Ejemplo n.º 1
0
    def test_group_initialization(self):
        """Group initialization of weights nodes"""
        v1 = spn.IndicatorLeaf(num_vars=1, num_vals=2)
        v2 = spn.IndicatorLeaf(num_vars=1, num_vals=4)
        v3 = spn.IndicatorLeaf(num_vars=1, num_vals=2)
        v4 = spn.IndicatorLeaf(num_vars=1, num_vals=2)
        # Sum
        s1 = spn.Sum(v1)
        s1.generate_weights(tf.initializers.constant([0.2, 0.3]))
        s2 = spn.Sum(v2)
        s2.generate_weights(tf.initializers.constant(5))
        # ParallelSums
        s3 = spn.ParallelSums(*[v3, v4], num_sums=2)
        s3.generate_weights(
            tf.initializers.constant([0.1, 0.2, 0.3, 0.4, 0.4, 0.3, 0.2, 0.1]))
        s4 = spn.ParallelSums(*[v1, v2, v3, v4], num_sums=3)
        s4.generate_weights(tf.initializers.constant(2.0))
        # Product
        p = spn.Product(s1, s2, s3, s4)
        init = spn.initialize_weights(p)

        with self.test_session() as sess:
            sess.run([init])
            val1 = sess.run(s1.weights.node.get_value())
            val2 = sess.run(s2.weights.node.get_value())
            val3 = sess.run(s3.weights.node.get_value())
            val4 = sess.run(s4.weights.node.get_value())
            val1_log = sess.run(tf.exp(s1.weights.node.get_log_value()))
            val2_log = sess.run(tf.exp(s2.weights.node.get_log_value()))
            val3_log = sess.run(tf.exp(s3.weights.node.get_log_value()))
            val4_log = sess.run(tf.exp(s4.weights.node.get_log_value()))

        self.assertEqual(val1.dtype, spn.conf.dtype.as_numpy_dtype())
        self.assertEqual(val2.dtype, spn.conf.dtype.as_numpy_dtype())
        self.assertEqual(val3.dtype, spn.conf.dtype.as_numpy_dtype())
        self.assertEqual(val4.dtype, spn.conf.dtype.as_numpy_dtype())
        np.testing.assert_array_almost_equal(val1, [[0.4, 0.6]])
        np.testing.assert_array_almost_equal(val2, [[0.25, 0.25, 0.25, 0.25]])
        np.testing.assert_array_almost_equal(
            val3, [[0.1, 0.2, 0.3, 0.4], [0.4, 0.3, 0.2, 0.1]])
        np.testing.assert_array_almost_equal(
            val4, [[0.1] * 10, [0.1] * 10, [0.1] * 10])
        self.assertEqual(val1_log.dtype, spn.conf.dtype.as_numpy_dtype())
        self.assertEqual(val2_log.dtype, spn.conf.dtype.as_numpy_dtype())
        self.assertEqual(val3_log.dtype, spn.conf.dtype.as_numpy_dtype())
        self.assertEqual(val4_log.dtype, spn.conf.dtype.as_numpy_dtype())
        np.testing.assert_array_almost_equal(val1_log, [[0.4, 0.6]])
        np.testing.assert_array_almost_equal(val2_log,
                                             [[0.25, 0.25, 0.25, 0.25]])
        np.testing.assert_array_almost_equal(
            val3, [[0.1, 0.2, 0.3, 0.4], [0.4, 0.3, 0.2, 0.1]])
        np.testing.assert_array_almost_equal(
            val4, [[0.1] * 10, [0.1] * 10, [0.1] * 10])
Ejemplo n.º 2
0
    def test_stochastic_argmax(self, argmax_zero):
        spn.conf.argmax_zero = argmax_zero

        N = 100000
        s = spn.Sum()

        x = tf.constant(
            np.repeat([[0, 1, 1, 0, 1], [1, 0, 0, 1, 0]], repeats=N, axis=0))

        argmax_op = tf.squeeze(s._reduce_argmax(tf.expand_dims(x, 1)))

        with self.test_session() as sess:
            argmax = sess.run(argmax_op)

        hist_first, _ = np.histogram(argmax[:N], bins=list(range(6)))
        hist_second, _ = np.histogram(argmax[N:], bins=list(range(6)))

        if argmax_zero:
            self.assertEqual(hist_first[1], N)
            self.assertEqual(hist_second[0], N)
        else:
            [self.assertLess(hist_first[i], N / 3 + N / 6) for i in [1, 2, 4]]
            [
                self.assertGreater(hist_first[i], N / 3 - N / 6)
                for i in [1, 2, 4]
            ]

            [self.assertLess(hist_second[i], N / 2 + N / 6) for i in [0, 3]]
            [self.assertGreater(hist_second[i], N / 2 - N / 6) for i in [0, 3]]
Ejemplo n.º 3
0
    def test_sampling(self, sample_prob):
        N = 100000
        x = tf.expand_dims(tf.constant(np.repeat(
            [[1, 2, 2, 1, 3], [3, 1, 1, 2, 1]], repeats=N, axis=0),
                                       dtype=tf.float32),
                           axis=1)
        s = spn.Sum()

        probs = [[1 / 9, 2 / 9, 2 / 9, 1 / 9, 3 / 9],
                 [3 / 8, 1 / 8, 1 / 8, 2 / 8, 1 / 8]]

