Ejemplo n.º 1
0
    def initialize_visualization_drawer(self):
        visual_h = self.cfg.visualization.window_h
        visual_w = self.cfg.visualization.window_w
        self.drawer = FrameDrawer(visual_h, visual_w)

        self.drawer.assign_data(
            item="traj",
            top_left=[0, 0],
            bottom_right=[int(visual_h), int(visual_w)],
        )

        self.drawer.assign_data(
            item="match_temp",
            top_left=[int(visual_h / 4 * 0),
                      int(visual_w / 4 * 2)],
            bottom_right=[int(visual_h / 4 * 1),
                          int(visual_w / 4 * 4)],
        )

        self.drawer.assign_data(
            item="match_side",
            top_left=[int(visual_h / 4 * 1),
                      int(visual_w / 4 * 2)],
            bottom_right=[int(visual_h / 4 * 2),
                          int(visual_w / 4 * 4)],
        )

        self.drawer.assign_data(
            item="depth",
            top_left=[int(visual_h / 4 * 2),
                      int(visual_w / 4 * 2)],
            bottom_right=[int(visual_h / 4 * 3),
                          int(visual_w / 4 * 3)],
        )

        self.drawer.assign_data(
            item="flow1",
            top_left=[int(visual_h / 4 * 2),
                      int(visual_w / 4 * 3)],
            bottom_right=[int(visual_h / 4 * 3),
                          int(visual_w / 4 * 4)],
        )

        self.drawer.assign_data(
            item="flow2",
            top_left=[int(visual_h / 4 * 3),
                      int(visual_w / 4 * 2)],
            bottom_right=[int(visual_h / 4 * 4),
                          int(visual_w / 4 * 3)],
        )

        self.drawer.assign_data(
            item="flow_diff",
            top_left=[int(visual_h / 4 * 3),
                      int(visual_w / 4 * 3)],
            bottom_right=[int(visual_h / 4 * 4),
                          int(visual_w / 4 * 4)],
        )
Ejemplo n.º 2
0
    def setup(self):
        """Reading configuration and setup, including

            - Timer
            - Dataset
            - Tracking method
            - Keypoint Sampler
            - Deep networks
            - Deep layers
            - Visualizer
        """
        # timer
        self.timers = Timer()

        # intialize dataset
        self.dataset = Dataset.datasets[self.cfg.dataset](self.cfg)

        # get tracking method
        self.tracking_method = self.cfg.tracking_method
        self.initialize_tracker()

        # initialize keypoint sampler
        self.kp_sampler = KeypointSampler(self.cfg)

        # Deep networks
        self.deep_models = DeepModel(self.cfg)
        self.deep_models.initialize_models()
        if self.cfg.online_finetune.enable:
            self.deep_models.setup_train()

        # Depth consistency
        if self.cfg.kp_selection.depth_consistency.enable:
            self.depth_consistency_computer = DepthConsistency(
                self.cfg, self.dataset.cam_intrinsics)

        # visualization interface
        self.drawer = FrameDrawer(self.cfg.visualization)
Ejemplo n.º 3
0
class DFVO():
    def __init__(self, cfg):
        """
        Args:
            cfg (edict): configuration reading from yaml file
        """
        # configuration
        self.cfg = cfg

        # tracking stage
        self.tracking_stage = 0

        # predicted global poses
        self.global_poses = {0: SE3()}

        # reference data and current data
        self.initialize_data()

        self.setup()

        self.device = torch.device('cuda')
        self.flow_to_pix = FlowToPix(1, self.cfg.image.height,
                                     self.cfg.image.width)
        self.flow_to_pix.to(self.device)

    def setup(self):
        """Reading configuration and setup, including

            - Timer
            - Dataset
            - Tracking method
            - Keypoint Sampler
            - Deep networks
            - Deep layers
            - Visualizer
        """
        # timer
        self.timers = Timer()

        # intialize dataset
        self.dataset = Dataset.datasets[self.cfg.dataset](self.cfg)

        # get tracking method
        self.tracking_method = self.cfg.tracking_method
        self.initialize_tracker()

        # initialize keypoint sampler
        self.kp_sampler = KeypointSampler(self.cfg)

        # Deep networks
        self.deep_models = DeepModel(self.cfg)
        self.deep_models.initialize_models()
        if self.cfg.online_finetune.enable:
            self.deep_models.setup_train()

        # Depth consistency
        if self.cfg.kp_selection.depth_consistency.enable:
            self.depth_consistency_computer = DepthConsistency(
                self.cfg, self.dataset.cam_intrinsics)

        # visualization interface
        self.drawer = FrameDrawer(self.cfg.visualization)

    def initialize_data(self):
        """initialize data of current view and reference view
        """
        self.ref_data = {}
        self.cur_data = {}

    def initialize_tracker(self):
        """Initialize tracker
        """
        if self.tracking_method == 'hybrid':
            self.e_tracker = EssTracker(self.cfg, self.dataset.cam_intrinsics,
                                        self.timers)
            self.pnp_tracker = PnpTracker(self.cfg,
                                          self.dataset.cam_intrinsics)
        elif self.tracking_method == 'PnP':
            self.pnp_tracker = PnpTracker(self.cfg,
                                          self.dataset.cam_intrinsics)
        elif self.tracking_method == 'deep_pose':
            return
        else:
            assert False, "Wrong tracker is selected, choose from [hybrid, PnP, deep_pose]"

    def update_global_pose(self, new_pose, scale=1.):
        """update estimated poses w.r.t global coordinate system

        Args:
            new_pose (SE3): new pose
            scale (float): scaling factor
        """
        self.cur_data['pose'].t = self.cur_data['pose'].R @ new_pose.t * scale \
                            + self.cur_data['pose'].t
        self.cur_data['pose'].R = self.cur_data['pose'].R @ new_pose.R
        self.global_poses[self.cur_data['id']] = copy.deepcopy(
            self.cur_data['pose'])

    def tracking(self):
        """Tracking using both Essential matrix and PnP
        Essential matrix for rotation and translation direction;
            *** triangluate depth v.s. CNN-depth for translation scale ***
        PnP if Essential matrix fails
        """
        # First frame
        if self.tracking_stage == 0:
            # initial pose
            if self.cfg.directory.gt_pose_dir is not None:
                self.cur_data['pose'] = SE3(
                    self.dataset.gt_poses[self.cur_data['id']])
            else:
                self.cur_data['pose'] = SE3()
            return

        # Second to last frames
        elif self.tracking_stage >= 1:
            ''' keypoint selection '''
            if self.tracking_method in ['hybrid', 'PnP']:
                # Depth consistency (CNN depths + CNN pose)
                if self.cfg.kp_selection.depth_consistency.enable:
                    self.depth_consistency_computer.compute(
                        self.cur_data, self.ref_data)

                # kp_selection
                self.timers.start('kp_sel', 'tracking')
                kp_sel_outputs = self.kp_sampler.kp_selection(
                    self.cur_data, self.ref_data)
                try:
                    #print()
                    #print(kp_sel_outputs['kp1_best'].shape, kp_sel_outputs['kp2_best'].shape)
                    np.save(f'/content/kps/kps_{self.ref_data["id"]:06d}.npy',
                            kp_sel_outputs['kp1_best'])
                except:
                    pass
                if kp_sel_outputs['good_kp_found']:
                    self.kp_sampler.update_kp_data(self.cur_data,
                                                   self.ref_data,
                                                   kp_sel_outputs)
                self.timers.end('kp_sel')
            ''' Pose estimation '''
            # Initialize hybrid pose
            hybrid_pose = SE3()
            E_pose = SE3()

            if not (kp_sel_outputs['good_kp_found']):
                print(
                    "No enough good keypoints, constant motion will be used!")
                pose = self.ref_data['motion']
                self.update_global_pose(pose, 1)
                return
            ''' E-tracker '''
            if self.tracking_method in ['hybrid']:
                # Essential matrix pose
                self.timers.start('E-tracker', 'tracking')
                e_tracker_outputs = self.e_tracker.compute_pose_2d2d(
                    self.ref_data[self.cfg.e_tracker.kp_src],
                    self.cur_data[self.cfg.e_tracker.kp_src],
                    not (self.cfg.e_tracker.iterative_kp.enable
                         ))  # pose: from cur->ref
                E_pose = e_tracker_outputs['pose']
                self.timers.end('E-tracker')

                # Rotation
                hybrid_pose.R = E_pose.R

                # save inliers
                self.ref_data['inliers'] = e_tracker_outputs['inliers']

                # scale recovery
                if np.linalg.norm(E_pose.t) != 0:
                    self.timers.start('scale_recovery', 'tracking')
                    scale_out = self.e_tracker.scale_recovery(
                        self.cur_data, self.ref_data, E_pose, False)
                    scale = scale_out['scale']
                    if self.cfg.scale_recovery.kp_src == 'kp_depth':
                        self.cur_data['kp_depth'] = scale_out['cur_kp_depth']
                        self.ref_data['kp_depth'] = scale_out['ref_kp_depth']
                        self.cur_data['rigid_flow_mask'] = scale_out[
                            'rigid_flow_mask']
                    if scale != -1:
                        hybrid_pose.t = E_pose.t * scale
                    self.timers.end('scale_recovery')

