxes_and_label_batch, 0)],
                                           Tout=tf.float32)
            gtboxes_and_label = tf.reshape(gtboxes_and_label, [-1, 6])

            gtboxes_and_label_minAreaRectangle = get_horizen_minAreaRectangle(gtboxes_and_label)

            gtboxes_and_label_minAreaRectangle = tf.reshape(gtboxes_and_label_minAreaRectangle, [-1, 5])

        with tf.name_scope('draw_gtboxes'):
            gtboxes_in_img = draw_box_with_color(img_batch, tf.reshape(gtboxes_and_label_minAreaRectangle, [-1, 5])[:, :-1],
                                                 text=tf.shape(gtboxes_and_label_minAreaRectangle)[0])

            gtboxes_rotate_in_img = draw_box_with_color_rotate(img_batch, tf.reshape(gtboxes_and_label, [-1, 6])[:, :-1],
                                                               text=tf.shape(gtboxes_and_label)[0])

        # ***********************************************************************************************
        # *                                         share net                                           *
        # ***********************************************************************************************
        _, share_net = get_network_byname(net_name=cfgs.NET_NAME,
                                          inputs=img_batch,
                                          num_classes=None,
                                          is_training=True,
                                          output_stride=None,
                                          global_pool=False,
                                          spatial_squeeze=False)

        # ***********************************************************************************************
        # *                                            rpn                                              *
        # ***********************************************************************************************
        rpn = build_rpn.RPN(net_name=cfgs.NET_NAME,
                            inputs=img_batch,
                            gtboxes_and_label=gtboxes_and_label_minAreaRectangle,
                            is_training=True,
                            share_head=False,
                            share_net=share_net,
                            stride=cfgs.STRIDE,
                            anchor_ratios=cfgs.ANCHOR_RATIOS,
                            anchor_scales=cfgs.ANCHOR_SCALES,
                            scale_factors=cfgs.SCALE_FACTORS,
                            base_anchor_size_list=cfgs.BASE_ANCHOR_SIZE_LIST,  # P2, P3, P4, P5, P6
                            level=cfgs.LEVEL,
                            top_k_nms=cfgs.RPN_TOP_K_NMS,
                            rpn_nms_iou_threshold=cfgs.RPN_NMS_IOU_THRESHOLD,
                            max_proposals_num=cfgs.MAX_PROPOSAL_NUM,
                            rpn_iou_positive_threshold=cfgs.RPN_IOU_POSITIVE_THRESHOLD,
                            rpn_iou_negative_threshold=cfgs.RPN_IOU_NEGATIVE_THRESHOLD,  # iou>=0.7 is positive box, iou< 0.3 is negative
                            rpn_mini_batch_size=cfgs.RPN_MINIBATCH_SIZE,
                            rpn_positives_ratio=cfgs.RPN_POSITIVE_RATE,
                            remove_outside_anchors=False,  # whether remove anchors outside
                            rpn_weight_decay=cfgs.WEIGHT_DECAY[cfgs.NET_NAME])

        rpn_proposals_boxes, rpn_proposals_scores = rpn.rpn_proposals()  # rpn_score shape: [300, ]

        rpn_location_loss, rpn_classification_loss = rpn.rpn_losses()
        rpn_total_loss = rpn_classification_loss + rpn_location_loss

        with tf.name_scope('draw_proposals'):
            # score > 0.5 is object
            rpn_object_boxes_indices = tf.reshape(tf.where(tf.greater(rpn_proposals_scores, 0.5)), [-1])
            rpn_object_boxes = tf.gather(rpn_proposals_boxes, rpn_object_boxes_indices)

            rpn_proposals_objcet_boxes_in_img = draw_box_with_color(img_batch, rpn_object_boxes,
                                                                    text=tf.shape(rpn_object_boxes)[0])
            rpn_proposals_boxes_in_img = draw_box_with_color(img_batch, rpn_proposals_boxes,
                                                             text=tf.shape(rpn_proposals_boxes)[0])
        # ***********************************************************************************************
        # *                                         Fast RCNN                                           *
        # ***********************************************************************************************