        N_sampled = N * sample_prob
        N_argmax = N - N_sampled

        sample_op = tf.squeeze(
            s._reduce_sample_log(tf.log(x), sample_prob=sample_prob))

        with self.test_session() as sess:
            sample_out = sess.run(sample_op)

        for samples, prob, max_ind in zip(
                np.split(sample_out, indices_or_sections=2), probs, [4, 0]):
            hist, _ = np.histogram(samples, bins=list(range(6)))
            for h, p, i in zip(hist, prob, range(5)):
                if i == max_ind:
                    estimate = N_argmax + N_sampled * p
                else:
                    estimate = N_sampled * p
                self.assertLess(h, estimate + N / 6)
                self.assertGreater(h, estimate - N / 6)
Ejemplo n.º 4
0
    def test_dropconnect(self):
        ivs = spn.IVs(num_vals=2, num_vars=4)
        s = spn.Sum(ivs, dropconnect_keep_prob=0.5)
        spn.generate_weights(s)
        init = spn.initialize_weights(s)

        mask = [[0., 1., 0., 1., 1., 1., 0., 1.],
                [1., 0., 0., 0., 0., 0., 1., 0.]]
        s._create_dropout_mask = MagicMock(
            return_value=tf.expand_dims(tf.log(mask), 1))

        val_op = tf.exp(s.get_log_value())

        mask = tf.constant(mask, dtype=tf.float32)
        truth = tf.reduce_mean(mask, axis=-1, keepdims=True)

        with self.test_session() as sess:
            sess.run(init)
            dropconnect_out, truth_out = sess.run(
                [val_op, truth],
                feed_dict={ivs: -np.ones((2, 4), dtype=np.int32)})

        self.assertAllClose(dropconnect_out, truth_out)
Ejemplo n.º 5
0
import libspn as spn
import tensorflow as tf

indicator_leaves = spn.IndicatorLeaf(num_vars=2,
                                     num_vals=2,
                                     name="indicator_x")

# Connect first two sums to indicators of first variable
sum_11 = spn.Sum((indicator_leaves, [0, 1]), name="sum_11")
sum_12 = spn.Sum((indicator_leaves, [0, 1]), name="sum_12")

# Connect another two sums to indicators of the second variable
sum_21 = spn.Sum((indicator_leaves, [2, 3]), name="sum_21")
sum_22 = spn.Sum((indicator_leaves, [2, 3]), name="sum_22")

# Connect three product nodes
prod_1 = spn.Product(sum_11, sum_21, name="prod_1")
prod_2 = spn.Product(sum_11, sum_22, name="prod_2")
prod_3 = spn.Product(sum_12, sum_22, name="prod_3")

# Connect a root sum
root = spn.Sum(prod_1, prod_2, prod_3, name="root")

# Connect a latent indicator
indicator_y = root.generate_latent_indicators(
    name="indicator_y")  # Can be added manually

# Generate weights
spn.generate_weights(
    root,
    initializer=tf.initializers.random_uniform())  # Can be added manually
Ejemplo n.º 6
0
for i in range(stack_size):
    dilation_rate = 2**i
    x = spn.ConvProductsDepthwise(x,
                                  padding='full',
                                  kernel_size=2,
                                  strides=1,
                                  dilation_rate=dilation_rate)
    x = spn.LocalSums(x, num_channels=64)
# Create final layer of products
full_scope_prod = spn.ConvProductsDepthwise(x,
                                            padding='wicker_top',
                                            kernel_size=2,
                                            strides=1,
                                            dilation_rate=2**stack_size)
class_roots = spn.ParallelSums(full_scope_prod, num_sums=num_classes)
root = spn.Sum(class_roots)

# Add a IndicatorLeaf node to the root as a latent class variable
class_indicators = root.generate_latent_indicators()

# Generate the weights for the SPN rooted at `root`
spn.generate_weights(root,
                     log=True,
                     initializer=tf.initializers.random_uniform())

print("SPN depth: {}".format(root.get_depth()))
print("Number of products layers: {}".format(
    root.get_num_nodes(node_type=spn.ConvProducts)))
print("Number of sums layers: {}".format(
    root.get_num_nodes(node_type=spn.LocalSums)))
Ejemplo n.º 7
0
    def test_generate_spn(self, num_decomps, num_subsets, num_mixtures,
                          num_input_mixtures, input_dims, input_dist, balanced,
                          node_type, log_weights):
        """A generic test for DenseSPNGenerator."""

        if input_dist == spn.DenseSPNGenerator.InputDist.RAW \
            and num_input_mixtures != 1:
            # Redundant test case, so just return
            return