                # Iterative keypoint refinement
                if np.linalg.norm(
                        E_pose.t
                ) != 0 and self.cfg.e_tracker.iterative_kp.enable:
                    self.timers.start('E-tracker iter.', 'tracking')
                    # Compute refined keypoint
                    self.e_tracker.compute_rigid_flow_kp(
                        self.cur_data, self.ref_data, hybrid_pose)

                    e_tracker_outputs = self.e_tracker.compute_pose_2d2d(
                        self.ref_data[self.cfg.e_tracker.iterative_kp.kp_src],
                        self.cur_data[self.cfg.e_tracker.iterative_kp.kp_src],
                        True)  # pose: from cur->ref
                    E_pose = e_tracker_outputs['pose']

                    # Rotation
                    hybrid_pose.R = E_pose.R

                    # save inliers
                    self.ref_data['inliers'] = e_tracker_outputs['inliers']

                    # scale recovery
                    if np.linalg.norm(
                            E_pose.t
                    ) != 0 and self.cfg.scale_recovery.iterative_kp.enable:
                        scale_out = self.e_tracker.scale_recovery(
                            self.cur_data, self.ref_data, E_pose, True)
                        scale = scale_out['scale']
                        if scale != -1:
                            hybrid_pose.t = E_pose.t * scale
                    else:
                        hybrid_pose.t = E_pose.t * scale
                    self.timers.end('E-tracker iter.')
            ''' PnP-tracker '''
            if self.tracking_method in ['PnP', 'hybrid']:
                # PnP if Essential matrix fail
                if np.linalg.norm(E_pose.t) == 0 or scale == -1:
                    self.timers.start('pnp', 'tracking')
                    pnp_outputs = self.pnp_tracker.compute_pose_3d2d(
                        self.ref_data[self.cfg.pnp_tracker.kp_src],
                        self.cur_data[self.cfg.pnp_tracker.kp_src],
                        self.ref_data['depth'],
                        not (self.cfg.pnp_tracker.iterative_kp.enable
                             ))  # pose: from cur->ref

                    # Iterative keypoint refinement
                    if self.cfg.pnp_tracker.iterative_kp.enable:
                        self.pnp_tracker.compute_rigid_flow_kp(
                            self.cur_data, self.ref_data, pnp_outputs['pose'])
                        pnp_outputs = self.pnp_tracker.compute_pose_3d2d(
                            self.ref_data[
                                self.cfg.pnp_tracker.iterative_kp.kp_src],
                            self.cur_data[
                                self.cfg.pnp_tracker.iterative_kp.kp_src],
                            self.ref_data['depth'],
                            True)  # pose: from cur->ref

                    self.timers.end('pnp')

                    # use PnP pose instead of E-pose
                    hybrid_pose = pnp_outputs['pose']
                    self.tracking_mode = "PnP"
            ''' Deep-tracker '''
            if self.tracking_method in ['deep_pose']:
                hybrid_pose = SE3(self.ref_data['deep_pose'])
                self.tracking_mode = "DeepPose"
            ''' Summarize data '''
            # update global poses
            self.ref_data['pose'] = copy.deepcopy(hybrid_pose)
            self.ref_data['motion'] = copy.deepcopy(hybrid_pose)
            pose = self.ref_data['pose']
            self.update_global_pose(pose, 1)

    def update_data(self, ref_data, cur_data):
        """Update data
        
        Args:
            ref_data (dict): reference data
            cur_data (dict): current data
        
        Returns:
            ref_data (dict): updated reference data
            cur_data (dict): updated current data
        """
        for key in cur_data:
            if key == "id":
                ref_data['id'] = cur_data['id']
            else:
                if ref_data.get(key, -1) is -1:
                    ref_data[key] = {}
                ref_data[key] = cur_data[key]

        # Delete unused flow to avoid data leakage
        ref_data['flow'] = None
        cur_data['flow'] = None
        ref_data['flow_diff'] = None
        return ref_data, cur_data

    def load_raw_data(self):
        """load image data and (optional) GT/precomputed depth data
        """
        # Reading image
        self.cur_data['img'] = self.dataset.get_image(
            self.cur_data['timestamp'])

        # Reading/Predicting depth
        if self.dataset.data_dir['depth_src'] is not None:
            self.cur_data['raw_depth'] = self.dataset.get_depth(
                self.cur_data['timestamp'])

    def forward_backward_consistency(self, flow1, flow2, px1on2):
        """Compute flow consistency map
        Args:
            flow1 (tensor, [Nx2xHxW]): flow map 1
            flow2 (tensor, [Nx2xHxW]): flow map 2
            px1on2 (tensor, [NxHxWx2]): projected pixel of view 1 on view 2
        
        Returns:
            flow_diff (tensor, [NxHxWx1]): flow inconsistency error map
        """
        # Warp flow2 to flow1
        warp_flow1 = F.grid_sample(-flow2, px1on2)

        # Calculate flow difference
        flow_diff = (flow1 - warp_flow1)

        # TODO: UnFlow (Meister etal. 2017) constrain is not used
        UnFlow_constrain = False
        if UnFlow_constrain:
            flow_diff = (flow_diff**2 - 0.01 * (flow1**2 - warp_flow1**2))

        # calculate norm and reshape
        flow_diff = flow_diff.norm(dim=1, keepdim=True)
        flow_diff = flow_diff.permute(0, 2, 3, 1)
        return flow_diff

    def deep_model_inference(self):
        """deep model prediction
        """
        if self.tracking_method in ['hybrid', 'PnP']:
            # Single-view Depth prediction
            if self.dataset.data_dir['depth_src'] is None:
                self.timers.start('depth_cnn', 'deep inference')
                if self.tracking_stage > 0 and \
                    self.cfg.online_finetune.enable and self.cfg.online_finetune.depth.enable:
                    img_list = [self.cur_data['img'], self.ref_data['img']]
                else:
                    img_list = [self.cur_data['img']]
                self.cur_data['raw_depth'] = \
                    self.deep_models.forward_depth(imgs=img_list)
                self.cur_data['raw_depth'] = cv2.resize(
                    self.cur_data['raw_depth'],
                    (self.cfg.image.width, self.cfg.image.height),
                    interpolation=cv2.INTER_NEAREST)
                self.timers.end('depth_cnn')

            ##############
            #self.cur_data['raw_depth'] = np.load(f'/content/depth/{self.cur_data["id"]:06d}.npy') * 100
            #if self.cur_data['id'] == 0:
            #    print(f'depth: min {self.cur_data["raw_depth"].min()}, max {self.cur_data["raw_depth"].max()}')
            #self.cfg.depth.min_depth = 0
            #self.cfg.depth.max_depth = 100
            #############
            self.cur_data['depth'] = preprocess_depth(
                self.cur_data['raw_depth'], self.cfg.crop.depth_crop,
                [self.cfg.depth.min_depth, self.cfg.depth.max_depth])
            if self.cur_data['id'] == 0:
                np.save('/content/chk_depth.npy', self.cur_data['depth'])

            # Two-view flow
            if self.tracking_stage >= 1:
                self.timers.start('flow_cnn', 'deep inference')
                flows = self.deep_models.forward_flow(
                    self.cur_data,
                    self.ref_data,
                    forward_backward=self.cfg.deep_flow.forward_backward)

                # Store flow
                maskflow = False
                if maskflow:
                    self.ref_data['flow'] = flows[(
                        self.ref_data['id'], self.cur_data['id'])].copy()
                else:
                    self.ref_data['flow'] = np.load(
                        f'/content/maskflow/flow_{self.cur_data["id"]:06d}.npy'
                    )
                if self.cfg.deep_flow.forward_backward:
                    if maskflow:
                        self.cur_data['flow'] = np.load(
                            f'/content/maskflow/flow_rev_{self.cur_data["id"]:06d}.npy'
                        )
                    else:
                        self.cur_data['flow'] = flows[(
                            self.cur_data['id'], self.ref_data['id'])].copy()
                    self.ref_data['flow_diff'] = flows[(self.ref_data['id'],
                                                        self.cur_data['id'],
                                                        "diff")].copy()
                np.save(f'flow_{self.ref_data["id"]}.npy',
                        self.ref_data['flow'])
                np.save(f'flow_diff_{self.ref_data["id"]}.npy',
                        self.ref_data['flow_diff'])

                self.timers.end('flow_cnn')

