def run(args):
  assert args in [[], ["silent"]]
  if (len(args) == 0):
    libtbx.env.full_testing = True
  else:
    libtbx.env.full_testing = False
  try:
    raise RuntimeError("Just for testing.")
  except RuntimeError:
    show_exception_info_if_full_testing()
Ejemplo n.º 2
0
def run(args):
    assert args in [[], ["silent"]]
    if (len(args) == 0):
        libtbx.env.full_testing = True
    else:
        libtbx.env.full_testing = False
    try:
        raise RuntimeError("Just for testing.")
    except RuntimeError:
        show_exception_info_if_full_testing()
Ejemplo n.º 3
0
    def __init__(self,
                 miller_array,
                 phil_object,
                 out=None,
                 out_plot=None,
                 miller_calc=None,
                 original_intensities=None,
                 completeness_as_non_anomalous=None,
                 verbose=0):
        if out is None:
            out = sys.stdout
        if verbose > 0:
            print >> out
            print >> out
            print >> out, "Matthews coefficient and Solvent content statistics"
        n_copies_solc = 1.0
        self.nres_known = False
        if (phil_object.scaling.input.asu_contents.n_residues is not None
                or phil_object.scaling.input.asu_contents.n_bases is not None):
            self.nres_known = True
            if (phil_object.scaling.input.asu_contents.sequence_file
                    is not None):
                print >> out, "  warning: ignoring sequence file"
        elif (phil_object.scaling.input.asu_contents.sequence_file
              is not None):
            print >> out, "  determining composition from sequence file %s" % \
              phil_object.scaling.input.asu_contents.sequence_file
            seq_comp = iotbx.bioinformatics.composition_from_sequence_file(
                file_name=phil_object.scaling.input.asu_contents.sequence_file,
                log=out)
            if (seq_comp is not None):
                phil_object.scaling.input.asu_contents.n_residues = seq_comp.n_residues
                phil_object.scaling.input.asu_contents.n_bases = seq_comp.n_bases
                self.nres_known = True
        matthews_results = matthews.matthews_rupp(
            crystal_symmetry=miller_array,
            n_residues=phil_object.scaling.input.asu_contents.n_residues,
            n_bases=phil_object.scaling.input.asu_contents.n_bases,
            out=out,
            verbose=1)
        phil_object.scaling.input.asu_contents.n_residues = matthews_results[0]
        phil_object.scaling.input.asu_contents.n_bases = matthews_results[1]
        n_copies_solc = matthews_results[2]
        self.matthews_results = matthews_results

        if phil_object.scaling.input.asu_contents.n_copies_per_asu is not None:
            n_copies_solc = phil_object.scaling.input.asu_contents.n_copies_per_asu
            self.defined_copies = n_copies_solc
            if verbose > 0:
                print >> out, "Number of copies per asymmetric unit provided"
                print >> out, " Will use user specified value of ", n_copies_solc
        else:
            phil_object.scaling.input.asu_contents.n_copies_per_asu = n_copies_solc
            self.guessed_copies = n_copies_solc

        # first report on I over sigma
        miller_array_new = miller_array
        self.data_strength = None
        miller_array_intensities = miller_array
        if (original_intensities is not None):
            assert original_intensities.is_xray_intensity_array()
            miller_array_intensities = original_intensities
        if miller_array_intensities.sigmas() is not None:
            data_strength = data_statistics.i_sigi_completeness_stats(
                miller_array_intensities,
                isigi_cut=phil_object.scaling.input.parameters.
                misc_twin_parameters.twin_test_cuts.isigi_cut,
                completeness_cut=phil_object.scaling.input.parameters.
                misc_twin_parameters.twin_test_cuts.completeness_cut,
                completeness_as_non_anomalous=completeness_as_non_anomalous)
            data_strength.show(out)
            self.data_strength = data_strength
            if phil_object.scaling.input.parameters.misc_twin_parameters.twin_test_cuts.high_resolution is None:
                if data_strength.resolution_cut > data_strength.resolution_at_least:
                    phil_object.scaling.input.parameters.misc_twin_parameters.twin_test_cuts.high_resolution = data_strength.resolution_at_least
                else:
                    phil_object.scaling.input.parameters.misc_twin_parameters.twin_test_cuts.high_resolution = data_strength.resolution_cut

