Ejemplo n.º 1
0
                   sm.symbols('zeta01_x,zeta02_x,zeta01_y,zeta02_y', real=True)
V0_x,V0_y=sm.symbols('V0_x,V0_y', real=True)
V0=smarr.MutableDenseNDimArray([V0_x,V0_y])

Kskew2D=smarr.MutableDenseNDimArray([[0,-1],[1,0]])

# Position vectors
Zeta01=smarr.MutableDenseNDimArray([zeta01_x,zeta01_y])
Zeta02=smarr.MutableDenseNDimArray([zeta02_x,zeta02_y])

# define order of derivation
ZetaAllList=[zeta01_x,zeta02_x,zeta01_y,zeta02_y]

# Delta vector (and derivative)
Dzeta=Zeta02-Zeta01
Dzeta_unit=Dzeta/sm.sqrt(linfunc.scalar_product(Dzeta,Dzeta))
#Dzeta_unit=Dzeta_unit.simplify()

# Normal
Norm=linfunc.matrix_product(Kskew2D,Dzeta_unit)
Norm=linfunc.simplify(Norm)

### check norm
assert linfunc.scalar_product(Norm,Dzeta).simplify()==0, 'Norm is wrong'
assert linfunc.scalar_product(Norm,Dzeta_unit).simplify()==0, 'Norm is wrong'
assert linfunc.scalar_product(Norm,Norm).simplify()==1, 'Normal is not unit length'

# Normal velocity
Vperp=linfunc.scalar_product(Norm,V0)

Ejemplo n.º 2
0
dRA = sm.derive_by_array(RA, [ZetaP, ZetaA, ZetaB])
dRB = sm.derive_by_array(RB, [ZetaP, ZetaA, ZetaB])
dRAB = sm.derive_by_array(RAB, [ZetaP, ZetaA, ZetaB])

################################################################################

### redefine R02,R13
ra_x, ra_y, ra_z = sm.symbols('ra_x ra_y ra_z', real=True)
rb_x, rb_y, rb_z = sm.symbols('rb_x rb_y rb_z', real=True)
rab_x, rab_y, rab_z = sm.symbols('rab_x rab_y rab_z', real=True)
RA = smarr.MutableDenseNDimArray([ra_x, ra_y, ra_z])
RB = smarr.MutableDenseNDimArray([rb_x, rb_y, rb_z])
RAB = smarr.MutableDenseNDimArray([rab_x, rab_y, rab_z])

Vcross = linfunc.cross_product(RA, RB)
Vcross_sq = linfunc.scalar_product(Vcross, Vcross)
#Vcross_norm=linfunc.norm2(Vcross)
#Vcross_unit=Vcross/Vcross_norm
RA_unit = RA / linfunc.norm2(RA)
RB_unit = RB / linfunc.norm2(RB)
#Q=1/4/sm.pi*Vcross_unit*linfunc.scalar_product(RAB,(RA_unit-RB_unit))
Q = Vcross * linfunc.scalar_product(RAB, (RA_unit - RB_unit)) / Vcross_sq

dQ = sm.derive_by_array(Q, [RA, RB, RAB])

##### shorted equation
ra_norm, rb_norm = sm.symbols('ra_norm rb_norm')
dQshort = dQ.copy()
dQshort = dQshort.subs(sm.sqrt(ra_x**2 + ra_y**2 + ra_z**2), ra_norm)
dQshort = dQshort.subs(sm.sqrt(rb_x**2 + rb_y**2 + rb_z**2), rb_norm)
Ejemplo n.º 3
0
U02 = smarr.MutableDenseNDimArray([u01_x, u01_y, u01_z])
U03 = smarr.MutableDenseNDimArray([u02_x, u02_y, u02_z])
U04 = smarr.MutableDenseNDimArray([u03_x, u03_y, u03_z])

### velocity at collocation point
uc_x, uc_y, uc_z = sm.symbols('uc_x uc_y uc_z', real=True)
Uc = smarr.MutableDenseNDimArray([uc_x, uc_y, uc_z])