        # Relative camera pose
        if self.tracking_stage >= 1 and self.cfg.deep_pose.enable:
            self.timers.start('pose_cnn', 'deep inference')
            # Deep pose prediction
            pose = self.deep_models.forward_pose(
                [self.ref_data['img'], self.cur_data['img']])
            self.ref_data['deep_pose'] = pose  # from cur->ref
            self.timers.end('pose_cnn')

    def main(self):
        """Main program
        """
        #print("==> Start DF-VO")
        #print("==> Running sequence: {}".format(self.cfg.seq))

        if self.cfg.no_confirm:
            start_frame = 0
        else:
            start_frame = int(input("Start with frame: "))

        for img_id in tqdm(
                range(start_frame, min(2000, len(self.dataset)),
                      self.cfg.frame_step)):
            #print('-------------CHK-------------')
            #print(os.system("nvidia-smi"))
            #print('-----------------------------')
            #print(os.system("lsof /dev/nvidia*"))
            #print('-----------------------------')
            #print(os.system("ps f -o user,pgrp,pid,pcpu,pmem,start,time,command -p `lsof -n -w -t /dev/nvidia*`"))
            #print('-----------------------------')
            #torch.cuda.empty_cache()
            #print('-----------------------------')
            #print(os.system("nvidia-smi"))
            self.timers.start('DF-VO')
            self.tracking_mode = "Ess. Mat."
            """ Data reading """
            # Initialize ids and timestamps
            self.cur_data['id'] = img_id
            self.cur_data['timestamp'] = self.dataset.get_timestamp(img_id)

            # Read image data and (optional) precomputed depth data
            self.timers.start('data_loading')
            self.load_raw_data()
            self.timers.end('data_loading')

            # Deep model inferences
            self.timers.start('deep_inference')
            self.deep_model_inference()
            self.timers.end('deep_inference')
            """ Visual odometry """
            self.timers.start('tracking')
            self.tracking()
            self.timers.end('tracking')
            """ Online Finetuning """
            if self.tracking_stage >= 1 and self.cfg.online_finetune.enable:
                self.deep_models.finetune(self.ref_data['img'],
                                          self.cur_data['img'],
                                          self.ref_data['pose'].pose,
                                          self.dataset.cam_intrinsics.mat,
                                          self.dataset.cam_intrinsics.inv_mat)
            """ Visualization """
            if self.cfg.visualization.enable:
                self.timers.start('visualization')
                self.drawer.main(self)
                self.timers.end('visualization')
            """ Update reference and current data """
            self.ref_data, self.cur_data = self.update_data(
                self.ref_data,
                self.cur_data,
            )

            self.tracking_stage += 1

            self.timers.end('DF-VO')

        #print("=> Finish!")
        """ Display & Save result """
        #print("The result is saved in [{}].".format(self.cfg.directory.result_dir))
        # Save trajectory map
        #print("Save VO map.")
        map_png = "{}/map.png".format(self.cfg.directory.result_dir)
        cv2.imwrite(map_png, self.drawer.data['traj'])

        # Save trajectory txt
        traj_txt = "{}/{}.txt".format(self.cfg.directory.result_dir,
                                      self.cfg.seq)
        self.dataset.save_result_traj(traj_txt, self.global_poses)
Ejemplo n.º 4
0
class VisualOdometry():
    def __init__(self, cfg):
        """
        Args:
            cfg (edict): configuration reading from yaml file
        """
        # camera intrinsics
        self.cam_intrinsics = Intrinsics()

        # predicted global poses
        self.global_poses = {0: SE3()}

        # tracking stage
        self.tracking_stage = 0

        # configuration
        self.cfg = cfg

        # window size and keyframe step
        self.window_size = 2
        self.keyframe_step = 1

        # visualization interface
        self.initialize_visualization_drawer()

        # timer
        self.timers = Timers()
        self.timers.add([
            "img_reading",
            "Depth-CNN",
            "tracking",
            "Ess. Mat.",
            "Flow-CNN",
            "visualization",
            "visualization_traj",
            "visualization_match",
            "visualization_flow",
            "visualization_depth",
            "visualization_save_img",
        ])

        # reference data and current data
        self.ref_data = {
            'id': [],
            'timestamp': {},
            'img': {},
            'depth': {},
            'raw_depth': {},
            'pose': {},
            'kp': {},
            'kp_best': {},
            'kp_list': {},
            'pose_back': {},
            'kp_back': {},
            'flow': {},  # from ref->cur
            'flow_diff': {},  # flow-consistency-error of ref->cur
        }
        self.cur_data = {
            'id': 0,
            'timestamp': 0,
            'img': np.zeros(1),
            'depth': np.zeros(1),
            'pose': np.eye(4),
            'kp': np.zeros(1),
            'kp_best': np.zeros(1),
            'kp_list': np.zeros(1),
            'pose_back': np.eye(4),
            'kp_back': np.zeros(1),
            'flow': {},  # from cur->ref
        }

    def initialize_visualization_drawer(self):
        visual_h = self.cfg.visualization.window_h
        visual_w = self.cfg.visualization.window_w
        self.drawer = FrameDrawer(visual_h, visual_w)

        self.drawer.assign_data(
            item="traj",
            top_left=[0, 0],
            bottom_right=[int(visual_h), int(visual_w)],
        )

        self.drawer.assign_data(
            item="match_temp",
            top_left=[int(visual_h / 4 * 0),
                      int(visual_w / 4 * 2)],
            bottom_right=[int(visual_h / 4 * 1),
                          int(visual_w / 4 * 4)],
        )

        self.drawer.assign_data(
            item="match_side",
            top_left=[int(visual_h / 4 * 1),
                      int(visual_w / 4 * 2)],
            bottom_right=[int(visual_h / 4 * 2),
                          int(visual_w / 4 * 4)],
        )

        self.drawer.assign_data(
            item="depth",
            top_left=[int(visual_h / 4 * 2),
                      int(visual_w / 4 * 2)],
            bottom_right=[int(visual_h / 4 * 3),
                          int(visual_w / 4 * 3)],
        )

        self.drawer.assign_data(
            item="flow1",
            top_left=[int(visual_h / 4 * 2),
                      int(visual_w / 4 * 3)],
            bottom_right=[int(visual_h / 4 * 3),
                          int(visual_w / 4 * 4)],
        )

        self.drawer.assign_data(
            item="flow2",
            top_left=[int(visual_h / 4 * 3),
                      int(visual_w / 4 * 2)],
            bottom_right=[int(visual_h / 4 * 4),
                          int(visual_w / 4 * 3)],
        )

        self.drawer.assign_data(
            item="flow_diff",
            top_left=[int(visual_h / 4 * 3),
                      int(visual_w / 4 * 3)],
            bottom_right=[int(visual_h / 4 * 4),
                          int(visual_w / 4 * 4)],
        )

    def get_intrinsics_param(self, dataset):
        """Read intrinsics parameters for each dataset
        Args:
            dataset (str): dataset
                - kitti
                - tum-1/2/3
        Returns:
            intrinsics_param (float list): [cx, cy, fx, fy]
        """
        # Kitti
        if dataset == "kitti":
            img_seq_dir = os.path.join(self.cfg.directory.img_seq_dir,
                                       self.cfg.seq)
            intrinsics_param = load_kitti_odom_intrinsics(
                os.path.join(img_seq_dir, "calib.txt"), self.cfg.image.height,
                self.cfg.image.width)[2]
        # TUM
        elif "tum" in dataset:
            tum_intrinsics = {
                "tum-1": [318.6, 255.3, 517.3, 516.5],  # fr1
                "tum-2": [325.1, 249.7, 520.9, 521.0],  # fr2
                "tum-3": [320.1, 247.6, 535.4, 539.2],  # fr3
            }
            intrinsics_param = tum_intrinsics[dataset]
        return intrinsics_param

    def get_tracking_method(self, method_idx):
        """Get tracking method
        Args:
            method_idx (int): tracking method index
                - 0: 2d-2d
                - 1: 3d-2d
                - 2: 3d-3d
                - 3: hybrid
        Returns:
            track_method (str): tracking method
        """
        tracking_method_cases = {
            0: "2d-2d",
            1: "3d-2d",
            2: "3d-3d",
            3: "hybrid"
        }
        return tracking_method_cases[method_idx]

    def get_feat_track_methods(self, method_idx):
        """Get feature tracking method
        Args:
            method_idx (int): feature tracking method index
                - 1: deep_flow
        Returns:
            feat_track_method (str): feature tracking method
        """
        feat_track_methods = {
            1: "deep_flow",
        }
        return feat_track_methods[self.cfg.feature_tracking_method]

    def get_img_depth_dir(self):
        """Get image data directory and (optional) depth data directory

        Returns:
            img_data_dir (str): image data directory
            depth_data_dir (str): depth data directory / None
            depth_src (str): depth data type
                - gt
                - None
        """
        # get image data directory
        img_seq_dir = os.path.join(self.cfg.directory.img_seq_dir,
                                   self.cfg.seq)
        if self.cfg.dataset == "kitti":
            img_data_dir = os.path.join(img_seq_dir, "image_2")
        elif "tum" in self.cfg.dataset:
            img_data_dir = os.path.join(img_seq_dir, "rgb")
        else:
            warn_msg = "Wrong dataset [{}] is given.".format(self.cfg.dataset)
            warn_msg += "\n Choose from [kitti, tum-1/2/3]"
            assert False, warn_msg

