Ejemplo n.º 1
0
def test_dataclass_include_exclude():
    orig_data_source_cls = CANScraperUSAFactsProvider
    orig_ds = orig_data_source_cls.make_dataset()
    assert "iso1:us#iso2:us-tx" in orig_ds.static.index
    assert "iso1:us#iso2:us-ny" in orig_ds.static.index

    ny_source = combined_datasets.datasource_regions(
        orig_data_source_cls, RegionMask(states=["NY"])
    )
    assert ny_source.SOURCE_NAME == orig_data_source_cls.SOURCE_NAME
    assert ny_source.EXPECTED_FIELDS == orig_data_source_cls.EXPECTED_FIELDS
    ny_ds = ny_source.make_dataset()
    assert "iso1:us#iso2:us-tx" not in ny_ds.static.index
    assert "iso1:us#iso2:us-ny" in ny_ds.static.index

    ca_counties_without_la_source = combined_datasets.datasource_regions(
        orig_data_source_cls,
        RegionMask(AggregationLevel.COUNTY, states=["CA"]),
        exclude=Region.from_fips("06037"),
    )
    ds = ca_counties_without_la_source.make_dataset()
    assert "iso1:us#iso2:us-tx" not in ds.static.index
    assert "iso1:us#iso2:us-ca" not in ds.static.index
    assert "iso1:us#iso2:us-ca#fips:06045" in ds.static.index
    assert "iso1:us#iso2:us-ca#fips:06037" not in ds.static.index

    # Just Cook County, IL
    ds = combined_datasets.datasource_regions(
        orig_data_source_cls, include=Region.from_fips("17031")
    ).make_dataset()
    assert ds.static.index.to_list() == ["iso1:us#iso2:us-il#fips:17031"]
Ejemplo n.º 2
0
def test_multi_region_get_one_region():
    ts = timeseries.MultiRegionTimeseriesDataset.from_csv(
        io.StringIO(
            "location_id,county,aggregate_level,date,m1,m2\n"
            "iso1:us#fips:97111,Bar County,county,2020-04-02,2,\n"
            "iso1:us#fips:97222,Foo County,county,2020-04-01,,10\n"
            "iso1:us#fips:97111,Bar County,county,,3,\n"
            "iso1:us#fips:97222,Foo County,county,,,11\n"
        )
    )
    region_97111_ts = ts.get_one_region(Region.from_fips("97111"))
    assert to_dict(["date"], region_97111_ts.data[["date", "m1", "m2"]]) == {
        pd.to_datetime("2020-04-02"): {"m1": 2}
    }
    assert region_97111_ts.latest["m1"] == 3

    region_97222_ts = ts.get_one_region(Region.from_fips("97222"))
    assert to_dict(["date"], region_97222_ts.data) == {
        pd.to_datetime("2020-04-01"): {
            "m2": 10,
            "county": "Foo County",
            "fips": "97222",
            "location_id": "iso1:us#fips:97222",
            "aggregate_level": "county",
        }
    }
    assert region_97222_ts.latest["m2"] == 11
Ejemplo n.º 3
0
def test_multi_region_to_from_timeseries_and_latest_values(tmp_path: pathlib.Path):
    ts = timeseries.TimeseriesDataset(
        read_csv_and_index_fips_date(
            "fips,county,aggregate_level,date,m1,m2\n"
            "97111,Bar County,county,2020-04-02,2,\n"
            "97222,Foo County,county,2020-04-01,,10\n"
            "01,,state,2020-04-01,,20\n"
        ).reset_index()
    )
    latest_values = timeseries.LatestValuesDataset(
        read_csv_and_index_fips(
            "fips,county,aggregate_level,c1,c2\n"
            "97111,Bar County,county,3,\n"
            "97222,Foo County,county,4,10.5\n"
            "01,,state,,123.4\n"
        ).reset_index()
    )
    multiregion = timeseries.MultiRegionTimeseriesDataset.from_timeseries_and_latest(
        ts, latest_values
    )
    region_97111 = multiregion.get_one_region(Region.from_fips("97111"))
    assert region_97111.date_indexed.at["2020-04-02", "m1"] == 2
    assert region_97111.latest["c1"] == 3
    assert multiregion.get_one_region(Region.from_fips("01")).latest["c2"] == 123.4