        # Input parameters
        num_inputs = input_dims[0]
        num_vars = input_dims[1]
        num_vals = 2

        printc("\n- num_inputs: %s" % num_inputs)
        printc("- num_vars: %s" % num_vars)
        printc("- num_vals: %s" % num_vals)
        printc("- num_decomps: %s" % num_decomps)
        printc("- num_subsets: %s" % num_subsets)
        printc("- num_mixtures: %s" % num_mixtures)
        printc("- input_dist: %s" %
               ("MIXTURE" if input_dist
                == spn.DenseSPNGenerator.InputDist.MIXTURE else "RAW"))
        printc("- balanced: %s" % balanced)
        printc("- num_input_mixtures: %s" % num_input_mixtures)
        printc("- node_type: %s" %
               ("SINGLE" if node_type == spn.DenseSPNGenerator.NodeType.SINGLE
                else "BLOCK" if node_type
                == spn.DenseSPNGenerator.NodeType.BLOCK else "LAYER"))
        printc("- log_weights: %s" % log_weights)

        # Inputs
        inputs = [
            spn.IndicatorLeaf(num_vars=num_vars,
                              num_vals=num_vals,
                              name=("IndicatorLeaf_%d" % (i + 1)))
            for i in range(num_inputs)
        ]

        gen = spn.DenseSPNGenerator(num_decomps=num_decomps,
                                    num_subsets=num_subsets,
                                    num_mixtures=num_mixtures,
                                    input_dist=input_dist,
                                    balanced=balanced,
                                    num_input_mixtures=num_input_mixtures,
                                    node_type=node_type)

        # Generate Sub-SPNs
        sub_spns = [
            gen.generate(*inputs, root_name=("sub_root_%d" % (i + 1)))
            for i in range(3)
        ]

        # Generate random weights for the first sub-SPN
        with tf.name_scope("Weights"):
            spn.generate_weights(sub_spns[0],
                                 tf.initializers.random_uniform(0.0, 1.0),
                                 log=log_weights)

        # Initialize weights of the first sub-SPN
        sub_spn_init = spn.initialize_weights(sub_spns[0])

        # Testing validity of the first sub-SPN
        self.assertTrue(sub_spns[0].is_valid())

        # Generate value ops of the first sub-SPN
        sub_spn_v = sub_spns[0].get_value()
        sub_spn_v_log = sub_spns[0].get_log_value()

        # Generate path ops of the first sub-SPN
        sub_spn_mpe_path_gen = spn.MPEPath(log=False)
        sub_spn_mpe_path_gen_log = spn.MPEPath(log=True)
        sub_spn_mpe_path_gen.get_mpe_path(sub_spns[0])
        sub_spn_mpe_path_gen_log.get_mpe_path(sub_spns[0])
        sub_spn_path = [sub_spn_mpe_path_gen.counts[inp] for inp in inputs]
        sub_spn_path_log = [
            sub_spn_mpe_path_gen_log.counts[inp] for inp in inputs
        ]

        # Collect all weight nodes of the first sub-SPN
        sub_spn_weight_nodes = []

        def fun(node):
            if node.is_param:
                sub_spn_weight_nodes.append(node)

        spn.traverse_graph(sub_spns[0], fun=fun)

        # Generate an upper-SPN over sub-SPNs
        products_lower = []
        for sub_spn in sub_spns:
            products_lower.append([v.node for v in sub_spn.values])

        num_top_mixtures = [2, 1, 3]
        sums_lower = []
        for prods, num_top_mix in zip(products_lower, num_top_mixtures):
            if node_type == spn.DenseSPNGenerator.NodeType.SINGLE:
                sums_lower.append(
                    [spn.Sum(*prods) for _ in range(num_top_mix)])
            elif node_type == spn.DenseSPNGenerator.NodeType.BLOCK:
                sums_lower.append(
                    [spn.ParallelSums(*prods, num_sums=num_top_mix)])
            else:
                sums_lower.append([
                    spn.SumsLayer(*prods * num_top_mix,
                                  num_or_size_sums=num_top_mix)
                ])

        # Generate upper-SPN
        root = gen.generate(*list(itertools.chain(*sums_lower)),
                            root_name="root")

        # Generate random weights for the SPN
        with tf.name_scope("Weights"):
            spn.generate_weights(root,
                                 tf.initializers.random_uniform(0.0, 1.0),
                                 log=log_weights)

        # Initialize weight of the SPN
        spn_init = spn.initialize_weights(root)

        # Testing validity of the SPN
        self.assertTrue(root.is_valid())

        # Generate value ops of the SPN
        spn_v = root.get_value()
        spn_v_log = root.get_log_value()

        # Generate path ops of the SPN
        spn_mpe_path_gen = spn.MPEPath(log=False)
        spn_mpe_path_gen_log = spn.MPEPath(log=True)
        spn_mpe_path_gen.get_mpe_path(root)
        spn_mpe_path_gen_log.get_mpe_path(root)
        spn_path = [spn_mpe_path_gen.counts[inp] for inp in inputs]
        spn_path_log = [spn_mpe_path_gen_log.counts[inp] for inp in inputs]

        # Collect all weight nodes in the SPN
        spn_weight_nodes = []

        def fun(node):
            if node.is_param:
                spn_weight_nodes.append(node)

        spn.traverse_graph(root, fun=fun)