        # get depth data directory
        depth_src_cases = {0: "gt", None: None}
        depth_src = depth_src_cases[self.cfg.depth.depth_src]

        if self.cfg.dataset == "kitti":
            if depth_src == "gt":
                depth_data_dir = "{}/gt/{}/".format(
                    self.cfg.directory.depth_dir, self.cfg.seq)
            elif depth_src is None:
                depth_data_dir = None
        elif "tum" in self.cfg.dataset:
            if depth_src == "gt":
                depth_data_dir = "{}/{}/depth".format(
                    self.cfg.directory.depth_dir, self.cfg.seq)
            elif depth_src is None:
                depth_data_dir = None

        return img_data_dir, depth_data_dir, depth_src

    def generate_kp_samples(self, img_h, img_w, crop, N):
        """generate keypoint samples according to image height, width
        and cropping scheme

        Args:
            img_h (int): image height
            img_w (int): image width
            crop (list): normalized cropping ratio
                - [[y0, y1],[x0, x1]]
            N (int): number of keypoint

        Returns:
            kp_list (N array): keypoint list
        """
        y0, y1 = crop[0]
        y0, y1 = int(y0 * img_h), int(y1 * img_h)
        x0, x1 = crop[1]
        x0, x1 = int(x0 * img_w), int(x1 * img_w)
        total_num = (x1 - x0) * (y1 - y0) - 1
        kp_list = np.linspace(0, total_num, N, dtype=np.int)
        return kp_list

    def initialize_deep_flow_model(self):
        """Initialize optical flow network
        Returns:
            flow_net: optical flow network
        """
        if self.cfg.deep_flow.network == "liteflow":
            flow_net = LiteFlow(self.cfg.image.height, self.cfg.image.width)
            flow_net.initialize_network_model(
                weight_path=self.cfg.deep_flow.flow_net_weight)
        else:
            assert False, "Invalid flow network [{}] is provided.".format(
                self.cfg.deep_flow.network)
        return flow_net

    def initialize_deep_depth_model(self):
        """Initialize single-view depth model
        Returns:
            depth_net: single-view depth network
        """
        depth_net = Monodepth2DepthNet()
        depth_net.initialize_network_model(
            weight_path=self.cfg.depth.pretrained_model,
            dataset=self.cfg.dataset)
        return depth_net

    def get_gt_poses(self):
        """load ground-truth poses
        Returns:
            gt_poses (dict): each pose is 4x4 array
        """
        if self.cfg.directory.gt_pose_dir is not None:
            if self.cfg.dataset == "kitti":
                annotations = os.path.join(self.cfg.directory.gt_pose_dir,
                                           "{}.txt".format(self.cfg.seq))
                gt_poses = load_poses_from_txt(annotations)
            elif "tum" in self.cfg.dataset:
                annotations = os.path.join(self.cfg.directory.gt_pose_dir,
                                           self.cfg.seq, "groundtruth.txt")
                gt_poses = load_poses_from_txt_tum(annotations)
        return gt_poses

    def setup(self):
        """Reading configuration and setup, including
        - Get camera intrinsics
        - Get tracking method
        - Get feature tracking method
        - Get image & (optional depth) data
        - Generate keypoint sampling scheme
        - Deep networks
        - Load GT poses
        - Set drawer
        """
        # read camera intrinsics
        intrinsics_param = self.get_intrinsics_param(self.cfg.dataset)
        self.cam_intrinsics = Intrinsics(intrinsics_param)

        # get tracking method
        self.tracking_method = self.get_tracking_method(
            self.cfg.tracking_method)

        # feature tracking method
        self.feature_tracking_method = self.get_feat_track_methods(
            self.cfg.feature_tracking_method)

        # get image and depth data directory
        self.img_path_dir, self.depth_seq_dir, self.depth_src = self.get_img_depth_dir(
        )

        # generate keypoint sampling scheme
        self.uniform_kp_list = None
        if (self.cfg.deep_flow.num_kp is not None
                and self.feature_tracking_method == "deep_flow"):
            self.uniform_kp_list = self.generate_kp_samples(
                img_h=self.cfg.image.height,
                img_w=self.cfg.image.width,
                crop=self.cfg.crop.flow_crop,
                N=self.cfg.deep_flow.num_kp)

        # Deep networks
        self.deep_models = {}
        # optical flow
        if self.feature_tracking_method == "deep_flow":
            self.deep_models['flow'] = self.initialize_deep_flow_model()

            # allow to read precomputed flow instead of network inference
            # for speeding up testing time
            if self.cfg.deep_flow.precomputed_flow is not None:
                self.cfg.deep_flow.precomputed_flow = self.cfg.deep_flow.precomputed_flow.replace(
                    "{}", self.cfg.seq)

        # single-view depth
        if self.depth_src is None:
            if self.cfg.depth.pretrained_model is not None:
                self.deep_models['depth'] = self.initialize_deep_depth_model()
            else:
                assert False, "No precomputed depths nor pretrained depth model"

        # Load GT pose
        self.gt_poses = self.get_gt_poses()

        # Set drawer
        self.drawer.get_traj_init_xy(vis_h=self.drawer.h,
                                     vis_w=self.drawer.h,
                                     gt_poses=self.gt_poses)

    def load_depth(self,
                   depth_seq_dir,
                   img_id,
                   depth_src,
                   resize=None,
                   dataset="kitti"):
        """Load depth map for different source
        Args:
            depth_seq_dir (str): depth sequence dir
            img_id (int): depth image id
            depth_src (str): depth src type
                - gt
            resize (int list): [target_height, target_width]
            dataset (str):
                - kitti
                - tum
        Returns:
            depth (HxW array): depth map
        """
        if dataset == "kitti":
            if depth_src == "gt":
                img_id = "{:010d}.png".format(img_id)
                scale_factor = 500
        elif "tum" in dataset:
            if depth_src == "gt":
                img_id = "{:.6f}.png".format(img_id)
                scale_factor = 5000

        img_h, img_w = resize
        depth_path = os.path.join(depth_seq_dir, img_id)
        depth = read_depth(depth_path, scale_factor, [img_h, img_w])
        return depth

    def compute_pose_2d2d(self, kp_ref, kp_cur):
        """Compute the pose from view2 to view1
        Args:
            kp_ref (Nx2 array): keypoints for reference view
            kp_cur (Nx2 array): keypoints for current view
        Returns:
            pose (SE3): relative pose from current to reference view
            best_inliers (N boolean array): inlier mask
        """
        principal_points = (self.cam_intrinsics.cx, self.cam_intrinsics.cy)

        # initialize ransac setup
        best_Rt = []
        best_inlier_cnt = 0
        max_ransac_iter = self.cfg.compute_2d2d_pose.ransac.repeat
        best_inliers = np.ones((kp_ref.shape[0])) == 1

        # check flow magnitude
        avg_flow = np.mean(np.linalg.norm(kp_ref - kp_cur, axis=1))
        min_flow = self.cfg.compute_2d2d_pose.min_flow
        if avg_flow > min_flow:
            for i in range(
                    max_ransac_iter
            ):  # repeat ransac for several times for stable result
                # shuffle kp_cur and kp_ref (only useful when random seed is fixed)
                new_list = np.random.randint(0, kp_cur.shape[0],
                                             (kp_cur.shape[0]))
                new_kp_cur = kp_cur.copy()[new_list]
                new_kp_ref = kp_ref.copy()[new_list]

                start_time = time()
                E, inliers = cv2.findEssentialMat(
                    new_kp_cur,
                    new_kp_ref,
                    focal=self.cam_intrinsics.fx,
                    pp=principal_points,
                    method=cv2.RANSAC,
                    prob=0.99,
                    threshold=self.cfg.compute_2d2d_pose.ransac.reproj_thre,
                )
                cheirality_cnt, R, t, _ = cv2.recoverPose(
                    E,
                    new_kp_cur,
                    new_kp_ref,
                    focal=self.cam_intrinsics.fx,
                    pp=principal_points,
                )
                self.timers.timers["Ess. Mat."].append(time() - start_time)
                if inliers.sum() > best_inlier_cnt and cheirality_cnt > 50:
                    best_Rt = [R, t]
                    best_inlier_cnt = inliers.sum()
                    best_inliers = inliers
            if len(best_Rt) == 0:
                R = np.eye(3)
                t = np.zeros((3, 1))
                best_Rt = [R, t]
        else:
            R = np.eye(3)
            t = np.zeros((3, 1))
            best_Rt = [R, t]
        R, t = best_Rt
        pose = SE3()
        pose.R = R
        pose.t = t
        return pose, best_inliers

    def compute_pose_3d2d(self, kp1, kp2, depth_1):
        """Compute pose from 3d-2d correspondences
        Args:
            kp1 (Nx2 array): keypoints for view-1
            kp2 (Nx2 array): keypoints for view-2
            depth_1 (HxW array): depths for view-1
        Returns:
            pose (SE3): relative pose from view-2 to view-1
            kp1 (Nx2 array): filtered keypoints for view-1
            kp2 (Nx2 array): filtered keypoints for view-2
        """
        height, width = depth_1.shape