    csv_path = tmp_path / "multiregion.csv"
    multiregion.to_csv(csv_path)
    multiregion_loaded = timeseries.MultiRegionTimeseriesDataset.from_csv(csv_path)
    region_97111 = multiregion_loaded.get_one_region(Region.from_fips("97111"))
    assert region_97111.date_indexed.at["2020-04-02", "m1"] == 2
    assert region_97111.latest["c1"] == 3
    assert multiregion_loaded.get_one_region(Region.from_fips("01")).latest["c2"] == 123.4
Ejemplo n.º 4
0
def test_regions_in_states_basic():
    whitelist_df = read_csv_and_index_fips(
        "fips,state,county,inference_ok\n"
        "45111,TX,Bar County,True\n"
        "06222,CA,Foo County,True\n").reset_index()

    regions = regions_in_states(
        [pipeline.Region.from_state(s) for s in ["CA", "TX"]], whitelist_df)
    assert set(regions) == {
        Region.from_fips("45111"),
        Region.from_fips("06222")
    }
Ejemplo n.º 5
0
def test_top_level_metrics_with_rt():
    region = Region.from_fips("36")
    data = (
        "date,fips,cases,positive_tests,negative_tests,contact_tracers_count"
        ",current_icu,current_icu_total,icu_beds\n"
        "2020-08-17,36,10,10,90,1,,,\n"
        "2020-08-18,36,20,20,180,2,,,\n"
        "2020-08-19,36,,,,3,,,\n"
        "2020-08-20,36,40,40,360,4,,,\n")
    one_region = _fips_csv_to_one_region(data, region)

    data = ("date,fips,Rt_MAP_composite,Rt_ci95_composite\n"
            "2020-08-17,36,1.1,1.2\n"
            "2020-08-18,36,1.2,1.3\n"
            "2020-08-19,36,1.1,1.3\n"
            "2020-08-20,36,1.1,1.2\n")
    rt_data = _fips_csv_to_one_region(data, region)

    latest = {
        CommonFields.POPULATION: 100_000,
        CommonFields.FIPS: "36",
        CommonFields.STATE: "NY",
        CommonFields.ICU_TYPICAL_OCCUPANCY_RATE: 0.5,
        CommonFields.ICU_BEDS: 25,
    }
Ejemplo n.º 6
0
def test_combined_county_has_some_data(fips):
    region_data = combined_datasets.load_us_timeseries_dataset().get_one_region(
        Region.from_fips(fips)
    )
    assert region_data.data[CommonFields.POSITIVE_TESTS].all()
    assert region_data.data[CommonFields.NEGATIVE_TESTS].all()
    assert region_data.latest[CommonFields.DEATHS] > 1
def test_calculate_icu_capacity():
    region = Region.from_fips("36")
    latest = {
        CommonFields.POPULATION: 100_000,
        CommonFields.FIPS: "36",
        CommonFields.STATE: "NY",
    }
def test_dataclass_include_exclude():
    """Tests datasource_regions using mock data for speed."""
    region_data = {CommonFields.CASES: [100, 200, 300], CommonFields.DEATHS: [0, 1, 2]}
    regions_orig = [Region.from_state(state) for state in "AZ CA NY IL TX".split()] + [
        Region.from_fips(fips) for fips in "06037 06045 17031 17201".split()
    ]
    dataset_orig = test_helpers.build_dataset({region: region_data for region in regions_orig})

    # Make a new subclass to keep this test separate from others in the make_dataset lru_cache.
    class DataSourceForTest(data_source.DataSource):
        EXPECTED_FIELDS = [CommonFields.CASES, CommonFields.DEATHS]
        SOURCE_TYPE = "DataSourceForTest"

        @classmethod
        def make_dataset(cls) -> timeseries.MultiRegionDataset:
            return dataset_orig

    orig_data_source_cls = DataSourceForTest
    orig_ds = orig_data_source_cls.make_dataset()
    assert "iso1:us#iso2:us-tx" in orig_ds.location_ids
    assert "iso1:us#iso2:us-ny" in orig_ds.location_ids

    ny_source = combined_datasets.datasource_regions(
        orig_data_source_cls, RegionMask(states=["NY"])
    )
    ny_ds = ny_source.make_dataset()
    assert "iso1:us#iso2:us-tx" not in ny_ds.location_ids
    assert "iso1:us#iso2:us-ny" in ny_ds.location_ids

    ca_counties_without_la_source = combined_datasets.datasource_regions(
        orig_data_source_cls,
        RegionMask(AggregationLevel.COUNTY, states=["CA"]),
        exclude=Region.from_fips("06037"),
    )
    ds = ca_counties_without_la_source.make_dataset()
    assert "iso1:us#iso2:us-tx" not in ds.location_ids
    assert "iso1:us#iso2:us-ca" not in ds.location_ids
    assert "iso1:us#iso2:us-ca#fips:06045" in ds.location_ids
    assert "iso1:us#iso2:us-ca#fips:06037" not in ds.location_ids