        # Create a session
        with self.test_session() as sess:
            # Initializing weights
            sess.run(sub_spn_init)
            sess.run(spn_init)

            # Generate input feed
            feed = np.array(
                list(
                    itertools.product(range(num_vals),
                                      repeat=(num_inputs * num_vars))))
            batch_size = feed.shape[0]
            feed_dict = {}
            for inp, f in zip(inputs, np.split(feed, num_inputs, axis=1)):
                feed_dict[inp] = f

            # Compute all values and paths of sub-SPN
            sub_spn_out = sess.run(sub_spn_v, feed_dict=feed_dict)
            sub_spn_out_log = sess.run(tf.exp(sub_spn_v_log),
                                       feed_dict=feed_dict)
            sub_spn_out_path = sess.run(sub_spn_path, feed_dict=feed_dict)
            sub_spn_out_path_log = sess.run(sub_spn_path_log,
                                            feed_dict=feed_dict)

            # Compute all values and paths of the complete SPN
            spn_out = sess.run(spn_v, feed_dict=feed_dict)
            spn_out_log = sess.run(tf.exp(spn_v_log), feed_dict=feed_dict)
            spn_out_path = sess.run(spn_path, feed_dict=feed_dict)
            spn_out_path_log = sess.run(spn_path_log, feed_dict=feed_dict)

            # Test if partition function of the sub-SPN and of the
            # complete SPN is 1.0
            self.assertAlmostEqual(sub_spn_out.sum(), 1.0, places=6)
            self.assertAlmostEqual(sub_spn_out_log.sum(), 1.0, places=6)
            self.assertAlmostEqual(spn_out.sum(), 1.0, places=6)
            self.assertAlmostEqual(spn_out_log.sum(), 1.0, places=6)

            # Test if the sum of counts for each value of each variable
            # (6 variables, with 2 values each) = batch-size / num-vals
            self.assertEqual(
                np.sum(np.hstack(sub_spn_out_path), axis=0).tolist(),
                [batch_size // num_vals] * num_inputs * num_vars * num_vals)
            self.assertEqual(
                np.sum(np.hstack(sub_spn_out_path_log), axis=0).tolist(),
                [batch_size // num_vals] * num_inputs * num_vars * num_vals)
            self.assertEqual(
                np.sum(np.hstack(spn_out_path), axis=0).tolist(),
                [batch_size // num_vals] * num_inputs * num_vars * num_vals)
            self.assertEqual(
                np.sum(np.hstack(spn_out_path_log), axis=0).tolist(),
                [batch_size // num_vals] * num_inputs * num_vars * num_vals)
Ejemplo n.º 8
0
# Generates densely connected random SPNs
dense_generator = spn.DenseSPNGenerator(
    node_type=spn.DenseSPNGenerator.NodeType.BLOCK,
    num_subsets=num_subsets,
    num_mixtures=num_mixtures,
    num_decomps=num_decomps,
    balanced=balanced,
    input_dist=input_dist)

# Generate a dense SPN for each class
class_roots = [
    dense_generator.generate(leaf_indicators) for _ in range(num_classes)
]

# Connect sub-SPNs to a root
root = spn.Sum(*class_roots, name="RootSum")
root = spn.convert_to_layer_nodes(root)

# Add an IVs node to the root as a latent class variable
class_indicators = root.generate_latent_indicators()

# Generate the weights for the SPN rooted at `root`
spn.generate_weights(root)

print("SPN depth: {}".format(root.get_depth()))
print("Number of products layers: {}".format(
    root.get_num_nodes(node_type=spn.ProductsLayer)))
print("Number of sums layers: {}".format(
    root.get_num_nodes(node_type=spn.SumsLayer)))

# Op for initializing all weights
Ejemplo n.º 9
0
def setup_learning(args, in_var, root):
    no_op = tf.constant(0)
    inference_type = spn.InferenceType.MARGINAL if args.value_inf_type == 'marginal' \
        else spn.InferenceType.MPE
    mpe_state = spn.MPEState(value_inference_type=inference_type,
                             matmul_or_conv=True)
    if args.supervised:
        # Root is provided with labels, p(x,y)
        labels_node = root.generate_latent_indicators(name="LabelIndicators")

        # Marginalized root, so without filling in labels, so p(x) = \sum_y p(x,y)
        root_marginalized = spn.Sum(*root.values,
                                    name="RootMarginalized",
                                    weights=root.weights)
        # A dummy node to get MPE state
        labels_no_evidence_node = root_marginalized.generate_latent_indicators(
            name="LabesNoEvidenceIndicators",
            feed=-tf.ones([tf.shape(in_var.feed)[0], 1], dtype=tf.int32))

