Ejemplo n.º 1
0
    deform_action = lgd.MatrixImageAffineAction(lie_grp, space)
else:
    assert False

# Define what regularizer to use
regularizer = 'point'
if regularizer == 'image':
    # Create set of all points in space
    W = space.tangent_bundle
    w = W.element(space.points().T)

    # Create regularizing functional
    regularizer = 0.1 * odl.solvers.L2NormSquared(W).translated(w)

    # Create action
    regularizer_action = lgd.ProductSpaceAction(deform_action, W.size)
elif regularizer == 'point':
    W = odl.ProductSpace(odl.rn(space.ndim), 3)
    w = W.element([[0, 0], [0, 1], [1, 0]])

    # Create regularizing functional
    regularizer = 0.01 * odl.solvers.L2NormSquared(W).translated(w)

    # Create action
    if lie_grp_type == 'affine' or lie_grp_type == 'rigid':
        point_action = lgd.MatrixVectorAffineAction(lie_grp, W[0])
    else:
        point_action = lgd.MatrixVectorAction(lie_grp, W[0])
    regularizer_action = lgd.ProductSpaceAction(point_action, W.size)
elif regularizer == 'determinant':
    W = odl.rn(1)
Ejemplo n.º 2
0
grid = space.element(
    lambda x: np.cos(x[0] * np.pi * 5)**20 + np.cos(x[1] * np.pi * 5)**20)

# Create regularizing functional
# regularizer = 3 * odl.solvers.KullbackLeibler(space, prior=w)
regularizer = 0.5 * (odl.solvers.L2NormSquared(space) *
                     weighting).translated(w)

# Create action
regularizer_action = lgd.JacobianDeterminantScalingAction(lie_grp, space)

# Initial guess
g = lie_grp.identity

# Combine action and functional into single object.
action = lgd.ProductSpaceAction(deform_action, regularizer_action,
                                geometric_deform_action)
x = action.domain.element([template, w, grid]).copy()
f = odl.solvers.SeparableSum(data_matching, regularizer,
                             odl.solvers.ZeroFunctional(space))

# Show some results, reuse the plot
template.show('template')
target.show('target')

# Create callback that displays the current iterate and prints the function
# value
callback = odl.solvers.CallbackShow('diffemorphic matching', step=20)
callback &= odl.solvers.CallbackPrint(f)

# Smoothing
filter_width = 0.5  # standard deviation of the Gaussian filter
Ejemplo n.º 3
0
v1 *= 1.5 / v1.norm()
f1 = odl.solvers.L2NormSquared(r3).translated(v1)

w1 = W.element([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
f2 = 0.2 * odl.solvers.L2NormSquared(W).translated(w1)

# SELECT GLn or SOn here
# lie_grp = GLn(3)
# lie_grp = lgd.SOn(3)
# point_action = lgd.MatrixVectorAction(lie_grp, r3)

lie_grp = lgd.AffineGroup(3)
point_action = lgd.MatrixVectorAffineAction(lie_grp, r3)

assalg = lie_grp.associated_algebra
power_action = lgd.ProductSpaceAction(point_action, 3)

# Combine action and functional into single object.
action = lgd.ProductSpaceAction(point_action, power_action)
x = action.domain.element([v0, w1])
f = odl.solvers.SeparableSum(f1, f2)

# Initial guess
g = lie_grp.identity

# Create some plotting info
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.set_xlim(-2, 2)
ax.set_ylim(-2, 2)
ax.set_zlim(-2, 2)