    # Just Cook County, IL
    ds = combined_datasets.datasource_regions(
        orig_data_source_cls, include=Region.from_fips("17031")
    ).make_dataset()
    assert ds.location_ids.to_list() == ["iso1:us#iso2:us-il#fips:17031"]
def test_top_level_metrics_with_rt():
    region = Region.from_fips("36")
    latest = {
        CommonFields.POPULATION: 100_000,
        CommonFields.FIPS: "36",
        CommonFields.STATE: "NY",
        CommonFields.ICU_TYPICAL_OCCUPANCY_RATE: 0.5,
        CommonFields.ICU_BEDS: 25,
    }
def test_load_hospitalization_data():
    t0 = datetime(year=2020, month=1, day=1)
    region = Region.from_fips("33")
    hospitalization_df = load_data.get_hospitalization_data_for_region(region)

    _, _, hosp_type = load_data.calculate_hospitalization_data(
        hospitalization_df, t0, category=HospitalizationCategory.ICU
    )
    # Double check that data loads and it went throughh the cumulative hosps
    assert hosp_type is HospitalizationDataType.CUMULATIVE_HOSPITALIZATIONS
Ejemplo n.º 11
0
def test_make_latest_from_timeseries_simple():
    data = read_csv_and_index_fips_date(
        "fips,county,state,country,date,aggregate_level,m1,m2\n"
        "97123,Smith County,ZZ,USA,2020-04-01,county,1,\n"
        "97123,Smith County,ZZ,USA,2020-04-02,county,,2\n"
    ).reset_index()
    ds = timeseries.MultiRegionDataset.from_fips_timeseries_df(data)
    region = ds.get_one_region(Region.from_fips("97123"))
    # Compare 2 values in region.latest
    expected = {"m1": 1, "m2": 2}
    actual = {key: region.latest[key] for key in expected.keys()}
    assert actual == expected
def test_persist_and_load_dataset(tmp_path, nyc_fips):
    region = Region.from_fips(nyc_fips)
    dataset = combined_datasets.load_us_timeseries_dataset()
    timeseries_nyc = TimeseriesDataset(dataset.get_one_region(region).data)

    pointer = combined_dataset_utils.persist_dataset(timeseries_nyc, tmp_path)

    downloaded_dataset = pointer.load_dataset()
    differ_l = DatasetDiff.make(downloaded_dataset.data)
    differ_r = DatasetDiff.make(timeseries_nyc.data)
    differ_l.compare(differ_r)

    assert not len(differ_l.my_ts)
Ejemplo n.º 13
0
def update_test_combined_data(truncate_dates: bool, state: List[str]):
    us_dataset = combined_datasets.load_us_timeseries_dataset()
    # Keep only a small subset of the regions so we have enough to exercise our code in tests.
    test_subset = us_dataset.get_regions_subset([
        RegionMask(states=[s.strip() for s in state]),
        Region.from_fips("48201"),
        Region.from_fips("48301"),
        Region.from_fips("20161"),
        Region.from_state("TX"),
        Region.from_state("KS"),
    ])
    if truncate_dates:
        dates = test_subset.timeseries_bucketed.index.get_level_values(
            CommonFields.DATE)
        date_range_mask = (dates >= "2021-01-01") & (dates < "2021-04-01")
        test_subset = dataclasses.replace(
            test_subset,
            timeseries_bucketed=test_subset.timeseries_bucketed.
            loc[date_range_mask])
    test_subset.write_to_wide_dates_csv(
        dataset_utils.TEST_COMBINED_WIDE_DATES_CSV_PATH,
        dataset_utils.TEST_COMBINED_STATIC_CSV_PATH)
def test_combined_county_has_some_timeseries_data(fips):
    region = Region.from_fips(fips)
    latest = combined_datasets.load_us_timeseries_dataset().get_one_region(
        region)
    df = latest.data.set_index(CommonFields.DATE)
    assert df.loc["2020-05-01", CommonFields.CASES] > 0
    assert df.loc["2020-05-01", CommonFields.DEATHS] > 0
    if fips.startswith(
            "06"
    ):  # TODO(tom): Remove this condition when we have county data in TX too.
        assert df.loc["2020-05-01", CommonFields.POSITIVE_TESTS] > 0
        assert df.loc["2020-05-01", CommonFields.NEGATIVE_TESTS] > 0
        assert df.loc["2020-05-01", CommonFields.CURRENT_ICU] > 0
def test_persist_and_load_dataset(tmp_path, nyc_fips):
    region = Region.from_fips(nyc_fips)
    dataset = combined_datasets.load_us_timeseries_dataset()
    timeseries_nyc = dataset.get_regions_subset([region])

