Ejemplo n.º 1
0
 def test_permutation(self):
     #test permutation function
     for dn in self.datasets:
         D = data.load(os.path.join(self.dir_name, dn))
         perm = SP.random.permutation(D['X'].shape[0])
         #1. set permuattion
         lmm = limix.CLMM()
         lmm.setK(D['K'])
         lmm.setSNPs(D['X'])
         lmm.setCovs(D['Cov'])
         lmm.setPheno(D['Y'])
         if 1:
             #pdb.set_trace()
             perm = SP.array(
                 perm, dtype='int32'
             )  #Windows needs int32 as long -> fix interface to accept int64 types
         lmm.setPermutation(perm)
         lmm.process()
         pv_perm1 = lmm.getPv().ravel()
         #2. do by hand
         lmm = limix.CLMM()
         lmm.setK(D['K'])
         lmm.setSNPs(D['X'][perm])
         lmm.setCovs(D['Cov'])
         lmm.setPheno(D['Y'])
         lmm.process()
         pv_perm2 = lmm.getPv().ravel()
         D2 = (SP.log10(pv_perm1) - SP.log10(pv_perm2))**2
         RV = SP.sqrt(D2.mean())
         self.assertTrue(RV < 1E-6)
Ejemplo n.º 2
0
    def estimateHeritabilities(self, K, verbose=False):
        """
        estimate variance components and fixed effects
        from a single trait model having only two terms
        """

        # Fit single trait model
        varg = SP.zeros(self.P)
        varn = SP.zeros(self.P)
        fixed = SP.zeros((1, self.P))

        for p in range(self.P):
            y = self.Y[:, p:p + 1]
            lmm = limix.CLMM()
            lmm.setK(K)
            lmm.setSNPs(SP.ones((K.shape[0], 1)))
            lmm.setPheno(y)
            lmm.setCovs(SP.zeros((K.shape[0], 1)))
            lmm.setVarcompApprox0(-20, 20, 1000)
            lmm.process()
            delta = SP.exp(lmm.getLdelta0()[0, 0])
            Vtot = SP.exp(lmm.getLSigma()[0, 0])

            varg[p] = Vtot
            varn[p] = delta * Vtot
            fixed[:, p] = lmm.getBetaSNP()

            if verbose: print p

        sth = {}
        sth['varg'] = varg
        sth['varn'] = varn
        sth['fixed'] = fixed

        return sth
Ejemplo n.º 3
0
def simple_lmm(snps,
               pheno,
               K=None,
               covs=None,
               test='lrt',
               NumIntervalsDelta0=100,
               NumIntervalsDeltaAlt=0,
               searchDelta=False):
    """
    Univariate fixed effects linear mixed model test for all SNPs
    
    Args:
        snps:   [N x S] SP.array of S SNPs for N individuals
        pheno:  [N x 1] SP.array of 1 phenotype for N individuals
        K:      [N x N] SP.array of LMM-covariance/kinship koefficients (optional)
                        If not provided, then linear regression analysis is performed
        covs:   [N x D] SP.array of D covariates for N individuals
        test:   'lrt' for likelihood ratio test (default) or 'f' for F-test
        NumIntervalsDelta0:  number of steps for delta optimization on the null model (100)
        NumIntervalsDeltaAlt:number of steps for delta optimization on the alt. model (0 - no optimization)
        searchDelta:     Carry out delta optimization on the alternative model? if yes We use NumIntervalsDeltaAlt steps
    
    Returns:
        limix LMM object
    """
    t0 = time.time()
    if K is None:
        K = SP.eye(snps.shape[0])
    lm = limix.CLMM()
    lm.setK(K)
    lm.setSNPs(snps)
    lm.setPheno(pheno)
    if covs is None:
        covs = SP.ones((snps.shape[0], 1))
    lm.setCovs(covs)
    if test == 'lrt':
        lm.setTestStatistics(0)
    elif test == 'f':
        lm.setTestStatistics(1)
    else:
        print test
        raise NotImplementedError("only f or lrt are implemented")
    #set number of delta grid optimizations?
    lm.setNumIntervals0(NumIntervalsDelta0)
    if searchDelta:
        lm.setNumIntervalsAlt(NumIntervalsDeltaAlt)
    else:
        lm.setNumIntervalsAlt(0)
    lm.process()
    t1 = time.time()
    print("finished GWAS testing in %.2f seconds" % (t1 - t0))
    return lm
Ejemplo n.º 4
0
 def test_exceptions(self):
     D = data.load(os.path.join(self.dir_name, self.datasets[0]))
     lmm = limix.CLMM()
     N = 100
     K = SP.eye(N)
     X = SP.randn(N, 100)
     Y = SP.randn(N + 1, 1)
     Cov = SP.randn(N, 1)
     lmm.setK(K)
     lmm.setSNPs(X)
     lmm.setCovs(Cov)
     lmm.setPheno(Y)
     try:
         lmm.process()
     except Exception, e:
         self.assertTrue(1 == 1)
         pass
Ejemplo n.º 5
0
    def _getH2singleTrait(self, K, verbose=None):
        """
        Internal function for parameter initialization
        estimate variance components and fixed effect using a linear mixed model with an intercept and 2 random effects (one is noise)
        Args:
            K:        covariance matrix of the non-noise random effect term 
        """
        verbose = limix.getVerbose(verbose)
        # Fit single trait model
        varg = sp.zeros(self.P)
        varn = sp.zeros(self.P)
        fixed = sp.zeros((1, self.P))