        ## Isotropic wilson scaling
        if verbose > 0:
            print >> out
            print >> out
            print >> out, "Maximum likelihood isotropic Wilson scaling "

        n_residues = phil_object.scaling.input.asu_contents.n_residues
        n_bases = phil_object.scaling.input.asu_contents.n_bases
        if n_residues is None:
            n_residues = 0
        if n_bases is None:
            n_bases = 0
        if n_bases + n_residues == 0:
            raise Sorry("No scatterers available")
        iso_scale_and_b = absolute_scaling.ml_iso_absolute_scaling(
            miller_array=miller_array_new,
            n_residues=n_residues * miller_array.space_group().order_z() *
            n_copies_solc,
            n_bases=n_bases * miller_array.space_group().order_z() *
            n_copies_solc)
        iso_scale_and_b.show(out=out, verbose=verbose)
        self.iso_scale_and_b = iso_scale_and_b
        ## Store the b and scale values from isotropic ML scaling
        self.iso_p_scale = iso_scale_and_b.p_scale
        self.iso_b_wilson = iso_scale_and_b.b_wilson

        ## Anisotropic ml wilson scaling
        if verbose > 0:
            print >> out
            print >> out
            print >> out, "Maximum likelihood anisotropic Wilson scaling "
        aniso_scale_and_b = absolute_scaling.ml_aniso_absolute_scaling(
            miller_array=miller_array_new,
            n_residues=n_residues * miller_array.space_group().order_z() *
            n_copies_solc,
            n_bases=n_bases * miller_array.space_group().order_z() *
            n_copies_solc)
        aniso_scale_and_b.show(out=out, verbose=1)

        self.aniso_scale_and_b = aniso_scale_and_b

        try:
            b_cart = aniso_scale_and_b.b_cart
        except AttributeError, e:
            print >> out, "*** ERROR ***"
            print >> out, str(e)
            show_exception_info_if_full_testing()
            return
Ejemplo n.º 4
0
    def __init__(self,
                 miller_array,
                 phil_object,
                 out=None,
                 out_plot=None,
                 miller_calc=None,
                 original_intensities=None,
                 completeness_as_non_anomalous=None,
                 verbose=0):
        if out is None:
            out = sys.stdout
        if verbose > 0:
            print(file=out)
            print(file=out)
            print("Matthews coefficient and Solvent content statistics",
                  file=out)
        n_copies_solc = 1.0
        self.nres_known = False
        if (phil_object.scaling.input.asu_contents.n_residues is not None
                or phil_object.scaling.input.asu_contents.n_bases is not None):
            self.nres_known = True
            if (phil_object.scaling.input.asu_contents.sequence_file
                    is not None):
                print("  warning: ignoring sequence file", file=out)
        elif (phil_object.scaling.input.asu_contents.sequence_file
              is not None):
            print("  determining composition from sequence file %s" % \
              phil_object.scaling.input.asu_contents.sequence_file, file=out)
            seq_comp = iotbx.bioinformatics.composition_from_sequence_file(
                file_name=phil_object.scaling.input.asu_contents.sequence_file,
                log=out)
            if (seq_comp is not None):
                phil_object.scaling.input.asu_contents.n_residues = seq_comp.n_residues
                phil_object.scaling.input.asu_contents.n_bases = seq_comp.n_bases
                self.nres_known = True
        matthews_results = matthews.matthews_rupp(
            crystal_symmetry=miller_array,
            n_residues=phil_object.scaling.input.asu_contents.n_residues,
            n_bases=phil_object.scaling.input.asu_contents.n_bases,
            out=out,
            verbose=1)
        phil_object.scaling.input.asu_contents.n_residues = matthews_results[0]
        phil_object.scaling.input.asu_contents.n_bases = matthews_results[1]
        n_copies_solc = matthews_results[2]
        self.matthews_results = matthews_results

        if phil_object.scaling.input.asu_contents.n_copies_per_asu is not None:
            n_copies_solc = phil_object.scaling.input.asu_contents.n_copies_per_asu
            self.defined_copies = n_copies_solc
            if verbose > 0:
                print("Number of copies per asymmetric unit provided",
                      file=out)
                print(" Will use user specified value of ",
                      n_copies_solc,
                      file=out)
        else:
            phil_object.scaling.input.asu_contents.n_copies_per_asu = n_copies_solc
            self.guessed_copies = n_copies_solc