    pointer = combined_dataset_utils.persist_dataset(timeseries_nyc, tmp_path)

    downloaded_dataset = MultiRegionDataset.read_from_pointer(pointer)
    differ_l = DatasetDiff.make(downloaded_dataset.timeseries)
    differ_r = DatasetDiff.make(timeseries_nyc.timeseries)
    differ_l.compare(differ_r)

    assert not len(differ_l.my_ts)
Ejemplo n.º 16
0
def test_make_latest_from_timeseries_dont_touch_county():
    data = read_csv_and_index_fips_date(
        "fips,county,state,country,date,aggregate_level,m1,m2\n"
        "95123,Smith Countyy,YY,USA,2020-04-01,county,1,\n"
        "97123,Smith Countzz,ZZ,USA,2020-04-01,county,2,\n"
        "56,,WY,USA,2020-04-01,state,3,\n"
    ).reset_index()
    ds = timeseries.MultiRegionDataset.from_fips_timeseries_df(data)

    def get_latest(region) -> dict:
        """Returns an interesting subset of latest for given region"""
        latest = ds.get_one_region(region).latest
        return {key: latest[key] for key in ["county", "m1", "m2"] if latest.get(key) is not None}

    assert get_latest(Region.from_fips("95123")) == {
        "m1": 1,
        "county": "Smith Countyy",
    }
    assert get_latest(Region.from_fips("97123")) == {
        "m1": 2,
        "county": "Smith Countzz",
    }
    assert get_latest(Region.from_state("WY")) == {"m1": 3}
Ejemplo n.º 17
0
def test_top_level_metrics_no_test_positivity():
    data = (
        "date,fips,cases,positive_tests,negative_tests,contact_tracers_count,current_icu,icu_beds\n"
        "2020-08-17,36,10,,,1,,\n"
        "2020-08-18,36,20,,,2,,\n"
        "2020-08-19,36,30,,,3,,\n"
        "2020-08-20,36,40,,,4,,\n")
    one_region = _fips_csv_to_one_region(data, Region.from_fips("36"))
    latest = {
        CommonFields.POPULATION: 100_000,
        CommonFields.FIPS: "36",
        CommonFields.STATE: "NY",
        CommonFields.ICU_BEDS: 10,
    }
Ejemplo n.º 18
0
def test_pyseir_end_to_end_idaho(tmp_path):
    # This covers a lot of edge cases.
    with unittest.mock.patch("pyseir.utils.OUTPUT_DIR", str(tmp_path)):
        fips = "16001"
        region = Region.from_fips(fips)
        pipelines = cli._build_all_for_states(states=["ID"], fips=fips)
        cli._write_pipeline_output(pipelines, tmp_path)

        icu_data_path = tmp_path / SummaryArtifact.ICU_METRIC_COMBINED.value
        icu_data = MultiRegionTimeseriesDataset.from_csv(icu_data_path)
        assert icu_data.get_one_region(region)

        rt_data_path = tmp_path / SummaryArtifact.RT_METRIC_COMBINED.value
        rt_data = MultiRegionTimeseriesDataset.from_csv(rt_data_path)
        assert rt_data.get_one_region(region)
def test_pyseir_end_to_end_idaho(tmp_path):
    # This covers a lot of edge cases.
    with unittest.mock.patch("pyseir.utils.OUTPUT_DIR", str(tmp_path)):
        fips = "16001"
        region = Region.from_fips(fips)