        fast_rcnn = build_fast_rcnn1.FastRCNN(feature_pyramid=rpn.feature_pyramid,
                                              rpn_proposals_boxes=rpn_proposals_boxes,
                                              rpn_proposals_scores=rpn_proposals_scores,
                                              img_shape=tf.shape(img_batch),
                                              roi_size=cfgs.ROI_SIZE,
                                              roi_pool_kernel_size=cfgs.ROI_POOL_KERNEL_SIZE,
                                              scale_factors=cfgs.SCALE_FACTORS,
                                              gtboxes_and_label=gtboxes_and_label,
                                              gtboxes_and_label_minAreaRectangle=gtboxes_and_label_minAreaRectangle,
                                              fast_rcnn_nms_iou_threshold=cfgs.FAST_RCNN_NMS_IOU_THRESHOLD,
                                              fast_rcnn_maximum_boxes_per_img=100,
                                              fast_rcnn_nms_max_boxes_per_class=cfgs.FAST_RCNN_NMS_MAX_BOXES_PER_CLASS,
                                              show_detections_score_threshold=cfgs.FINAL_SCORE_THRESHOLD,  # show detections which score >= 0.6
                                              num_classes=cfgs.CLASS_NUM,
                                              fast_rcnn_minibatch_size=cfgs.FAST_RCNN_MINIBATCH_SIZE,
                                              fast_rcnn_positives_ratio=cfgs.FAST_RCNN_POSITIVE_RATE,
                                              fast_rcnn_positives_iou_threshold=cfgs.FAST_RCNN_IOU_POSITIVE_THRESHOLD,  # iou>0.5 is positive, iou<0.5 is negative
                                              use_dropout=cfgs.USE_DROPOUT,
                                              weight_decay=cfgs.WEIGHT_DECAY[cfgs.NET_NAME],
                                              is_training=True,
                                              level=cfgs.LEVEL)

        fast_rcnn_decode_boxes, fast_rcnn_score, num_of_objects, detection_category, \
        fast_rcnn_decode_boxes_rotate, fast_rcnn_score_rotate, num_of_objects_rotate, detection_category_rotate = \
            fast_rcnn.fast_rcnn_predict()
        fast_rcnn_location_loss, fast_rcnn_classification_loss, \
        fast_rcnn_location_rotate_loss, fast_rcnn_classification_rotate_loss = fast_rcnn.fast_rcnn_loss()

        fast_rcnn_total_loss = fast_rcnn_location_loss + fast_rcnn_classification_loss + \
                               fast_rcnn_location_rotate_loss + fast_rcnn_classification_rotate_loss

        with tf.name_scope('draw_boxes_with_categories'):
            fast_rcnn_predict_boxes_in_imgs = draw_boxes_with_categories(img_batch=img_batch,
                                                                         boxes=fast_rcnn_decode_boxes,
                                                                         labels=detection_category,
                                                                         scores=fast_rcnn_score)

            fast_rcnn_predict_rotate_boxes_in_imgs = draw_boxes_with_categories_rotate(img_batch=img_batch,
                                                                                       boxes=fast_rcnn_decode_boxes_rotate,
                                                                                       labels=detection_category_rotate,
                                                                                       scores=fast_rcnn_score_rotate)

        # train
        total_loss = slim.losses.get_total_loss()

        global_step = slim.get_or_create_global_step()

        lr = tf.train.piecewise_constant(global_step,
                                         boundaries=[np.int64(20000), np.int64(40000)],
                                         values=[0.001, 0.0001, 0.00001])
        tf.summary.scalar('lr', lr)
        optimizer = tf.train.MomentumOptimizer(lr, momentum=cfgs.MOMENTUM)

        train_op = slim.learning.create_train_op(total_loss, optimizer, global_step)  # rpn_total_loss,
        # train_op = optimizer.minimize(second_classification_loss, global_step)

        # ***********************************************************************************************
        # *                                          Summary                                            *
        # ***********************************************************************************************
        # ground truth and predict
        tf.summary.image('img/gtboxes', gtboxes_in_img)
        tf.summary.image('img/gtboxes_rotate', gtboxes_rotate_in_img)
        tf.summary.image('img/faster_rcnn_predict', fast_rcnn_predict_boxes_in_imgs)
        tf.summary.image('img/faster_rcnn_predict_rotate', fast_rcnn_predict_rotate_boxes_in_imgs)
        # rpn loss and image
        tf.summary.scalar('rpn/rpn_location_loss', rpn_location_loss)
        tf.summary.scalar('rpn/rpn_classification_loss', rpn_classification_loss)
        tf.summary.scalar('rpn/rpn_total_loss', rpn_total_loss)