        # first report on I over sigma
        miller_array_new = miller_array
        self.data_strength = None
        miller_array_intensities = miller_array
        if (original_intensities is not None):
            assert original_intensities.is_xray_intensity_array()
            miller_array_intensities = original_intensities
        if miller_array_intensities.sigmas() is not None:
            data_strength = data_statistics.i_sigi_completeness_stats(
                miller_array_intensities,
                isigi_cut=phil_object.scaling.input.parameters.
                misc_twin_parameters.twin_test_cuts.isigi_cut,
                completeness_cut=phil_object.scaling.input.parameters.
                misc_twin_parameters.twin_test_cuts.completeness_cut,
                completeness_as_non_anomalous=completeness_as_non_anomalous)
            data_strength.show(out)
            self.data_strength = data_strength
            if phil_object.scaling.input.parameters.misc_twin_parameters.twin_test_cuts.high_resolution is None:
                if data_strength.resolution_cut > data_strength.resolution_at_least:
                    phil_object.scaling.input.parameters.misc_twin_parameters.twin_test_cuts.high_resolution = data_strength.resolution_at_least
                else:
                    phil_object.scaling.input.parameters.misc_twin_parameters.twin_test_cuts.high_resolution = data_strength.resolution_cut

        ## Isotropic wilson scaling
        if verbose > 0:
            print(file=out)
            print(file=out)
            print("Maximum likelihood isotropic Wilson scaling ", file=out)

        n_residues = phil_object.scaling.input.asu_contents.n_residues
        n_bases = phil_object.scaling.input.asu_contents.n_bases
        if n_residues is None:
            n_residues = 0
        if n_bases is None:
            n_bases = 0
        if n_bases + n_residues == 0:
            raise Sorry("No scatterers available")
        iso_scale_and_b = absolute_scaling.ml_iso_absolute_scaling(
            miller_array=miller_array_new,
            n_residues=n_residues * miller_array.space_group().order_z() *
            n_copies_solc,
            n_bases=n_bases * miller_array.space_group().order_z() *
            n_copies_solc)
        iso_scale_and_b.show(out=out, verbose=verbose)
        self.iso_scale_and_b = iso_scale_and_b
        ## Store the b and scale values from isotropic ML scaling
        self.iso_p_scale = iso_scale_and_b.p_scale
        self.iso_b_wilson = iso_scale_and_b.b_wilson

        ## Anisotropic ml wilson scaling
        if verbose > 0:
            print(file=out)
            print(file=out)
            print("Maximum likelihood anisotropic Wilson scaling ", file=out)
        aniso_scale_and_b = absolute_scaling.ml_aniso_absolute_scaling(
            miller_array=miller_array_new,
            n_residues=n_residues * miller_array.space_group().order_z() *
            n_copies_solc,
            n_bases=n_bases * miller_array.space_group().order_z() *
            n_copies_solc)
        aniso_scale_and_b.show(out=out, verbose=1)

        self.aniso_scale_and_b = aniso_scale_and_b

        try:
            b_cart = aniso_scale_and_b.b_cart
        except AttributeError as e:
            print("*** ERROR ***", file=out)
            print(str(e), file=out)
            show_exception_info_if_full_testing()
            return

        self.aniso_p_scale = aniso_scale_and_b.p_scale
        self.aniso_u_star = aniso_scale_and_b.u_star
        self.aniso_b_cart = aniso_scale_and_b.b_cart
        # XXX: for GUI
        self.overall_b_cart = getattr(aniso_scale_and_b, "overall_b_cart",
                                      None)