        # prepare data
        one_region_input = combined_datasets.load_us_timeseries_dataset().get_one_region(region)
        region_pipelines = [OneRegionPipeline.run(one_region_input)]
        region_pipelines = _patch_nola_infection_rate_in_pipelines(region_pipelines)

        model_output = pyseir.run.PyseirOutputDatasets.from_pipeline_output(region_pipelines)

        assert model_output.icu.get_one_region(region)
        assert model_output.infection_rate.get_one_region(region)
Ejemplo n.º 20
0
def test_top_level_metrics_basic():
    data = (
        "date,fips,cases,positive_tests,negative_tests,contact_tracers_count"
        ",current_icu,current_icu_total,icu_beds\n"
        "2020-08-17,36,10,10,90,1,10,20,\n"
        "2020-08-18,36,20,20,180,2,10,20,\n"
        "2020-08-19,36,,,,3,10,20,\n"
        "2020-08-20,36,40,40,360,4,10,20,\n")
    one_region = _fips_csv_to_one_region(data, Region.from_fips("36"))
    latest = {
        CommonFields.POPULATION: 100_000,
        CommonFields.FIPS: "36",
        CommonFields.STATE: "NY",
        CommonFields.ICU_TYPICAL_OCCUPANCY_RATE: 0.5,
        CommonFields.ICU_BEDS: 30,
    }
Ejemplo n.º 21
0
def test_combined_county_has_some_timeseries_data(fips):
    region = Region.from_fips(fips)
    latest = combined_datasets.load_us_timeseries_dataset().get_one_region(region)
    date = "2020-09-04"  # Arbitrary date when both regions have data
    df = latest.data.set_index(CommonFields.DATE)
    one_date = df.loc[date]
    assert one_date[CommonFields.CASES] > 0
    assert one_date[CommonFields.DEATHS] > 0
    # Check that there is some testing data, either positive and negative tests or a test
    # positivity ratio.
    assert (
        one_date[CommonFields.POSITIVE_TESTS] > 0 and one_date[CommonFields.NEGATIVE_TESTS] > 0
    ) or (
        one_date[CommonFields.TEST_POSITIVITY_7D] > 0
        or one_date[CommonFields.TEST_POSITIVITY_14D] > 0
    )
    assert one_date[CommonFields.CURRENT_ICU] > 0
Ejemplo n.º 22
0
def _transform_one_override(
        override: Mapping,
        cbsa_to_counties_map: Mapping[Region, List[Region]]) -> Filter:
    region_str = override["region"]
    if re.fullmatch(r"[A-Z][A-Z]", region_str):
        region = Region.from_state(region_str)
    elif re.fullmatch(r"\d{5}", region_str):
        region = Region.from_fips(region_str)
    else:
        raise ValueError(f"Invalid region: {region_str}")

    include_str = override["include"]
    if include_str == "region":
        regions_included = [region]
    elif include_str == "region-and-subregions":
        if region.is_state():
            regions_included = [RegionMask(states=[region.state])]
        elif region.level == AggregationLevel.CBSA:
            regions_included = [region] + cbsa_to_counties_map[region]
        else:
            raise ValueError(
                "region-and-subregions only valid for a state and CBSA")
    elif include_str == "subregions":
        if not region.is_state():
            raise ValueError("subregions only valid for a state")
        regions_included = [
            RegionMask(AggregationLevel.COUNTY, states=[region.state])
        ]
    else:
        raise ValueError(f"Invalid include: {include_str}")

    return Filter(
        regions_included=regions_included,
        fields_included=_METRIC_TO_FIELDS[override["metric"]],
        internal_note=override["context"],
        public_note=override.get("disclaimer", ""),
        drop_observations=bool(override["blocked"]),
    )
def test_basic():
    region_tx = Region.from_state("TX")
    region_sf = Region.from_fips("06075")
    region_hi = Region.from_state("HI")
    # Add a timeseries with a tag to make sure they are preserved.
    ts_with_tag = TimeseriesLiteral(
        [0, 0, 0], annotation=[test_helpers.make_tag(date="2020-04-01")])
    ds_in = test_helpers.build_dataset({
        region_tx: {
            CommonFields.VACCINES_DISTRIBUTED: [0, 0, 0]
        },
        region_sf: {
            CommonFields.VACCINES_DISTRIBUTED: [0, 0, 1]
        },
        region_hi: {
            CommonFields.VACCINES_DISTRIBUTED: [0, 0, None],
            CommonFields.CASES: ts_with_tag,
        },
    })

