Ejemplo n.º 1
0
def restart_conjugate(_f, _x, n):
    fun = Function(_f)
    x = array(_x)
    while True:
        d = -fun.grad(x)
        k=0
        if(np.linalg.norm(d)<0.01):
            break
        while fun.norm(x) > 0.01:
            g = np.mat(fun.grad(x))

            alpha = wolfe(_f, x, d)
            x = x + alpha * d
            k=k+1

            g1= np.mat(fun.grad(x))

            if np.dot(g1,g.T)/np.dot(g1,g1.T)>0.1 or k>=n:
                if np.linalg.norm(g1)<0.01:
                    return x
                break
            else:
                beta = np.dot(g1, g1.T) / np.dot(g, g.T)
                d = array(-g + beta * d)[0]
                if np.dot(mat(d),g1.T)>0:
                    break
    return x
Ejemplo n.º 2
0
def newton(f, start):
    fun = Function(f)
    x = array(start)
    g = fun.grad(x)
    while fun.norm(x) > 0.01:
        G = fun.hesse(x)
        d = (-dot(linalg.inv(G), g)).tolist()[0]
        alpha = wolfe(f, x, d)
        x = x + alpha * array(d)
        g = fun.grad(x)
    return x
Ejemplo n.º 3
0
def conjugate(_f, _x):
    fun = Function(_f)
    x = np.array(_x)
    d = -fun.grad(x)
    while fun.norm(x) > 0.01:
        alpha = wolfe(_f, x, d)
        g = np.mat(fun.grad(x))
        beta = 1 / np.dot(g, g.T)
        x = x + alpha * d
        g = np.mat(fun.grad(x))
        beta = beta * np.dot(g, g.T)
        d = array(-g + beta * d)[0]
    return x
Ejemplo n.º 4
0
def sequence(_f, _x, a2):
    x = array(_x)
    m = x.size
    X = range(0, m)
    n = size(a2)
    N = range(0, n)

    def _l(val):
        value = array(val)[X]
        r = _f(value)
        for i in N:
            a = a2[i]
            r -= val[i] * a(value)
        return r

    def fi(mu):
        def _fi(x):
            r = _f(x)
            for a in a2:
                r += abs(a(x)) / mu
            return r

        return _fi

    f = Function(_f)
    l = Function(_l)

    k = 0
    while k < 30:
        A = Jacobbi_val(a2, x)

        g = f.grad(x)
        lamb = solve(A, g)
        G = l.hesse(concatenate([x, lamb]).tolist())[X, :][:, X]

        c = range(0, n)
        for i in range(0, n):
            a = a2[i]
            c[i] = a(x)

        dx = equation_constraint(G, g, A.T, c)
        mu = 0.5
        fi_x = fi(mu)
        if linalg.norm(c) + linalg.norm(g - dot(A, lamb)) < 0.01 or k == 29:
            return x
        alpha = wolfe(fi_x, x, dx.tolist())
        x = x + alpha * dx
        print(x)
        k = k + 1
Ejemplo n.º 5
0
def simu_newton(f, start):
    n = size(start)
    fun = Function(f)
    x = array(start)
    g = fun.grad(x)
    B = eye(n)
    while fun.norm(x) > 0.01:
        d = (-dot(linalg.inv(B), g)).tolist()
        alpha = wolfe(f, x, d)
        x_d = array([alpha * array(d)])
        x = x + alpha * array(d)
        g_d = array([fun.grad(x) - g])
        g = fun.grad(x)
        B_d = dot(B, x_d.T)
        B = B + dot(g_d.T, g_d) / dot(g_d, x_d.T) - dot(B_d, B_d.T) / dot(
            x_d, B_d)
    return x