        # Get prediction from dummy node
        with tf.name_scope("Prediction"):
            logger.info("Setting up MPE state")
            if args.completion_by_marginal and isinstance(
                    in_var, ContinuousLeafBase):
                in_var_mpe = in_var.impute_by_posterior_marginal(
                    labels_no_evidence_node)
                class_mpe, = mpe_state.get_state(root_marginalized,
                                                 labels_no_evidence_node)
            else:
                class_mpe, in_var_mpe = mpe_state.get_state(
                    root_marginalized, labels_no_evidence_node, in_var)
            correct = tf.squeeze(
                tf.equal(class_mpe, tf.to_int64(labels_node.feed)))
    else:
        with tf.name_scope("Prediction"):
            class_mpe = correct = no_op
            labels_node = root_marginalized = None
            if args.completion_by_marginal and isinstance(
                    in_var, ContinuousLeafBase):
                in_var_mpe = in_var.impute_by_posterior_marginal(root)
            else:
                in_var_mpe, = mpe_state.get_state(root, in_var)

    # Get the log likelihood
    with tf.name_scope("LogLikelihoods"):
        logger.info("Setting up log-likelihood")
        val_gen = spn.LogValue(inference_type=inference_type)
        labels_llh = val_gen.get_value(root)
        no_labels_llh = val_gen.get_value(
            root_marginalized) if args.supervised else labels_llh

    if args.learning_algo == "em":
        em_learning = spn.HardEMLearning(
            root,
            value_inference_type=inference_type,
            initial_accum_value=args.initial_accum_value,
            sample_winner=args.sample_path,
            sample_prob=args.sample_prob,
            use_unweighted=args.use_unweighted)
        accumulate = em_learning.accumulate_updates()
        with tf.control_dependencies([accumulate]):
            update_op = em_learning.update_spn()

        return correct, labels_node, labels_llh, no_labels_llh, update_op, class_mpe, no_op, \
               no_op, in_var_mpe

    logger.info("Setting up GD learning")
    global_step = tf.Variable(0, trainable=False)
    learning_rate = tf.train.exponential_decay(args.learning_rate,
                                               global_step,
                                               args.lr_decay_steps,
                                               args.lr_decay_rate,
                                               staircase=True)
    learning_method = spn.LearningMethodType.DISCRIMINATIVE if args.learning_type == 'discriminative' else \
        spn.LearningMethodType.GENERATIVE
    learning = spn.GDLearning(
        root, learning_task_type=spn.LearningTaskType.SUPERVISED if args.supervised else \
            spn.LearningTaskType.UNSUPERVISED,
        learning_method=learning_method, learning_rate=learning_rate,
        marginalizing_root=root_marginalized, global_step=global_step)

    optimizer = {
        'adam': tf.train.AdamOptimizer,
        'rmsprop': tf.train.RMSPropOptimizer,
        'amsgrad': AMSGrad,
    }[args.learning_algo]()
    minimize_op, _ = learning.learn(optimizer=optimizer)

    logger.info("Settting up test loss")
    with tf.name_scope("DeterministicLoss"):
        main_loss = learning.loss()
        regularization_loss = learning.regularization_loss()
        loss_per_sample = learning.loss(
            reduce_fn=lambda x: tf.reshape(x, (-1, )))

    return correct, labels_node, main_loss, no_labels_llh, minimize_op, class_mpe, \
           regularization_loss, loss_per_sample, in_var_mpe
Ejemplo n.º 10
0
    0, 1))  # Can be added manually

print(root.get_num_nodes())
print(root.get_scope())
print(root.is_valid())

SUM_CNT = 8
sum_ls = []
#iv_x = spn.IndicatorLeaf([[0,-1], [-1,-1]] ,num_vars=2, num_vals=2, name="iv_x")
for i in range(SUM_CNT):
    iv_x = spn.IndicatorLeaf([[-1], [0]],
                             num_vars=1,
                             num_vals=2,
                             name="iv_x" + str(i))
    #for i in range(2):
    sum_x = spn.Sum((iv_x, [0, 1]), name="sum_" + str(i))
    sum_x.generate_weights(
        tf.initializers.constant([random.random(),
                                  random.random()]))
    sum_ls.append(sum_x)
#for i in range(2,4):
#    sum_x = spn.Sum((iv_x, [0,1]), name="sum_" + str(i))
#    sum_x.generate_weights(tf.initializers.constant([random.random(), random.random()]))
#    sum_ls.append(sum_x)

LAST_CNT = SUM_CNT
last_node_ls = sum_ls
node_type = 'Sum'
LAYER_CNT = int(math.log(SUM_CNT / 2, 2))
print('Layer CNT', LAYER_CNT)
for l in range(LAYER_CNT):
Ejemplo n.º 11
0
                                     name="indicator_x")

# Connect first two sums to indicators of first variable
sums_1 = spn.ParallelSums((indicator_leaves, [0, 1]),
                          num_sums=2,
                          name="sums_1")
# Connect another two sums to indicators of second variable
sums_2 = spn.ParallelSums((indicator_leaves, [2, 3]),
                          num_sums=2,
                          name="sums_2")

# Connect 2 * 2 == 4 product nodes
prods_1 = spn.PermuteProducts(sums_1, sums_2, name="prod_1")

# Connect a root sum
root = spn.Sum(prods_1, name="root")

# Connect a latent indicator
indicator_y = root.generate_latent_indicators(
    name="indicator_y")  # Can be added manually

# Generate weights
spn.generate_weights(
    root,
    initializer=tf.initializers.random_uniform())  # Can be added manually