    with structlog.testing.capture_logs() as logs:
        ds_out = zeros_filter.drop_all_zero_timeseries(
            ds_in, [CommonFields.VACCINES_DISTRIBUTED])
    ds_expected = test_helpers.build_dataset({
        region_sf: {
            CommonFields.VACCINES_DISTRIBUTED: [0, 0, 1]
        },
        region_hi: {
            CommonFields.CASES: ts_with_tag
        },
    })
    log = more_itertools.one(logs)
    assert log["event"] == zeros_filter.DROPPING_TIMESERIES_WITH_ONLY_ZEROS
    assert pd.MultiIndex.from_tuples([
        (region_hi.location_id, CommonFields.VACCINES_DISTRIBUTED),
        (region_tx.location_id, CommonFields.VACCINES_DISTRIBUTED),
    ]).equals(log["dropped"])
    test_helpers.assert_dataset_like(ds_expected, ds_out)
def test_load_hospitalization_data_not_found():
    region = Region.from_fips("98")
    hospitalization_df = load_data.get_hospitalization_data_for_region(region)
    assert hospitalization_df.empty
Ejemplo n.º 25
0
def test_get_county_name():
    assert combined_datasets.get_county_name(Region.from_fips("06059")) == "Orange County"
    assert combined_datasets.get_county_name(Region.from_fips("48201")) == "Harris County"
Ejemplo n.º 26
0
def test_pr_aggregation():
    dataset = combined_datasets.load_us_timeseries_dataset()
    data = dataset.get_one_region(Region.from_fips("72")).latest
    assert data
    assert data["all_beds_occupancy_rate"] < 1
    assert data["icu_occupancy_rate"] < 1
Ejemplo n.º 27
0
from covidactnow.datapublic.common_fields import CommonFields
from covidactnow.datapublic.common_fields import FieldName
from covidactnow.datapublic.common_fields import PdFields

from libs.datasets import taglib
from libs.datasets import timeseries
from libs.datasets.taglib import TagField
from libs.datasets.taglib import TagType
from libs.datasets.taglib import UrlStr
from libs.pipeline import Region


# This is a totally bogus fips/region/location that we've been using as a default in some test
# cases. It is factored out here in an attempt to reduce how much it is hard-coded into our source.
DEFAULT_FIPS = "97222"
DEFAULT_REGION = Region.from_fips(DEFAULT_FIPS)


T = TypeVar("T")


def _to_list(list_or_scalar: Union[None, T, List[T]]) -> List[T]:
    """Returns a list which may be empty, contain the single non-list parameter or the parameter."""
    if isinstance(list_or_scalar, List):
        return list_or_scalar
    elif list_or_scalar:
        return [list_or_scalar]
    else:
        return []

Ejemplo n.º 28
0
def get_subset_regions(exclude_county_999: bool, **kwargs) -> List[Region]:
    us_latest = load_us_latest_dataset()
    us_subset = us_latest.get_subset(exclude_county_999=exclude_county_999, **kwargs)
    return [Region.from_fips(fips) for fips in us_subset.data[CommonFields.FIPS].unique()]
Ejemplo n.º 29
0
import dataclasses
from functools import lru_cache

from libs.datasets import AggregationLevel
from libs.datasets import data_source
import pandas as pd
from covidactnow.datapublic.common_fields import CommonFields
from libs.datasets.sources import can_scraper_helpers as ccd_helpers
from libs.datasets.timeseries import MultiRegionDataset
from libs.pipeline import Region

DC_COUNTY_LOCATION_ID = Region.from_fips("11001").location_id
DC_STATE_LOCATION_ID = Region.from_state("DC").location_id


def _remove_trailing_zeros(series: pd.Series) -> pd.Series:

    series = pd.Series(series.values.copy(),
                       index=series.index.get_level_values(CommonFields.DATE))

    index = series.loc[series != 0].last_valid_index()

    if index is None:
        # If test positivity is 0% the entire time, considering the data inaccurate, returning
        # none.
        series[:] = None
        return series

    series[index + pd.DateOffset(1):] = None
    return series