        # Filter keypoints outside image region
        x_idx = (kp2[:, 0] >= 0) * (kp2[:, 0] < width)
        kp1 = kp1[x_idx]
        kp2 = kp2[x_idx]
        y_idx = (kp2[:, 1] >= 0) * (kp2[:, 1] < height)
        kp1 = kp1[y_idx]
        kp2 = kp2[y_idx]

        # Filter keypoints outside depth range
        kp1_int = kp1.astype(np.int)
        kp_depths = depth_1[kp1_int[:, 1], kp1_int[:, 0]]
        non_zero_mask = (kp_depths != 0)
        depth_range_mask = (kp_depths < self.cfg.depth.max_depth) * (
            kp_depths > self.cfg.depth.min_depth)
        valid_kp_mask = non_zero_mask * depth_range_mask

        kp1 = kp1[valid_kp_mask]
        kp2 = kp2[valid_kp_mask]

        # Get 3D coordinates for kp1
        XYZ_kp1 = unprojection_kp(kp1, kp_depths[valid_kp_mask],
                                  self.cam_intrinsics)

        # initialize ransac setup
        best_rt = []
        best_inlier = 0
        max_ransac_iter = self.cfg.PnP.ransac.repeat

        for i in range(max_ransac_iter):
            # shuffle kp_cur and kp_ref (only useful when random seed is fixed)
            new_list = np.random.randint(0, kp2.shape[0], (kp2.shape[0]))
            new_XYZ = XYZ_kp1.copy()[new_list]
            new_kp2 = kp2.copy()[new_list]

            if new_kp2.shape[0] > 4:
                flag, r, t, inlier = cv2.solvePnPRansac(
                    objectPoints=new_XYZ,
                    imagePoints=new_kp2,
                    cameraMatrix=self.cam_intrinsics.mat,
                    distCoeffs=None,
                    iterationsCount=self.cfg.PnP.ransac.iter,
                    reprojectionError=self.cfg.PnP.ransac.reproj_thre,
                )
                if flag and inlier.shape[0] > best_inlier:
                    best_rt = [r, t]
                    best_inlier = inlier.shape[0]
        pose = SE3()
        if len(best_rt) != 0:
            r, t = best_rt
            pose.R = cv2.Rodrigues(r)[0]
            pose.t = t
        pose.pose = pose.inv_pose
        return pose, kp1, kp2

    def update_global_pose(self, new_pose, scale):
        """update estimated poses w.r.t global coordinate system
        Args:
            new_pose (SE3)
            scale (float): scaling factor
        """
        self.cur_data['pose'].t = self.cur_data['pose'].R @ new_pose.t * scale \
                            + self.cur_data['pose'].t
        self.cur_data['pose'].R = self.cur_data['pose'].R @ new_pose.R
        self.global_poses[self.cur_data['id']] = copy.deepcopy(
            self.cur_data['pose'])

    def find_scale_from_depth(self, kp1, kp2, T_21, depth2):
        """Compute VO scaling factor for T_21
        Args:
            kp1 (Nx2 array): reference kp
            kp2 (Nx2 array): current kp
            T_21 (4x4 array): relative pose; from view 1 to view 2
            depth2 (HxW array): depth 2
        Returns:
            scale (float): scaling factor
        """
        # Triangulation
        img_h, img_w, _ = image_shape(depth2)
        kp1_norm = kp1.copy()
        kp2_norm = kp2.copy()

        kp1_norm[:, 0] = \
            (kp1[:, 0] - self.cam_intrinsics.cx) / self.cam_intrinsics.fx
        kp1_norm[:, 1] = \
            (kp1[:, 1] - self.cam_intrinsics.cy) / self.cam_intrinsics.fy
        kp2_norm[:, 0] = \
            (kp2[:, 0] - self.cam_intrinsics.cx) / self.cam_intrinsics.fx
        kp2_norm[:, 1] = \
            (kp2[:, 1] - self.cam_intrinsics.cy) / self.cam_intrinsics.fy

        _, _, X2_tri = triangulation(kp1_norm, kp2_norm, np.eye(4), T_21)

        # Triangulation outlier removal
        depth2_tri = convert_sparse3D_to_depth(kp2, X2_tri, img_h, img_w)
        depth2_tri[depth2_tri < 0] = 0

        # common mask filtering
        non_zero_mask_pred = (depth2 > 0)
        non_zero_mask_tri = (depth2_tri > 0)
        valid_mask = non_zero_mask_pred * non_zero_mask_tri

        depth_pred_non_zero = depth2[valid_mask]
        depth_tri_non_zero = depth2_tri[valid_mask]

        # Estimate scale (ransac)
        if valid_mask.sum(
        ) > 50:  #self.cfg.translation_scale.ransac.min_samples:
            # RANSAC scaling solver
            ransac = linear_model.RANSACRegressor(
                base_estimator=linear_model.LinearRegression(
                    fit_intercept=False),
                min_samples=self.cfg.translation_scale.ransac.min_samples,
                max_trials=self.cfg.translation_scale.ransac.max_trials,
                stop_probability=self.cfg.translation_scale.ransac.stop_prob,
                residual_threshold=self.cfg.translation_scale.ransac.thre)
            ransac.fit(depth_tri_non_zero.reshape(-1, 1),
                       depth_pred_non_zero.reshape(-1, 1))
            scale = ransac.estimator_.coef_[0, 0]
        else:
            scale = -1

        return scale

    def deep_flow_forward(self, in_cur_data, in_ref_data, forward_backward):
        """Update keypoints in cur_data and ref_data
        Args:
            cur_data (dict): current data
            ref_data (dict): reference data
            forward_backward (bool): use forward-backward consistency if True
        Returns:
            cur_data (dict): current data
            ref_data (dict): reference data
        """
        cur_data = copy.deepcopy(in_cur_data)
        ref_data = copy.deepcopy(in_ref_data)
        if self.cfg.deep_flow.precomputed_flow is None:
            # Preprocess image
            ref_imgs = []
            cur_imgs = []
            cur_img = np.transpose((cur_data['img']) / 255, (2, 0, 1))
            for ref_id in ref_data['id']:
                ref_img = np.transpose((ref_data['img'][ref_id]) / 255,
                                       (2, 0, 1))
                ref_imgs.append(ref_img)
                cur_imgs.append(cur_img)
            ref_imgs = np.asarray(ref_imgs)
            cur_imgs = np.asarray(cur_imgs)
        else:
            # if precomputed flow is available, collect image timestamps for
            # later data reading
            ref_imgs = [ref_data['timestamp'][idx] for idx in ref_data['id']]
            cur_imgs = [cur_data['timestamp'] for i in ref_data['timestamp']]

        # Regular sampling
        kp_list_regular = self.uniform_kp_list
        kp_ref_regular = np.zeros(
            (len(ref_data['id']), len(kp_list_regular), 2))
        num_kp_regular = len(kp_list_regular)

        # Best-N sampling
        kp_ref_best = np.zeros(
            (len(ref_data['id']), self.cfg.deep_flow.num_kp, 2))
        num_kp_best = self.cfg.deep_flow.num_kp

        # Forward pass
        flows = {}
        flow_net_tracking = self.deep_models['flow'].inference_kp
        batch_size = self.cfg.deep_flow.batch_size
        num_forward = int(np.ceil(len(ref_data['id']) / batch_size))
        for i in range(num_forward):
            # Read precomputed flow / real-time flow
            batch_kp_ref_best, batch_kp_cur_best, batch_kp_ref_regular, batch_kp_cur_regular, batch_flows = flow_net_tracking(
                img1=ref_imgs[i * batch_size:(i + 1) * batch_size],
                img2=cur_imgs[i * batch_size:(i + 1) * batch_size],
                kp_list=kp_list_regular,
                img_crop=self.cfg.crop.flow_crop,
                flow_dir=self.cfg.deep_flow.precomputed_flow,
                N_list=num_kp_regular,
                N_best=num_kp_best,
                kp_sel_method=self.cfg.deep_flow.kp_sel_method,
                forward_backward=forward_backward,
                dataset=self.cfg.dataset)

            # Save keypoints at current view
            kp_ref_best[i * batch_size:(i + 1) *
                        batch_size] = batch_kp_cur_best.copy(
                        )  # each kp_ref_best saves best-N kp at cur-view
            kp_ref_regular[i * batch_size:(i + 1) *
                           batch_size] = batch_kp_cur_regular.copy(
                           )  # each kp_ref_list saves regular kp at cur-view

            # Save keypoints at reference view
            for j in range(batch_size):
                src_id = ref_data['id'][i * batch_size:(i + 1) * batch_size][j]
                tgt_id = cur_data['id']
                flows[(src_id, tgt_id)] = batch_flows['forward'][j].copy()
                if forward_backward:
                    flows[(tgt_id, src_id)] = batch_flows['backward'][j].copy()
                    flows[(src_id, tgt_id,
                           "diff")] = batch_flows['flow_diff'][j].copy()

