Ejemplo n.º 1
0
 def setUp(self):
     SP.random.seed(1)
     self.n = 4
     self.rank = 2
     self.C = dlimix_legacy.CLowRankCF(self.n, self.rank)
     self.name = 'CLowRankCF'
     self.n_params = self.C.getNumberParams()
     params = SP.exp(SP.randn(self.n_params))
     self.C.setParams(params)
Ejemplo n.º 2
0
 def setUp(self):
     SP.random.seed(1)
     self.n = 4
     self.rank = 1
     d = SP.rand(self.n) + 1
     C0 = dlimix_legacy.CSumCF()
     C0.addCovariance(dlimix_legacy.CLowRankCF(self.n, self.rank))
     C0.addCovariance(dlimix_legacy.CDiagonalCF(self.n))
     self.C = dlimix_legacy.CFixedDiagonalCF(C0, d)
     self.name = 'CFixedDiagonalCF'
     self.n_params = self.C.getNumberParams()
     params = SP.randn(self.n_params)
     self.C.setParams(params)
     """
Ejemplo n.º 3
0
    def __init__(self,
                 Y=None,
                 X0=None,
                 k=1,
                 standardize=False,
                 interaction=True):
        """
		Y:		data [NxG]
		X0:		known latent factors [Nxk0]
		k:		number of latent factors to infer
		"""

        assert Y != None, 'gpCLVM:: set Y!'
        assert X0 != None, 'gpCLVM:: set X0!'

        self.cache = {}
        self.interaction = interaction

        # read data
        self._setY(Y, standardize=standardize)
        self._setX0(X0)
        self.k = k

        # covariance for known latex factor
        self.C0 = limix.CFixedCF(self.K0)

        # covariance for unknow latent factor
        self.C = limix.CProductCF()
        self.Ca = limix.CLowRankCF(self.N, self.k)
        self.C.addCovariance(self.Ca)
        if self.interaction == True:
            self.Cb1 = limix.CFixedCF(SP.ones((self.N, self.N)))
            self.Cb1.setParamMask(SP.zeros(1))
            self.Cb2 = limix.CFixedCF(self.K0)
            self.Cb = limix.CSumCF()
            self.Cb.addCovariance(self.Cb1)
            self.Cb.addCovariance(self.Cb2)
            self.C.addCovariance(self.Cb)

        # total covariance
        covar = limix.CSumCF()
        covar.addCovariance(self.C0)
        covar.addCovariance(self.C)

        # likelihood
        self.ll = limix.CLikNormalIso()

        # init GP and hyper params
        self.gp = limix.CGPbase(covar, self.ll)
        self.gp.setY(self.Y)
    def _buildTraitCovar(self,
                         trait_covar_type='lowrank_diag',
                         rank=1,
                         fixed_trait_covar=None,
                         jitter=1e-4,
                         d=None):
        """
        Internal functions that builds the trait covariance matrix using the LIMIX framework

        Args:
            trait_covar_type: type of covaraince to use. Default 'freeform'. possible values are
            rank:       rank of a possible lowrank component (default 1)
            fixed_trait_covar:   PxP matrix for the (predefined) trait-to-trait covariance matrix if fixed type is used
            jitter:        diagonal contribution added to trait-to-trait covariance matrices for regularization
        Returns:
            LIMIX::PCovarianceFunction for Trait covariance matrix
            vector labelling Cholesky parameters for different initializations
        """
        cov = dlimix_legacy.CSumCF()
        if trait_covar_type == 'freeform':
            cov.addCovariance(dlimix_legacy.CFreeFormCF(self.P))
            L = sp.eye(self.P)
            diag = sp.concatenate([L[i, :(i + 1)] for i in range(self.P)])
        elif trait_covar_type == 'fixed':
            assert fixed_trait_covar is not None, 'VarianceDecomposition:: set fixed_trait_covar'
            assert fixed_trait_covar.shape[
                0] == self.N, 'VarianceDecomposition:: Incompatible shape for fixed_trait_covar'
            assert fixed_trait_covar.shape[
                1] == self.N, 'VarianceDecomposition:: Incompatible shape for fixed_trait_covar'
            cov.addCovariance(dlimix_legacy.CFixedCF(fixed_trait_covar))
            diag = sp.zeros(1)
        elif trait_covar_type == 'diag':
            cov.addCovariance(dlimix_legacy.CDiagonalCF(self.P))
            diag = sp.ones(self.P)
        elif trait_covar_type == 'lowrank':
            cov.addCovariance(dlimix_legacy.CLowRankCF(self.P, rank))
            diag = sp.zeros(self.P * rank)
        elif trait_covar_type == 'lowrank_id':
            cov.addCovariance(dlimix_legacy.CLowRankCF(self.P, rank))
            cov.addCovariance(dlimix_legacy.CFixedCF(sp.eye(self.P)))
            diag = sp.concatenate([sp.zeros(self.P * rank), sp.ones(1)])
        elif trait_covar_type == 'lowrank_diag':
            cov.addCovariance(dlimix_legacy.CLowRankCF(self.P, rank))
            cov.addCovariance(dlimix_legacy.CDiagonalCF(self.P))
            diag = sp.concatenate([sp.zeros(self.P * rank), sp.ones(self.P)])
        elif trait_covar_type == 'lowrank_diag1':
            assert d.shape[0] == self.P, 'dimension mismatch for d'
            cov1 = dlimix_legacy.CSumCF()
            cov1.addCovariance(dlimix_legacy.CLowRankCF(self.P, rank))
            cov1.addCovariance(dlimix_legacy.CDiagonalCF(self.P))
            cov.addCovariance(dlimix_legacy.CFixedDiagonalCF(cov1, d))
            diag = sp.concatenate([sp.zeros(self.P * rank), sp.ones(self.P)])
        elif trait_covar_type == 'freeform1':
            assert d.shape[0] == self.P, 'dimension mismatch for d'
            cov.addCovariance(
                dlimix_legacy.CFixedDiagonalCF(
                    dlimix_legacy.CFreeFormCF(self.P), d))
            L = sp.eye(self.P)
            diag = sp.concatenate([L[i, :(i + 1)] for i in range(self.P)])
        elif trait_covar_type == 'block':
            cov.addCovariance(dlimix_legacy.CFixedCF(sp.ones(
                (self.P, self.P))))
            diag = sp.zeros(1)
        elif trait_covar_type == 'block_id':
            cov.addCovariance(dlimix_legacy.CFixedCF(sp.ones(
                (self.P, self.P))))
            cov.addCovariance(dlimix_legacy.CFixedCF(sp.eye(self.P)))
            diag = sp.concatenate([sp.zeros(1), sp.ones(1)])
        elif trait_covar_type == 'block_diag':
            cov.addCovariance(dlimix_legacy.CFixedCF(sp.ones(
                (self.P, self.P))))
            cov.addCovariance(dlimix_legacy.CDiagonalCF(self.P))
            diag = sp.concatenate([sp.zeros(1), sp.ones(self.P)])
        else:
            assert True == False, 'VarianceDecomposition:: trait_covar_type not valid'
        if jitter > 0:
            _cov = dlimix_legacy.CFixedCF(sp.eye(self.P))
            _cov.setParams(sp.array([sp.sqrt(jitter)]))
            _cov.setParamMask(sp.zeros(1))
            cov.addCovariance(_cov)
        return cov, diag