## Inspect

# Inspect
print(root.get_num_nodes())
print(root.get_scope())
Ejemplo n.º 12
0
    def dup_fun_up(inpt,
                   *args,
                   conc=None,
                   tmpl_num_vars=[0],
                   tmpl_num_vals=[0],
                   graph_num_vars=[0],
                   labels=[[]],
                   tspn=None):
        """
        Purely for template spn copying only. Supports template with multiple types of IVs.
        Requires that the template SPN contains only one concat node where all inputs go through.

        labels: (2D list) variable's numerical label, used to locate the variable's position in the big IVs.
                If there are multiple types of IVs, then this should be a 2D list, where each inner
                list is the label (starting from 0) for one type of IVs, and each outer list represents
                one type of IVs.
        """
        # Know what range of indices each variable takes
        node, indices = inpt
        if node.is_op:
            if isinstance(node, spn.Sum):
                # [2:] is to skip the weights node and the explicit IVs node for this sum.
                return spn.Sum(*args[2:], weights=args[0])
            elif isinstance(node, spn.ParSums):
                return spn.ParSums(*args[2:],
                                   weights=args[0],
                                   num_sums=tspn._num_mixtures)
            elif isinstance(node, spn.Product):
                return spn.Product(*args)
            elif isinstance(node, spn.PermProducts):
                return spn.PermProducts(*args)
            elif isinstance(node, spn.Concat):
                # The goal is to map from index on the template SPN's concat node to the index on
                # the instance SPN's concat node.

                # First, be able to tell which type of iv the index has
                ranges_tmpl = [
                    0
                ]  # stores the start (inclusive) index of the range of indices taken by a type of iv on template SPN
                ranges_instance = [
                    0
                ]  # stores the start (inclusive) index of the range of indices taken by a type of iv on instance SPN
                for i in range(len(tmpl_num_vars)):
                    ranges_tmpl.append(ranges_tmpl[-1] +
                                       tmpl_num_vars[i] * tmpl_num_vals[i])
                    ranges_instance.append(ranges_instance[-1] +
                                           graph_num_vars[i] *
                                           tmpl_num_vals[i])

                big_indices = []
                for indx in indices:
                    iv_type = -1
                    for i, start in enumerate(ranges_tmpl):
                        if indx < start + tmpl_num_vars[i] * tmpl_num_vals[i]:
                            iv_type = i
                            break
                    if iv_type == -1:
                        raise ValueError(
                            "Oops. Something wrong. Index out of range.")

                    # Then, figure out variable index and offset (w.r.t. template Concat node)
                    varidx = (indx -
                              ranges_tmpl[iv_type]) // tmpl_num_vals[iv_type]
                    offset = (indx - ranges_tmpl[iv_type]
                              ) - varidx * tmpl_num_vals[iv_type]
                    # THIS IS the actual position of the variable's inputs in the big Concat.
                    varlabel = labels[iv_type][varidx]
                    big_indices.append(ranges_instance[iv_type] +
                                       varlabel * tmpl_num_vals[iv_type] +
                                       offset)
                return spn.Input(conc, big_indices)
        elif isinstance(node, spn.Weights):
            return node
        else:
            raise ValueError(
                "Unexpected node %s. We don't intend to deal with IVs here. Please remove them from the concat."
                % node)
Ejemplo n.º 13
0
    def _init_struct(self,
                     sess,
                     divisions=-1,
                     num_partitions=1,
                     partitions=None,
                     extra_partition_multiplyer=1):
        """
        Initialize the structure for training. (private method)

        sess: (tf.Session): a session that contains all weights.

        **kwargs:
           num_partitions (int): number of partitions (children for root node)
           If template is EdgeTemplate, then:
             divisions (int) number of views per place
           extra_partition_multiplyer (int): Used to multiply num_partitions so that more partitions
                                             are tried and ones with higher coverage are picked.
        """

        for tspn, template in self._spns:
            # remove inputs; this is necessary for the duplication to work - we don't want
            # the indicator variables to the template spns because the instance spn has its
            # own indicator variable inputs.
            tspn._conc_inputs.set_inputs()

        # Create vars and maps
        self._catg_inputs = spn.IVs(num_vars=len(self._graph.nodes),
                                    num_vals=self._num_vals)
        self._conc_inputs = spn.Concat(self._catg_inputs)
        self._template_nodes_map = {
        }  # map from template id to list of node lds
        self._node_label_map = {
        }  # key: node id. Value: a number (0~num_nodes-1)
        self._label_node_map = {
        }  # key: a number (0~num_nodes-1). Value: node id
        _i = 0
        for nid in self._graph.nodes:
            self._node_label_map[nid] = _i
            self._label_node_map[_i] = nid
            _i += 1

