Ejemplo n.º 1
0
    def sigma(self, eps: NDArray, x: Sequence[NDArray]) -> NDArray:
        """
        Estimate residual covariance.

        Parameters
        ----------
        eps : ndarray
            The residuals from the system of equations.
        x : list[ndarray]
            A list of the regressor matrices for each equation in the system.

        Returns
        -------
        ndarray
            The estimated covariance matrix of the residuals.
        """
        nobs = eps.shape[0]
        eps = eps - eps.mean(0)
        sigma = eps.T @ eps / nobs
        scale = 1.0
        if self._debiased:
            k = array(list(map(lambda a: a.shape[1], x)))[:, None]
            k = sqrt(k)
            scale = nobs / (nobs - k @ k.T)
        sigma *= scale

        return sigma
Ejemplo n.º 2
0
    def w(self, moments: NDArray) -> NDArray:
        """
        Score/moment condition weighting matrix

        Parameters
        ----------
        moments : ndarray
            Moment conditions (nobs by nmoments)

        Returns
        -------
        ndarray
            Weighting matrix computed from moment conditions
        """
        if self._center:
            moments = moments - moments.mean(0)[None, :]
        out = self._kernel_cov(moments)

        return inv(out)
Ejemplo n.º 3
0
    def w(self, moments: NDArray) -> NDArray:
        """
        Score/moment condition weighting matrix

        Parameters
        ----------
        moments : ndarray
            Moment conditions (nobs by nmoments)

        Returns
        -------
        ndarray
            Weighting matrix computed from moment conditions
        """
        if self._center:
            moments = moments - moments.mean(0)[None, :]
        nobs = moments.shape[0]
        out = moments.T @ moments / nobs

        return inv((out + out.T) / 2.0)
Ejemplo n.º 4
0
    def weight_matrix(self, x: NDArray, z: NDArray, eps: NDArray) -> NDArray:
        """
        Parameters
        ----------
        x : ndarray
            Model regressors (exog and endog), (nobs by nvar)
        z : ndarray
            Model instruments (exog and instruments), (nobs by ninstr)
        eps : ndarray
            Model errors (nobs by 1)

        Returns
        -------
        ndarray
            Covariance of GMM moment conditions.
        """
        nobs, nvar = x.shape
        mu = eps.mean(0)
        s2 = (eps - mu).T @ (eps - mu) / nobs
        w = s2 * z.T @ z / nobs
        w *= 1 if not self._debiased else nobs / (nobs - nvar)
        return w