        tf.summary.scalar('fast_rcnn/fast_rcnn_location_loss', fast_rcnn_location_loss)
        tf.summary.scalar('fast_rcnn/fast_rcnn_classification_loss', fast_rcnn_classification_loss)
        tf.summary.scalar('fast_rcnn/fast_rcnn_location_rotate_loss', fast_rcnn_location_rotate_loss)
        tf.summary.scalar('fast_rcnn/fast_rcnn_classification_rotate_loss', fast_rcnn_classification_rotate_loss)
        tf.summary.scalar('fast_rcnn/fast_rcnn_total_loss', fast_rcnn_total_loss)

        tf.summary.scalar('loss/total_loss', total_loss)

        tf.summary.image('rpn/rpn_all_boxes', rpn_proposals_boxes_in_img)
        tf.summary.image('rpn/rpn_object_boxes', rpn_proposals_objcet_boxes_in_img)
        # learning_rate
        tf.summary.scalar('learning_rate', lr)

        summary_op = tf.summary.merge_all()
        init_op = tf.group(
            tf.global_variables_initializer(),
            tf.local_variables_initializer()
        )

        restorer, restore_ckpt = restore_model.get_restorer()
        saver = tf.train.Saver(max_to_keep=10)
        with tf.Session() as sess:
            sess.run(init_op)
            if not restorer is None:
                restorer.restore(sess, restore_ckpt)
                print('restore model')
            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess, coord)

            summary_path = os.path.join(cfgs.SUMMARY_PATH, cfgs.VERSION)
            tools.mkdir(summary_path)
            summary_writer = tf.summary.FileWriter(summary_path, graph=sess.graph)

            for step in range(cfgs.MAX_ITERATION):
                training_time = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
                start = time.time()

                _global_step, _img_name_batch, _rpn_location_loss, _rpn_classification_loss, \
                _rpn_total_loss, _fast_rcnn_location_loss, _fast_rcnn_classification_loss, \
                _fast_rcnn_location_rotate_loss, _fast_rcnn_classification_rotate_loss, \
                _fast_rcnn_total_loss, _total_loss, _ = \
                    sess.run([global_step, img_name_batch, rpn_location_loss, rpn_classification_loss,
                              rpn_total_loss, fast_rcnn_location_loss, fast_rcnn_classification_loss,
                              fast_rcnn_location_rotate_loss, fast_rcnn_classification_rotate_loss,
                              fast_rcnn_total_loss, total_loss, train_op])

                end = time.time()

                if step % 10 == 0:

                    print(""" {}: step{}    image_name:{} |\t
                                rpn_loc_loss:{} |\t rpn_cla_loss:{} |\t
                                rpn_total_loss:{} |
                                fast_rcnn_loc_loss:{} |\t fast_rcnn_cla_loss:{} |\t
                                fast_rcnn_loc_rotate_loss:{} |\t fast_rcnn_cla_rotate_loss:{} |\t
                                fast_rcnn_total_loss:{} |\t
                                total_loss:{} |\t pre_cost_time:{}s""" \
                          .format(training_time, _global_step, str(_img_name_batch[0]), _rpn_location_loss,
                                  _rpn_classification_loss, _rpn_total_loss, _fast_rcnn_location_loss,
                                  _fast_rcnn_classification_loss, _fast_rcnn_location_rotate_loss,
                                  _fast_rcnn_classification_rotate_loss,  _fast_rcnn_total_loss, _total_loss,
                                  (end - start)))

                if step % 50 == 0:
                    summary_str = sess.run(summary_op)
                    summary_writer.add_summary(summary_str, _global_step)
                    summary_writer.flush()

                if (step > 0 and step % 1000 == 0) or (step == cfgs.MAX_ITERATION - 1):
                    save_dir = os.path.join(FLAGS.trained_checkpoint, cfgs.VERSION)
                    if not os.path.exists(save_dir):
                        os.mkdir(save_dir)

                    save_ckpt = os.path.join(save_dir, 'voc_'+str(_global_step)+'model.ckpt')
                    saver.save(sess, save_ckpt)
                    print(' weights had been saved')

            coord.request_stop()
            coord.join(threads)