        if partitions is None:
            """Try partition the graph `extra_partition_multiplyer` times more than what is asked for. Then pick the top `num_partitions` with the highest
            coverage of the main template."""
            print(
                "Partitioning the graph... (Selecting %d from %d attempts)" %
                (num_partitions, extra_partition_multiplyer * num_partitions))
            partitioned_results = {}
            main_template = self._spns[0][1]
            for i in range(extra_partition_multiplyer * num_partitions):
                """Note: here, we only partition with the main template. The results (i.e. supergraph, unused graph) are stored
                and will be used later. """
                unused_graph, supergraph = self._graph.partition(
                    main_template,
                    get_unused=True,
                    super_node_class=self._super_node_class,
                    super_edge_class=self._super_edge_class)
                if self._template_mode == NodeTemplate.code():  ## NodeTemplate
                    coverage = len(
                        supergraph.nodes) * main_template.size() / len(
                            self._graph.nodes)
                    partitioned_results[(i, coverage)] = (supergraph,
                                                          unused_graph)
            used_coverages = set({})
            for i, coverage in sorted(partitioned_results,
                                      reverse=True,
                                      key=lambda x: x[1]):
                used_coverages.add((i, coverage))
                sys.stdout.write("%.3f  " % coverage)
                if len(used_coverages) >= num_partitions:
                    break
            sys.stdout.write("\n")
            """Keep partitioning the used partitions, and obtain a list of partitions in the same format as the `partitions` parameter"""
            partitions = []
            for key in used_coverages:
                supergraph, unused_graph = partitioned_results[key]
                partition = {main_template: supergraph}
                # Keep partitioning the unused_graph using smaller templates
                for _, template in self._spns[1:]:  # skip main template
                    unused_graph_2nd, supergraph_2nd = unused_graph.partition(
                        template,
                        get_unused=True,
                        super_node_class=self._super_node_class,
                        super_edge_class=self._super_edge_class)
                    partition[template] = supergraph_2nd
                    unused_graph = unused_graph_2nd
                partitions.append(partition)
        """Building instance spn"""
        print("Building instance spn...")
        pspns = []
        tspns = {}
        for template_spn, template in self._spns:
            tspns[template.__name__] = template_spn
        """Making an SPN"""
        """Now, partition the graph, copy structure, and connect self._catg_inputs appropriately to the network."""
        # Main template partition
        _k = 0

        self._partitions = partitions

        for _k, partition in enumerate(self._partitions):
            print("Partition %d" % (_k + 1))
            nodes_covered = set({})
            template_spn_roots = []
            for template_spn, template in self._spns:
                supergraph = partition[template]
                print("Will duplicate %s %d times." %
                      (template.__name__, len(supergraph.nodes)))
                template_spn_roots.extend(
                    NodeTemplateInstanceSpn._duplicate_template_spns(
                        self, tspns, template, supergraph, nodes_covered))

                ## TEST CODE: COMMENT OUT WHEN ACTUALLY RUNNING
                # original_tspn_root = tspns[template.__name__].root
                # duplicated_tspn_root = template_spn_roots[-1]
                # original_tspn_weights = sess.run(original_tspn_root.weights.node.get_value())
                # duplicated_tspn_weights = sess.run(duplicated_tspn_root.weights.node.get_value())
                # print(original_tspn_weights)
                # print(duplicated_tspn_weights)
                # print(original_tspn_weights == duplicated_tspn_weights)
                # import pdb; pdb.set_trace()

            assert nodes_covered == self._graph.nodes.keys()
            p = spn.Product(*template_spn_roots)
            assert p.is_valid()
            pspns.append(p)  # add spn for one partition
        ## End for loop ##

        # Sum up all
        self._root = spn.Sum(*pspns)
        assert self._root.is_valid()
        self._root.generate_weights(trainable=True)
        # initialize ONLY the weights node for the root
        sess.run(self._root.weights.node.initialize())
Ejemplo n.º 14
0
    def test_compare_manual_conv(self, log_weights, inference_type):
        spn.conf.argmax_zero = True
        grid_dims = [2, 2]
        nrows, ncols = grid_dims
        num_vals = 4
        batch_size = 256
        num_vars = grid_dims[0] * grid_dims[1]
        indicator_leaf = spn.IndicatorLeaf(num_vars=num_vars,
                                           num_vals=num_vals)
        num_sums = 32
        weights = spn.Weights(num_weights=num_vals,
                              num_sums=num_sums * num_vars,
                              initializer=tf.initializers.random_uniform(),
                              log=log_weights)

        weights_per_cell = tf.split(weights.variable,
                                    num_or_size_splits=num_vars)

        parsums = []
        for row in range(nrows):
            for col in range(ncols):
                indices = list(
                    range(row * (ncols * num_vals) + col * num_vals,
                          row * (ncols * num_vals) + (col + 1) * num_vals))
                parsums.append(
                    spn.ParallelSums((indicator_leaf, indices),
                                     num_sums=num_sums))

        parsum_concat = spn.Concat(*parsums, name="ParSumConcat")
        convsum = spn.LocalSums(indicator_leaf,
                                num_channels=num_sums,
                                weights=weights,
                                spatial_dim_sizes=grid_dims)

        prod00_conv = spn.PermuteProducts(
            (convsum, list(range(num_sums))),
            (convsum, list(range(num_sums, num_sums * 2))),
            name="Prod00")
        prod01_conv = spn.PermuteProducts(
            (convsum, list(range(num_sums * 2, num_sums * 3))),
            (convsum, list(range(num_sums * 3, num_sums * 4))),
            name="Prod01")
        sum00_conv = spn.ParallelSums(prod00_conv, num_sums=2)
        sum01_conv = spn.ParallelSums(prod01_conv, num_sums=2)