        ## Correcting for anisotropy
        if verbose > 0:
            print("Correcting for anisotropy in the data", file=out)
            print(file=out)

        b_cart_observed = aniso_scale_and_b.b_cart

        b_trace_average = (b_cart_observed[0] + b_cart_observed[1] +
                           b_cart_observed[2]) / 3.0
        b_trace_min = b_cart_observed[0]
        if b_cart_observed[1] < b_trace_min: b_trace_min = b_cart_observed[1]
        if b_cart_observed[2] < b_trace_min: b_trace_min = b_cart_observed[2]

        if phil_object.scaling.input.optional.aniso.final_b == "eigen_min":
            b_use = aniso_scale_and_b.eigen_values[2]
        elif phil_object.scaling.input.optional.aniso.final_b == "eigen_mean":
            b_use = flex.mean(aniso_scale_and_b.eigen_values)
        elif phil_object.scaling.input.optional.aniso.final_b == "user_b_iso":
            assert phil_object.scaling.input.optional.aniso.b_iso is not None
            b_use = phil_object.scaling.input.optional.aniso.b_iso
        else:
            b_use = 30

        b_cart_aniso_removed = [-b_use, -b_use, -b_use, 0, 0, 0]
        u_star_aniso_removed = adptbx.u_cart_as_u_star(
            miller_array.unit_cell(), adptbx.b_as_u(b_cart_aniso_removed))
        ## I do things in two steps, but can easely be done in 1 step
        ## just for clarity, thats all.
        self.no_aniso_array = absolute_scaling.anisotropic_correction(
            miller_array_new, 0.0, aniso_scale_and_b.u_star)
        self.no_aniso_array = absolute_scaling.anisotropic_correction(
            self.no_aniso_array, 0.0, u_star_aniso_removed)
        self.no_aniso_array = self.no_aniso_array.set_observation_type(
            miller_array)

        ## Make normalised structure factors please

        sel_big = self.no_aniso_array.data() > 1.e+50
        self.no_aniso_array = self.no_aniso_array.array(
            data=self.no_aniso_array.data().set_selected(sel_big, 0))
        self.no_aniso_array = self.no_aniso_array.set_observation_type(
            miller_array)

        normalistion = absolute_scaling.kernel_normalisation(
            self.no_aniso_array, auto_kernel=True)
        self.normalised_miller = normalistion.normalised_miller.deep_copy()

        self.phil_object = phil_object

        ## Some basic statistics and sanity checks follow
        if verbose > 0:
            print("Some basic intensity statistics follow.", file=out)
            print(file=out)

        basic_data_stats = data_statistics.basic_intensity_statistics(
            miller_array,
            aniso_scale_and_b.p_scale,
            aniso_scale_and_b.u_star,
            iso_scale_and_b.scat_info,
            out=out,
            out_plot=out_plot)
        self.basic_data_stats = basic_data_stats
        self.miller_array = basic_data_stats.new_miller

        #relative wilson plot
        self.rel_wilson = None
        if (miller_calc is not None) and (miller_calc.d_min() < 4.0):
            try:
                self.rel_wilson = relative_wilson.relative_wilson(
                    miller_obs=miller_array, miller_calc=miller_calc)
            except RuntimeError as e:
                print("*** Error calculating relative Wilson plot - skipping.",
                      file=out)
                print("", file=out)

        if verbose > 0:
            print("Basic analyses completed", file=out)
Ejemplo n.º 5
0
  def __init__(self,
               miller_array,
               phil_object,
               out=None,
               out_plot=None, miller_calc=None,
               original_intensities=None,
               completeness_as_non_anomalous=None,
               verbose=0):
    if out is None:
      out=sys.stdout
    if verbose>0:
      print >> out
      print >> out
      print >> out, "Matthews coefficient and Solvent content statistics"
    n_copies_solc = 1.0
    self.nres_known = False
    if (phil_object.scaling.input.asu_contents.n_residues is not None or
        phil_object.scaling.input.asu_contents.n_bases is not None) :
      self.nres_known = True
      if (phil_object.scaling.input.asu_contents.sequence_file is not None) :
        print >> out, "  warning: ignoring sequence file"
    elif (phil_object.scaling.input.asu_contents.sequence_file is not None) :
      print >> out, "  determining composition from sequence file %s" % \
        phil_object.scaling.input.asu_contents.sequence_file
      seq_comp = iotbx.bioinformatics.composition_from_sequence_file(
        file_name=phil_object.scaling.input.asu_contents.sequence_file,
        log=out)
      if (seq_comp is not None) :
        phil_object.scaling.input.asu_contents.n_residues = seq_comp.n_residues
        phil_object.scaling.input.asu_contents.n_bases = seq_comp.n_bases
        self.nres_known = True
    matthews_results =matthews.matthews_rupp(
      crystal_symmetry = miller_array,
      n_residues = phil_object.scaling.input.asu_contents.n_residues,
      n_bases = phil_object.scaling.input.asu_contents.n_bases,
      out=out,verbose=1)
    phil_object.scaling.input.asu_contents.n_residues = matthews_results[0]
    phil_object.scaling.input.asu_contents.n_bases = matthews_results[1]
    n_copies_solc = matthews_results[2]
    self.matthews_results = matthews_results