        for p in range(self.P):
            y = self.Y[:, p:p + 1]
            # check if some sull value
            I = sp.isnan(y[:, 0])
            if I.sum() > 0:
                y = y[~I, :]
                _K = K[~I, :][:, ~I]
            else:
                _K = copy.copy(K)
            lmm = limix.CLMM()
            lmm.setK(_K)
            lmm.setSNPs(sp.ones((y.shape[0], 1)))
            lmm.setPheno(y)
            lmm.setCovs(sp.zeros((y.shape[0], 1)))
            lmm.setVarcompApprox0(-20, 20, 1000)
            lmm.process()
            delta = sp.exp(lmm.getLdelta0()[0, 0])
            Vtot = sp.exp(lmm.getLSigma()[0, 0])

            varg[p] = Vtot
            varn[p] = delta * Vtot
            fixed[:, p] = lmm.getBetaSNP()

            if verbose: print p

        sth = {}
        sth['varg'] = varg
        sth['varn'] = varn
        sth['fixed'] = fixed

        return sth
Ejemplo n.º 6
0
 def test_lmm1(self):
     """basic test, comapring pv"""
     for dn in self.datasets:
         D = data.load(os.path.join(self.dir_name, dn))
         lmm = limix.CLMM()
         lmm.setK(D['K'])
         lmm.setSNPs(D['X'])
         lmm.setCovs(D['Cov'])
         lmm.setPheno(D['Y'])
         lmm.process()
         pv = lmm.getPv().ravel()
         BetaSte = lmm.getBetaSNPste().ravel()
         Beta = lmm.getBetaSNP()
         D2pv = ((SP.log10(pv) - SP.log10(D['pv']))**2)
         D2Beta = (Beta - D['Beta'])**2
         D2BetaSte = (BetaSte - D['BetaSte'])**2
         RV = SP.sqrt(D2pv.mean()) < 1E-6
         RV = RV & (D2Beta.mean() < 1E-6)
         RV = RV & (D2BetaSte.mean() < 1E-6)
         self.assertTrue(RV)
Ejemplo n.º 7
0
 def test_lmm1(self):
     """basic test, comapring pv"""
     for dn in self.datasets:
         D = data.load(os.path.join(self.dir_name, dn))
         #make vllarg X. This needs to be changed later
         NL = 1000
         self.NL = NL
         X = SP.tile(D['X'], (1, self.NL))
         lmm = limix.CLMM()
         lmm.setK(D['K'])
         lmm.setSNPs(X)
         lmm.setCovs(D['Cov'])
         lmm.setPheno(D['Y'])
         lmm.process()
         pv = lmm.getPv().ravel()
         BetaSte = lmm.getBetaSNPste().ravel()
         Beta = lmm.getBetaSNP()
         D2pv = (SP.log10(pv) - SP.log10(SP.tile(D['pv'], self.NL))**2)
         D2Beta = (Beta - SP.tile(D['Beta'], self.NL))**2
         D2BetaSte = (BetaSte - SP.tile(D['BetaSte'], self.NL))**2
         RV = SP.sqrt(D2pv.mean()) < 1E-6
         RV = RV & (D2Beta.mean() < 1E-6)
         RV = RV & (D2BetaSte.mean() < 1E-6)
         self.assertTrue(RV)
Ejemplo n.º 8
0
print "needed %.2f seconds for variance component learning" % (t1 - t0)

#get optmized variance component
Ke = GP['covar_E'].K()
K = GP['covar'].K()

#variance components are in here:
params_E = GP['covar_E'].getParams()
params_G = GP['covar_G'].getParams()

K0 = SP.eye(K.shape[0])

#1. Main effect
#covariates
C = SP.ones([2 * N, 1])
lmm = limix.CLMM()
lmm.setK(scale_k(K))
lmm.setSNPs(Xf)
lmm.setPheno(Y)
#covariates: column of ones
lmm.setCovs(C)
#EmmaX mode with useful default settings
lmm.setEMMAX()
t0 = time.time()
lmm.process()
t1 = time.time()
pv = lmm.getPv().flatten()
print "neede %.2f seconds for GWAS scan" % (t1 - t0)

#comparison with standard Kpop
lmm.setK(Kpopf)