        prod10_conv = spn.PermuteProducts(sum00_conv,
                                          sum01_conv,
                                          name="Prod10")

        conv_root = spn.Sum(prod10_conv)

        prod00_pars = spn.PermuteProducts(
            (parsum_concat, list(range(num_sums))),
            (parsum_concat, list(range(num_sums, num_sums * 2))))
        prod01_pars = spn.PermuteProducts(
            (parsum_concat, list(range(num_sums * 2, num_sums * 3))),
            (parsum_concat, list(range(num_sums * 3, num_sums * 4))))

        sum00_pars = spn.ParallelSums(prod00_pars, num_sums=2)
        sum01_pars = spn.ParallelSums(prod01_pars, num_sums=2)

        prod10_pars = spn.PermuteProducts(sum00_pars, sum01_pars)

        parsum_root = spn.Sum(prod10_pars)

        node_pairs = [(sum00_conv, sum00_pars), (sum01_conv, sum01_pars),
                      (conv_root, parsum_root)]

        self.assertTrue(conv_root.is_valid())
        self.assertTrue(parsum_root.is_valid())

        self.assertAllEqual(parsum_concat.get_scope(), convsum.get_scope())

        spn.generate_weights(conv_root,
                             log=log_weights,
                             initializer=tf.initializers.random_uniform())
        spn.generate_weights(parsum_root,
                             log=log_weights,
                             initializer=tf.initializers.random_uniform())

        convsum.set_weights(weights)
        copy_weight_ops = []
        parsum_weight_nodes = []
        for p, w in zip(parsums, weights_per_cell):
            copy_weight_ops.append(tf.assign(p.weights.node.variable, w))
            parsum_weight_nodes.append(p.weights.node)

        for wc, wp in node_pairs:
            copy_weight_ops.append(
                tf.assign(wp.weights.node.variable, wc.weights.node.variable))

        copy_weights_op = tf.group(*copy_weight_ops)

        init_conv = spn.initialize_weights(conv_root)
        init_parsum = spn.initialize_weights(parsum_root)

        path_conv = spn.MPEPath(value_inference_type=inference_type)
        path_conv.get_mpe_path(conv_root)

        path_parsum = spn.MPEPath(value_inference_type=inference_type)
        path_parsum.get_mpe_path(parsum_root)

        indicator_counts_parsum = path_parsum.counts[indicator_leaf]
        indicator_counts_convsum = path_conv.counts[indicator_leaf]

        weight_counts_parsum = tf.concat(
            [path_parsum.counts[w] for w in parsum_weight_nodes], axis=1)
        weight_counts_conv = path_conv.counts[weights]

        weight_parsum_concat = tf.concat(
            [w.variable for w in parsum_weight_nodes], axis=0)

        root_val_parsum = parsum_root.get_log_value(
        )  #path_parsum.value.values[parsum_root]
        root_val_conv = conv_root.get_log_value(
        )  #path_conv.value.values[conv_root]

        parsum_counts = path_parsum.counts[parsum_concat]
        conv_counts = path_conv.counts[convsum]

        indicator_feed = np.random.randint(-1, 2, size=batch_size * num_vars)\
            .reshape((batch_size, num_vars))
        with tf.Session() as sess:
            sess.run([init_conv, init_parsum])
            sess.run(copy_weights_op)
            indicator_counts_conv_out, indicator_counts_parsum_out = sess.run(
                [indicator_counts_convsum, indicator_counts_parsum],
                feed_dict={indicator_leaf: indicator_feed})

            root_conv_value_out, root_parsum_value_out = sess.run(
                [root_val_conv, root_val_parsum],
                feed_dict={indicator_leaf: indicator_feed})

            weight_counts_conv_out, weight_counts_parsum_out = sess.run(
                [weight_counts_conv, weight_counts_parsum],
                feed_dict={indicator_leaf: indicator_feed})

            weight_value_conv_out, weight_value_parsum_out = sess.run(
                [convsum.weights.node.variable, weight_parsum_concat])

            parsum_counts_out, conv_counts_out = sess.run(
                [parsum_counts, conv_counts],
                feed_dict={indicator_leaf: indicator_feed})

            parsum_concat_val, convsum_val = sess.run(
                [
                    path_parsum.value.values[parsum_concat],
                    path_conv.value.values[convsum]
                ],
                feed_dict={indicator_leaf: indicator_feed})

        self.assertAllClose(convsum_val, parsum_concat_val)
        self.assertAllClose(weight_value_conv_out, weight_value_parsum_out)
        self.assertAllClose(root_conv_value_out, root_parsum_value_out)
        self.assertAllEqual(indicator_counts_conv_out,
                            indicator_counts_parsum_out)
        self.assertAllEqual(parsum_counts_out, conv_counts_out)
        self.assertAllEqual(weight_counts_conv_out, weight_counts_parsum_out)