        # Store kp
        cur_data['kp_best'] = batch_kp_ref_best[0].copy(
        )  # cur_data save each kp at ref-view (i.e. regular grid)
        cur_data['kp_list'] = batch_kp_ref_regular[0].copy(
        )  # cur_data save each kp at ref-view (i.e. regular grid)

        for i, ref_id in enumerate(ref_data['id']):
            ref_data['kp_best'][ref_id] = kp_ref_best[i].copy()
            ref_data['kp_list'][ref_id] = kp_ref_regular[i].copy()

            # Store flow
            ref_data['flow'][ref_id] = flows[(ref_data['id'][i],
                                              cur_data['id'])].copy()
            if forward_backward:
                cur_data['flow'][ref_id] = flows[(cur_data['id'],
                                                  ref_data['id'][i])].copy()
                ref_data['flow_diff'][ref_id] = flows[(ref_data['id'][i],
                                                       cur_data['id'],
                                                       "diff")].copy()
        return cur_data, ref_data

    def tracking_hybrid(self):
        """Tracking using both Essential matrix and PnP
        Essential matrix for rotation (and direction);
            *** triangluate depth v.s. CNN-depth for translation scale ***
        PnP if Essential matrix fails
        """
        # First frame
        if self.tracking_stage == 0:
            # initial
            self.cur_data['pose'] = SE3(self.gt_poses[self.cur_data['id']])
            self.tracking_stage = 1
            return

        # Second to last frames
        elif self.tracking_stage >= 1:
            # Flow-net for 2D-2D correspondence
            start_time = time()
            cur_data, ref_data = self.deep_flow_forward(
                self.cur_data,
                self.ref_data,
                forward_backward=self.cfg.deep_flow.forward_backward)
            self.timers.timers['Flow-CNN'].append(time() - start_time)

            for ref_id in self.ref_data['id']:
                # Compose hybrid pose
                hybrid_pose = SE3()

                # FIXME: add if statement for deciding which kp to use
                # Essential matrix pose
                E_pose, _ = self.compute_pose_2d2d(
                    cur_data['kp_best'],
                    ref_data['kp_best'][ref_id])  # pose: from cur->ref

                # Rotation
                hybrid_pose.R = E_pose.R

                # translation scale from triangulation v.s. CNN-depth
                if np.linalg.norm(E_pose.t) != 0:
                    scale = self.find_scale_from_depth(
                        cur_data['kp_best'], ref_data['kp_best'][ref_id],
                        E_pose.inv_pose, self.cur_data['depth'])
                    if scale != -1:
                        hybrid_pose.t = E_pose.t * scale

                # PnP if Essential matrix fail
                if np.linalg.norm(E_pose.t) == 0 or scale == -1:
                    pnp_pose, _, _ \
                        = self.compute_pose_3d2d(
                                    cur_data['kp_best'],
                                    ref_data['kp_best'][ref_id],
                                    ref_data['depth'][ref_id]
                                    ) # pose: from cur->ref
                    # use PnP pose instead of E-pose
                    hybrid_pose = pnp_pose
                    self.tracking_mode = "PnP"
                ref_data['pose'][ref_id] = copy.deepcopy(hybrid_pose)
                # ref_data['pose'][ref_id] = hybrid_pose

            self.ref_data = copy.deepcopy(ref_data)
            self.cur_data = copy.deepcopy(cur_data)

            # copy keypoint for visualization
            self.ref_data['kp'] = copy.deepcopy(ref_data['kp_best'])
            self.cur_data['kp'] = copy.deepcopy(cur_data['kp_best'])

            # update global poses
            pose = self.ref_data['pose'][self.ref_data['id'][-1]]
            self.update_global_pose(pose, 1)

            self.tracking_stage += 1
            del (ref_data)
            del (cur_data)

    def update_ref_data(self, ref_data, cur_data, window_size, kf_step=1):
        """Update reference data
        Args:
            ref_data (dict): reference data
                - e.g.
                    ref_data:
                    {
                        id: [0, 1, 2]
                        img: {0: I0, 1:I1, 2:I2}
                        ...
                    }
            cur_data (dict): current data
                - e.g.
                    cur_data:
                    {
                        id: 3
                        img: I3
                        ...
                    }
            cur_id (int): current image id
            window_size (int): number of frames in the window
        Returns:
            ref_data (dict): reference data
        """
        for key in cur_data:
            if key == "id":
                ref_data['id'].append(cur_data['id'])
                if len(ref_data['id']) > window_size - 1:
                    del (ref_data['id'][0])
            else:
                ref_data[key][cur_data['id']] = cur_data[key]
                if len(ref_data[key]) > window_size - 1:
                    drop_id = np.min(list(ref_data[key].keys()))
                    del (ref_data[key][drop_id])
        # Delete unused flow
        ref_data['flow'] = {}
        cur_data['flow'] = {}
        ref_data['flow_diff'] = {}
        return ref_data, cur_data

    def synchronize_rgbd_pose_pairs(self):
        """Synchronize RGB, Depth, and Pose timestamps to form pairs
        mainly for TUM-RGBD dataset
        Returns:
            rgb_d_pose_pair (dict):
                - rgb_timestamp: {depth: depth_timestamp, pose: pose_timestamp}
        """
        rgb_d_pose_pair = {}
        # KITTI
        if self.cfg.dataset == "kitti":
            len_seq = len(self.gt_poses)
            for i in range(len_seq):
                rgb_d_pose_pair[i] = {}
                rgb_d_pose_pair[i]['depth'] = i
                rgb_d_pose_pair[i]['pose'] = i

        # TUM
        elif "tum" in self.cfg.dataset:
            # associate rgb-depth-pose timestamp pair
            rgb_list = read_file_list(self.img_path_dir + "/../rgb.txt")
            depth_list = read_file_list(self.img_path_dir + "/../depth.txt")
            pose_list = read_file_list(self.img_path_dir +
                                       "/../groundtruth.txt")

            for i in rgb_list:
                rgb_d_pose_pair[i] = {}

            # associate rgb-d
            matches = associate(first_list=rgb_list,
                                second_list=depth_list,
                                offset=0,
                                max_difference=0.02)
            for match in matches:
                rgb_stamp = match[0]
                depth_stamp = match[1]
                rgb_d_pose_pair[rgb_stamp]['depth'] = depth_stamp

            # associate rgb-pose
            matches = associate(first_list=rgb_list,
                                second_list=pose_list,
                                offset=0,
                                max_difference=0.02)

            for match in matches:
                rgb_stamp = match[0]
                pose_stamp = match[1]
                rgb_d_pose_pair[rgb_stamp]['pose'] = pose_stamp

            # Clear pairs without depth
            to_del_pair = []
            for rgb_stamp in rgb_d_pose_pair:
                if rgb_d_pose_pair[rgb_stamp].get("depth", -1) == -1:
                    to_del_pair.append(rgb_stamp)
            for rgb_stamp in to_del_pair:
                del (rgb_d_pose_pair[rgb_stamp])

            # # Clear pairs without pose
            to_del_pair = []
            tmp_rgb_d_pose_pair = copy.deepcopy(rgb_d_pose_pair)
            for rgb_stamp in tmp_rgb_d_pose_pair:
                if rgb_d_pose_pair[rgb_stamp].get("pose", -1) == -1:
                    to_del_pair.append(rgb_stamp)
            for rgb_stamp in to_del_pair:
                del (tmp_rgb_d_pose_pair[rgb_stamp])

            # timestep
            timestep = 5
            to_del_pair = []
            for cnt, rgb_stamp in enumerate(rgb_d_pose_pair):
                if cnt % timestep != 0:
                    to_del_pair.append(rgb_stamp)
            for rgb_stamp in to_del_pair:
                del (rgb_d_pose_pair[rgb_stamp])

            len_seq = len(rgb_d_pose_pair)

            # Update gt pose
            self.tmp_gt_poses = {}
            gt_pose_0_time = tmp_rgb_d_pose_pair[sorted(
                list(tmp_rgb_d_pose_pair.keys()))[0]]['pose']
            gt_pose_0 = self.gt_poses[gt_pose_0_time]

            i = 0
            for rgb_stamp in sorted(list(rgb_d_pose_pair.keys())):
                if rgb_d_pose_pair[rgb_stamp].get("pose", -1) != -1:
                    self.tmp_gt_poses[i] = np.linalg.inv(
                        gt_pose_0) @ self.gt_poses[rgb_d_pose_pair[rgb_stamp]
                                                   ['pose']]
                else:
                    self.tmp_gt_poses[i] = np.eye(4)
                i += 1
            self.gt_poses = copy.deepcopy(self.tmp_gt_poses)
        return rgb_d_pose_pair

    def main(self):
        """ Initialization """
        # Synchronize rgb-d-pose pair
        self.rgb_d_pose_pair = self.synchronize_rgbd_pose_pairs()
        len_seq = len(self.rgb_d_pose_pair)

        # Main
        print("==> Start VO")
        main_start_time = time()
        start_frame = 0

        for img_id in tqdm(range(start_frame, len_seq)):
            self.tracking_mode = "Ess. Mat."
            """ Data reading """
            start_time = time()

