Ejemplo n.º 1
0
def test_link_clustering(matrix, taxa):
    similarity_matrix = [[1 - cell for cell in row] for row in matrix]

    for val in [True, False]:
        for val2 in [True, False]:
            link_clustering(0.5,
                            matrix,
                            taxa,
                            matrix_type="distances",
                            revert=val,
                            fuzzy=val2)
            link_clustering(0.5,
                            similarity_matrix,
                            taxa,
                            matrix_type="similarities",
                            revert=val,
                            fuzzy=val2)
            link_clustering(0.5,
                            similarity_matrix,
                            taxa,
                            matrix_type="weights",
                            revert=val,
                            fuzzy=val2)

    with pytest.raises(ValueError):
        link_clustering(0.5, matrix, taxa, matrix_type="dummy")
Ejemplo n.º 2
0
    def test_link_clustering(self):
        similarity_matrix = [[1 - cell for cell in row] for row in self.matrix]

        for val in [True, False]:
            for val2 in [True, False]:
                link_clustering(0.5,
                                self.matrix,
                                self.taxa,
                                matrix_type="distances",
                                revert=val,
                                fuzzy=val2)
                link_clustering(0.5,
                                similarity_matrix,
                                self.taxa,
                                matrix_type="similarities",
                                revert=val,
                                fuzzy=val2)
                link_clustering(0.5,
                                similarity_matrix,
                                self.taxa,
                                matrix_type="weights",
                                revert=val,
                                fuzzy=val2)

        assert_raises(ValueError,
                      link_clustering,
                      0.5,
                      self.matrix,
                      self.taxa,
                      matrix_type="dummy")
Ejemplo n.º 3
0
    def test_link_clustering(self):
        from lingpy.algorithm.clustering import link_clustering

        similarity_matrix = [[1-cell for cell in row] for row in self.matrix]
        
        for val in [True,False]:
            for val2 in [True, False]:
                link_clustering(0.5, self.matrix, self.taxa,
                        matrix_type="distances", revert=val, fuzzy=val2)
                link_clustering(0.5, similarity_matrix, self.taxa,
                        matrix_type="similarities", revert=val, fuzzy=val2)
                link_clustering(0.5, similarity_matrix, self.taxa,
                        matrix_type="weights", revert=val, fuzzy=val2)

        assert_raises(ValueError, link_clustering, 0.5, self.matrix, self.taxa,
                matrix_type="dummy")
Ejemplo n.º 4
0
    def test_link_clustering(self):
        from lingpy.algorithm.clustering import link_clustering

        for mt in {"distances", "similarities", "weights"}:
            link_clustering(0.5, [[1, 0], [0, 1]], ['a', 'b'], matrix_type=mt)
Ejemplo n.º 5
0
    def test_link_clustering(self):
        from lingpy.algorithm.clustering import link_clustering

        for mt in {"distances", "similarities", "weights"}:
            link_clustering(0.5, [[1, 0], [0, 1]], ['a', 'b'], matrix_type=mt)