    if phil_object.scaling.input.asu_contents.n_copies_per_asu is not None:
      n_copies_solc = phil_object.scaling.input.asu_contents.n_copies_per_asu
      self.defined_copies = n_copies_solc
      if verbose>0:
        print >> out,"Number of copies per asymmetric unit provided"
        print >> out," Will use user specified value of ", n_copies_solc
    else:
      phil_object.scaling.input.asu_contents.n_copies_per_asu = n_copies_solc
      self.guessed_copies = n_copies_solc

    # first report on I over sigma
    miller_array_new = miller_array
    self.data_strength = None
    miller_array_intensities = miller_array
    if (original_intensities is not None) :
      assert original_intensities.is_xray_intensity_array()
      miller_array_intensities = original_intensities
    if miller_array_intensities.sigmas() is not None:
      data_strength=data_statistics.i_sigi_completeness_stats(
        miller_array_intensities,
        isigi_cut = phil_object.scaling.input.parameters.misc_twin_parameters.twin_test_cuts.isigi_cut,
        completeness_cut = phil_object.scaling.input.parameters.misc_twin_parameters.twin_test_cuts.completeness_cut,
      completeness_as_non_anomalous=completeness_as_non_anomalous)
      data_strength.show(out)
      self.data_strength = data_strength
      if phil_object.scaling.input.parameters.misc_twin_parameters.twin_test_cuts.high_resolution is None:
        if data_strength.resolution_cut > data_strength.resolution_at_least:
          phil_object.scaling.input.parameters.misc_twin_parameters.twin_test_cuts.high_resolution = data_strength.resolution_at_least
        else:
           phil_object.scaling.input.parameters.misc_twin_parameters.twin_test_cuts.high_resolution = data_strength.resolution_cut

    ## Isotropic wilson scaling
    if verbose>0:
      print >> out
      print >> out
      print >> out, "Maximum likelihood isotropic Wilson scaling "

    n_residues =  phil_object.scaling.input.asu_contents.n_residues
    n_bases = phil_object.scaling.input.asu_contents.n_bases
    if n_residues is None:
      n_residues = 0
    if n_bases is None:
      n_bases = 0
    if n_bases+n_residues==0:
      raise Sorry("No scatterers available")
    iso_scale_and_b = absolute_scaling.ml_iso_absolute_scaling(
      miller_array = miller_array_new,
      n_residues = n_residues*
      miller_array.space_group().order_z()*n_copies_solc,
      n_bases=n_bases*
      miller_array.space_group().order_z()*n_copies_solc)
    iso_scale_and_b.show(out=out,verbose=verbose)
    self.iso_scale_and_b = iso_scale_and_b
    ## Store the b and scale values from isotropic ML scaling
    self.iso_p_scale = iso_scale_and_b.p_scale
    self.iso_b_wilson =  iso_scale_and_b.b_wilson


    ## Anisotropic ml wilson scaling
    if verbose>0:
      print >> out
      print >> out
      print >> out, "Maximum likelihood anisotropic Wilson scaling "
    aniso_scale_and_b = absolute_scaling.ml_aniso_absolute_scaling(
      miller_array = miller_array_new,
      n_residues = n_residues*miller_array.space_group().order_z()*n_copies_solc,
      n_bases = n_bases*miller_array.space_group().order_z()*n_copies_solc)
    aniso_scale_and_b.show(out=out,verbose=1)

    self.aniso_scale_and_b = aniso_scale_and_b

    try: b_cart = aniso_scale_and_b.b_cart
    except AttributeError, e:
      print >> out, "*** ERROR ***"
      print >> out, str(e)
      show_exception_info_if_full_testing()
      return