            # Initialize ids and timestamps
            self.cur_data['id'] = img_id

            if self.cfg.dataset == "kitti":
                self.cur_data['timestamp'] = img_id
            elif "tum" in self.cfg.dataset:
                self.cur_data['timestamp'] = sorted(
                    list(self.rgb_d_pose_pair.keys()))[img_id]

            # Reading image
            if self.cfg.dataset == "kitti":
                img = read_image(
                    self.img_path_dir + "/{:06d}.png".format(img_id),
                    self.cfg.image.height, self.cfg.image.width)
            elif "tum" in self.cfg.dataset:
                img = read_image(
                    self.img_path_dir +
                    "/{:.6f}.png".format(self.cur_data['timestamp']),
                    self.cfg.image.height, self.cfg.image.width)
            img_h, img_w, _ = image_shape(img)
            self.cur_data['img'] = img
            self.timers.timers["img_reading"].append(time() - start_time)

            # Reading/Predicting depth
            if self.depth_src is not None:
                self.cur_data['raw_depth'] = self.load_depth(
                    self.depth_seq_dir,
                    self.rgb_d_pose_pair[self.cur_data['timestamp']]['depth'],
                    self.depth_src,
                    [img_h, img_w],
                    dataset=self.cfg.dataset,
                )
            else:
                start_time = time()
                self.cur_data['raw_depth'] = \
                        self.deep_models['depth'].inference(img=self.cur_data['img'])
                self.cur_data['raw_depth'] = cv2.resize(
                    self.cur_data['raw_depth'], (img_w, img_h),
                    interpolation=cv2.INTER_NEAREST)
                self.timers.timers['Depth-CNN'].append(time() - start_time)
            self.cur_data['depth'] = preprocess_depth(
                self.cur_data['raw_depth'], self.cfg.crop.depth_crop,
                [self.cfg.depth.min_depth, self.cfg.depth.max_depth])
            """ Visual odometry """
            start_time = time()
            if self.tracking_method == "hybrid":
                self.tracking_hybrid()
            else:
                raise NotImplementedError
            self.timers.timers["tracking"].append(time() - start_time)
            """ Visualization """
            start_time = time()
            self = self.drawer.main(self)
            self.timers.timers["visualization"].append(time() - start_time)

        print("=> Finish!")
        """ Display & Save result """
        # Output experiement information
        print("---- time breakdown ----")
        print("total runtime: {}".format(time() - main_start_time))
        for key in self.timers.timers.keys():
            if len(self.timers.timers[key]) != 0:
                print("{} : {}".format(
                    key,
                    np.asarray(self.timers.timers[key]).mean()))

        # Save trajectory map
        print("Save VO map.")
        map_png = "{}/map.png".format(self.cfg.result_dir)
        cv2.imwrite(map_png, self.drawer.data['traj'])

        # Save trajectory txt
        traj_txt = "{}/{}.txt".format(self.cfg.result_dir, self.cfg.seq)
        if self.cfg.dataset == "kitti":
            global_poses_arr = convert_SE3_to_arr(self.global_poses)
            save_traj(traj_txt, global_poses_arr, format="kitti")
        elif "tum" in self.cfg.dataset:
            timestamps = sorted(list(self.rgb_d_pose_pair.keys()))
            global_poses_arr = convert_SE3_to_arr(self.global_poses,
                                                  timestamps)
            save_traj(traj_txt, global_poses_arr, format="tum")
Ejemplo n.º 5
0
class DFVO():
    def __init__(self, cfg):
        """
        Args:
            cfg (edict): configuration reading from yaml file
        """
        # configuration
        self.cfg = cfg

        # tracking stage
        self.tracking_stage = 0

        # predicted global poses
        self.global_poses = {0: SE3()}

        # reference data and current data
        self.initialize_data()

        self.setup()

    def setup(self):
        """Reading configuration and setup, including

            - Timer
            - Dataset
            - Tracking method
            - Keypoint Sampler
            - Deep networks
            - Deep layers
            - Visualizer
        """
        # timer
        self.timers = Timer()

        # intialize dataset
        self.dataset = Dataset.datasets[self.cfg.dataset](self.cfg)
        
        # get tracking method
        self.tracking_method = self.cfg.tracking_method
        self.initialize_tracker()

        # initialize keypoint sampler
        self.kp_sampler = KeypointSampler(self.cfg)
        
        # Deep networks
        self.deep_models = DeepModel(self.cfg)
        self.deep_models.initialize_models()
        if self.cfg.online_finetune.enable:
            self.deep_models.setup_train()
        
        # Depth consistency
        if self.cfg.kp_selection.depth_consistency.enable:
            self.depth_consistency_computer = DepthConsistency(self.cfg, self.dataset.cam_intrinsics)

        # visualization interface
        self.drawer = FrameDrawer(self.cfg.visualization)
        
    def initialize_data(self):
        """initialize data of current view and reference view
        """
        self.ref_data = {}
        self.cur_data = {}

    def initialize_tracker(self):
        """Initialize tracker
        """
        if self.tracking_method == 'hybrid':
            self.e_tracker = EssTracker(self.cfg, self.dataset.cam_intrinsics, self.timers)
            self.pnp_tracker = PnpTracker(self.cfg, self.dataset.cam_intrinsics)
        elif self.tracking_method == 'PnP':
            self.pnp_tracker = PnpTracker(self.cfg, self.dataset.cam_intrinsics)
        elif self.tracking_method == 'deep_pose':
            return
        else:
            assert False, "Wrong tracker is selected, choose from [hybrid, PnP, deep_pose]"

    def update_global_pose(self, new_pose, scale=1.):
        """update estimated poses w.r.t global coordinate system

        Args:
            new_pose (SE3): new pose
            scale (float): scaling factor
        """
        self.cur_data['pose'].t = self.cur_data['pose'].R @ new_pose.t * scale \
                            + self.cur_data['pose'].t
        self.cur_data['pose'].R = self.cur_data['pose'].R @ new_pose.R
        self.global_poses[self.cur_data['id']] = copy.deepcopy(self.cur_data['pose'])

    def tracking(self):
        """Tracking using both Essential matrix and PnP
        Essential matrix for rotation and translation direction;
            *** triangluate depth v.s. CNN-depth for translation scale ***
        PnP if Essential matrix fails
        """
        # First frame
        if self.tracking_stage == 0:
            # initial pose
            if self.cfg.directory.gt_pose_dir is not None:
                self.cur_data['pose'] = SE3(self.dataset.gt_poses[self.cur_data['id']])
            else:
                self.cur_data['pose'] = SE3()
            return

        # Second to last frames
        elif self.tracking_stage >= 1:
            ''' keypoint selection '''
            if self.tracking_method in ['hybrid', 'PnP']:
                # Depth consistency (CNN depths + CNN pose)
                if self.cfg.kp_selection.depth_consistency.enable:
                    self.depth_consistency_computer.compute(self.cur_data, self.ref_data)

                # kp_selection
                self.timers.start('kp_sel', 'tracking')
                kp_sel_outputs = self.kp_sampler.kp_selection(self.cur_data, self.ref_data)
                if kp_sel_outputs['good_kp_found']:
                    self.kp_sampler.update_kp_data(self.cur_data, self.ref_data, kp_sel_outputs)
                self.timers.end('kp_sel')

            ''' Pose estimation '''
            # Initialize hybrid pose
            hybrid_pose = SE3()
            E_pose = SE3()

            if not(kp_sel_outputs['good_kp_found']):
                print("No enough good keypoints, constant motion will be used!")
                pose = self.ref_data['motion']
                self.update_global_pose(pose, 1)
                return 


            ''' E-tracker '''
            if self.tracking_method in ['hybrid']:
                # Essential matrix pose
                self.timers.start('E-tracker', 'tracking')
                e_tracker_outputs = self.e_tracker.compute_pose_2d2d(
                                self.ref_data[self.cfg.e_tracker.kp_src],
                                self.cur_data[self.cfg.e_tracker.kp_src],
                                not(self.cfg.e_tracker.iterative_kp.enable)) # pose: from cur->ref
                E_pose = e_tracker_outputs['pose']
                self.timers.end('E-tracker')

                # Rotation
                hybrid_pose.R = E_pose.R

                # save inliers
                self.ref_data['inliers'] = e_tracker_outputs['inliers']

                # scale recovery
                if np.linalg.norm(E_pose.t) != 0:
                    self.timers.start('scale_recovery', 'tracking')
                    scale_out = self.e_tracker.scale_recovery(self.cur_data, self.ref_data, E_pose, False)
                    scale = scale_out['scale']
                    if self.cfg.scale_recovery.kp_src == 'kp_depth':
                        self.cur_data['kp_depth'] = scale_out['cur_kp_depth']
                        self.ref_data['kp_depth'] = scale_out['ref_kp_depth']
                        self.cur_data['rigid_flow_mask'] = scale_out['rigid_flow_mask']
                    if scale != -1:
                        hybrid_pose.t = E_pose.t * scale
                    self.timers.end('scale_recovery')