### Compute normal to panel
# see surface.AeroGridSurface.get_panel_normal
R02 = Zeta02 - Zeta00
R13 = Zeta03 - Zeta01
Norm = linfunc.cross_product(R02, R13)
Norm = Norm / linfunc.norm2(Norm)
### check norm
assert linfunc.scalar_product(Norm, R02).simplify() == 0, 'Norm is wrong'
assert linfunc.scalar_product(Norm, R13).simplify() == 0, 'Norm is wrong'
assert linfunc.scalar_product(
    Norm, Norm).simplify() == 1, 'Normal is not unit length'

### Compute normal velocity at panel
Unorm = linfunc.scalar_product(Norm, Uc)
Unorm = sm.simplify(Unorm)

### Compute derivative
dUnorm_dZeta = sm.derive_by_array(Unorm, [Zeta00, Zeta01, Zeta02, Zeta03])
#dUnorm_dZeta=linfunc.simplify(dUnorm_dZeta)

################################################################################
### exploit combined derivatives
################################################################################
Ejemplo n.º 4
0
def Vind_segment(R, cf, g):
    BiotTerm = cf * g * R / linfunc.scalar_product(R, R)
    Qind = linfunc.matrix_product(Kskew2D, BiotTerm)
    return linfunc.simplify(Qind)
Ejemplo n.º 5
0
    return linfunc.simplify(Qind)


# Full vortex velocity
Qind_vortex = Vind_segment(R01, CF, Gamma) - Vind_segment(R02, CF, Gamma)

# Joukovski force
Fjouk = -gamma_s * linfunc.matrix_product(Kskew2D, Qind_vortex)
Fjouk = linfunc.simplify(Fjouk)

### Derivative
Der = sm.derive_by_array(Fjouk, ZetaAllList).transpose()  # 2x6
#Der=linfunc.simplify(Der)

### Verification
BiotTerm_vortex = +CF*Gamma*R01/linfunc.scalar_product(R01,R01) \
         -CF*Gamma*R02/linfunc.scalar_product(R02,R02)
derBiotTerm = sm.derive_by_array(BiotTerm_vortex, ZetaAllList).transpose()
derQind = linfunc.matrix_product(Kskew2D, derBiotTerm)
Der2 = -gamma_s * linfunc.matrix_product(Kskew2D, derQind)

check = linfunc.simplify(Der - Der2)
assert linfunc.scalar_product(check,
                              check) == 0, 'Derivatives are not the same'

################ we use Der2 as it has a shorter form ##########################
Der = Der2

### Shorten expressions
R01_x, R01_y = sm.symbols('R01_x,R01_y', real=True)
R02_x, R02_y = sm.symbols('R02_x,R02_y', real=True)
Ejemplo n.º 6
0
import linfunc

# coordinates
# a00,a01,a02=sm.symbols('a00 a01 a02', real=True)
# a11,a12=sm.symbols('a11 a12', real=True)
# a22=sm.symbols('a22', real=True)

##### derivative w.r.t. Ra,Rb due to cross-product
# show derivative is symmetric
ra_x, ra_y, ra_z = sm.symbols('ra_x ra_y ra_z', real=True)
rb_x, rb_y, rb_z = sm.symbols('rb_x rb_y rb_z', real=True)
RA = smarr.MutableDenseNDimArray([ra_x, ra_y, ra_z])
RB = smarr.MutableDenseNDimArray([rb_x, rb_y, rb_z])
Vcross = linfunc.cross_product(RA, RB)

V2 = linfunc.scalar_product(Vcross, Vcross)
V4 = V2 * V2

Dv = sm.zeros(3)
for ii in range(3):
    Dv[ii, ii] += 1 / V2
    for jj in range(3):
        Dv[ii, jj] += -2 / V4 * Vcross[ii] * Vcross[jj]
DvRAskew = linfunc.matrix_product(Dv, linfunc.skew(RA))
DvRBskew = linfunc.matrix_product(Dv, linfunc.skew(RB))

# verify symetry
print('Verify symmetry of Dv')
for ii in range(3):
    for jj in range(ii + 1, 3):
        print('ii,jj:%d,%d' % (ii, jj))