                # Iterative keypoint refinement
                if np.linalg.norm(E_pose.t) != 0 and self.cfg.e_tracker.iterative_kp.enable:
                    self.timers.start('E-tracker iter.', 'tracking')
                    # Compute refined keypoint
                    self.e_tracker.compute_rigid_flow_kp(self.cur_data,
                                                         self.ref_data,
                                                         hybrid_pose)

                    e_tracker_outputs = self.e_tracker.compute_pose_2d2d(
                                self.ref_data[self.cfg.e_tracker.iterative_kp.kp_src],
                                self.cur_data[self.cfg.e_tracker.iterative_kp.kp_src],
                                True) # pose: from cur->ref
                    E_pose = e_tracker_outputs['pose']

                    # Rotation
                    hybrid_pose.R = E_pose.R

                    # save inliers
                    self.ref_data['inliers'] = e_tracker_outputs['inliers']

                    # scale recovery
                    if np.linalg.norm(E_pose.t) != 0 and self.cfg.scale_recovery.iterative_kp.enable:
                        scale_out = self.e_tracker.scale_recovery(self.cur_data, self.ref_data, E_pose, True)
                        scale = scale_out['scale']
                        if scale != -1:
                            hybrid_pose.t = E_pose.t * scale
                    else:
                        hybrid_pose.t = E_pose.t * scale
                    self.timers.end('E-tracker iter.')

            ''' PnP-tracker '''
            if self.tracking_method in ['PnP', 'hybrid']:
                # PnP if Essential matrix fail
                if np.linalg.norm(E_pose.t) == 0 or scale == -1:
                    self.timers.start('pnp', 'tracking')
                    pnp_outputs = self.pnp_tracker.compute_pose_3d2d(
                                    self.ref_data[self.cfg.pnp_tracker.kp_src],
                                    self.cur_data[self.cfg.pnp_tracker.kp_src],
                                    self.ref_data['depth'],
                                    not(self.cfg.pnp_tracker.iterative_kp.enable)
                                    ) # pose: from cur->ref
                    
                    # Iterative keypoint refinement
                    if self.cfg.pnp_tracker.iterative_kp.enable:
                        self.pnp_tracker.compute_rigid_flow_kp(self.cur_data, self.ref_data, pnp_outputs['pose'])
                        pnp_outputs = self.pnp_tracker.compute_pose_3d2d(
                                    self.ref_data[self.cfg.pnp_tracker.iterative_kp.kp_src],
                                    self.cur_data[self.cfg.pnp_tracker.iterative_kp.kp_src],
                                    self.ref_data['depth'],
                                    True
                                    ) # pose: from cur->ref

                    self.timers.end('pnp')

                    # use PnP pose instead of E-pose
                    hybrid_pose = pnp_outputs['pose']
                    self.tracking_mode = "PnP"

            ''' Deep-tracker '''
            if self.tracking_method in ['deep_pose']:
                hybrid_pose = SE3(self.ref_data['deep_pose'])
                self.tracking_mode = "DeepPose"

            ''' Summarize data '''
            # update global poses
            self.ref_data['pose'] = copy.deepcopy(hybrid_pose)
            self.ref_data['motion'] = copy.deepcopy(hybrid_pose)
            pose = self.ref_data['pose']
            self.update_global_pose(pose, 1)

    def update_data(self, ref_data, cur_data):
        """Update data
        
        Args:
            ref_data (dict): reference data
            cur_data (dict): current data
        
        Returns:
            ref_data (dict): updated reference data
            cur_data (dict): updated current data
        """
        for key in cur_data:
            if key == "id":
                ref_data['id'] = cur_data['id']
            else:
                if ref_data.get(key, -1) is -1:
                    ref_data[key] = {}
                ref_data[key] = cur_data[key]
        
        # Delete unused flow to avoid data leakage
        ref_data['flow'] = None
        cur_data['flow'] = None
        ref_data['flow_diff'] = None
        return ref_data, cur_data

    def load_raw_data(self):
        """load image data and (optional) GT/precomputed depth data
        """
        # Reading image
        self.cur_data['img'] = self.dataset.get_image(self.cur_data['timestamp'])

        # Reading/Predicting depth
        if self.dataset.data_dir['depth_src'] is not None:
            self.cur_data['raw_depth'] = self.dataset.get_depth(self.cur_data['timestamp'])
    
    def deep_model_inference(self):
        """deep model prediction
        """
        if self.tracking_method in ['hybrid', 'PnP']:
            # Single-view Depth prediction
            if self.dataset.data_dir['depth_src'] is None:
                self.timers.start('depth_cnn', 'deep inference')
                if self.tracking_stage > 0 and \
                    self.cfg.online_finetune.enable and self.cfg.online_finetune.depth.enable:
                        img_list = [self.cur_data['img'], self.ref_data['img']]
                else:
                    img_list = [self.cur_data['img']]

                self.cur_data['raw_depth'] = \
                    self.deep_models.forward_depth(imgs=img_list)
                self.cur_data['raw_depth'] = cv2.resize(self.cur_data['raw_depth'],
                                                    (self.cfg.image.width, self.cfg.image.height),
                                                    interpolation=cv2.INTER_NEAREST
                                                    )
                self.timers.end('depth_cnn')
            self.cur_data['depth'] = preprocess_depth(self.cur_data['raw_depth'], self.cfg.crop.depth_crop, [self.cfg.depth.min_depth, self.cfg.depth.max_depth])

            # Two-view flow
            if self.tracking_stage >= 1:
                self.timers.start('flow_cnn', 'deep inference')
                flows = self.deep_models.forward_flow(
                                        self.cur_data,
                                        self.ref_data,
                                        forward_backward=self.cfg.deep_flow.forward_backward)
                
                # Store flow
                self.ref_data['flow'] = flows[(self.ref_data['id'], self.cur_data['id'])].copy()
                if self.cfg.deep_flow.forward_backward:
                    self.cur_data['flow'] = flows[(self.cur_data['id'], self.ref_data['id'])].copy()
                    self.ref_data['flow_diff'] = flows[(self.ref_data['id'], self.cur_data['id'], "diff")].copy()
                
                self.timers.end('flow_cnn')
            
        # Relative camera pose
        if self.tracking_stage >= 1 and self.cfg.deep_pose.enable:
            self.timers.start('pose_cnn', 'deep inference')
            # Deep pose prediction
            pose = self.deep_models.forward_pose(
                        [self.ref_data['img'], self.cur_data['img']] 
                        )
            self.ref_data['deep_pose'] = pose # from cur->ref
            self.timers.end('pose_cnn')

    def main(self):
        """Main program
        """
        print("==> Start DF-VO")
        print("==> Running sequence: {}".format(self.cfg.seq))

        if self.cfg.no_confirm:
            start_frame = 0
        else:
            start_frame = int(input("Start with frame: "))

        for img_id in tqdm(range(start_frame, len(self.dataset), self.cfg.frame_step)):
            self.timers.start('DF-VO')
            self.tracking_mode = "Ess. Mat."

            """ Data reading """
            # Initialize ids and timestamps
            self.cur_data['id'] = img_id
            self.cur_data['timestamp'] = self.dataset.get_timestamp(img_id)

            # Read image data and (optional) precomputed depth data
            self.timers.start('data_loading')
            self.load_raw_data()
            self.timers.end('data_loading')

            # Deep model inferences
            self.timers.start('deep_inference')
            self.deep_model_inference()
            self.timers.end('deep_inference')

            """ Visual odometry """
            self.timers.start('tracking')
            self.tracking()
            self.timers.end('tracking')

            """ Online Finetuning """
            if self.tracking_stage >= 1 and self.cfg.online_finetune.enable:
                self.deep_models.finetune(self.ref_data['img'], self.cur_data['img'],
                                      self.ref_data['pose'].pose,
                                      self.dataset.cam_intrinsics.mat,
                                      self.dataset.cam_intrinsics.inv_mat)

            """ Visualization """
            if self.cfg.visualization.enable:
                self.timers.start('visualization')
                self.drawer.main(self)
                self.timers.end('visualization')

            """ Update reference and current data """
            self.ref_data, self.cur_data = self.update_data(
                                    self.ref_data,
                                    self.cur_data,
            )

            self.tracking_stage += 1

            self.timers.end('DF-VO')

        print("=> Finish!")



        """ Display & Save result """
        print("The result is saved in [{}].".format(self.cfg.directory.result_dir))
        # Save trajectory map
        print("Save VO map.")
        map_png = "{}/map.png".format(self.cfg.directory.result_dir)
        cv2.imwrite(map_png, self.drawer.data['traj'])

        # Save trajectory txt
        traj_txt = "{}/{}.txt".format(self.cfg.directory.result_dir, self.cfg.seq)
        self.dataset.save_result_traj(traj_txt, self.global_poses)

        # save finetuned model
        if self.cfg.online_finetune.enable and self.cfg.online_finetune.save_model:
            self.deep_models.save_model()

        # Output experiement information
        self.timers.time_analysis()