Ejemplo n.º 1
0
def get_multiyear_data(project_fc, project_type, base_df, analysis_year):
    
    ilut_val_fields = [p.col_pop_ilut, p.col_du, p.col_emptot, p.col_k12_enr, p.col_empind, p.col_persntrip_res] \
                  + p.ilut_ptrip_mode_fields    

    fc_pcl_pt = p.parcel_pt_fc_yr(year)
    fc_pcl_poly = p.parcel_poly_fc_yr(year)
    fc_modelhwylinks = p.model_links_fc(year)

    year_dict = {}
    # get data on pop, job, k12 totals
    # point_sum(fc_pclpt, fc_project, project_type, val_fields, buffdist, case_field=None, case_excs_list=[])
    ilut_buff_vals = lu_pt_buff.point_sum(fc_pcl_pt, project_fc, project_type, ilut_val_fields,
                                          p.ilut_sum_buffdist, case_field=None, case_excs_list=[])

    ilut_indjob_share = {"{}_jobshare".format(p.col_empind): ilut_buff_vals[p.col_empind] / ilut_buff_vals[p.col_emptot]}
    ilut_buff_vals.update(ilut_indjob_share)

    ilut_mode_split = {"{}_share".format(modetrp): ilut_buff_vals[modetrp] / ilut_buff_vals[p.col_persntrip_res]
                       for modetrp in p.ilut_ptrip_mode_fields}
    ilut_buff_vals.update(ilut_mode_split)

    # cleanup to remove non-percentage mode split values, if we want to keep output CSV from getting too long.
    # for trip_numcol in p.ilut_ptrip_mode_fields: del ilut_buff_vals[trip_numcol]

    # job + du total
    job_du_tot = {"SUM_JOB_DU": ilut_buff_vals[p.col_du] + ilut_buff_vals[p.col_emptot]}

    # model-based vehicle occupancy
    veh_occ_data = link_occ.get_linkoccup_data(project_fc, project_type, fc_modelhwylinks)

    # land use diversity index
    mix_index_data = mixidx.get_mix_idx(fc_pcl_pt, project_fc, project_type)

    # housing type mix
    housing_mix_data = lu_pt_buff.point_sum(fc_pcl_pt, project_fc, project_type, [p.col_du], p.du_mix_buffdist,
                                            p.col_housing_type, case_excs_list=['Other'])

    # acres of "natural resources" (land use type = forest or agriculture)
    nat_resources_data = urbn.nat_resources(project_fc, project_type, fc_pcl_poly, year)

    # combine into dict
    for d in [ilut_buff_vals, job_du_tot, veh_occ_data, mix_index_data, housing_mix_data, nat_resources_data]:
        year_dict.update(d)

    # make dict into dataframe
    df_year_out = pd.DataFrame.from_dict(year_dict, orient='index')
    
    return df_year_out
Ejemplo n.º 2
0
            ilut_buff_vals[modetrp] / ilut_buff_vals[p.col_persntrip_res]
            for modetrp in p.ilut_ptrip_mode_fields
        }
        ilut_buff_vals.update(ilut_mode_split)

        # cleanup to remove non-percentage mode split values, if we want to keep output CSV from getting too long.
        # for trip_numcol in p.ilut_ptrip_mode_fields: del ilut_buff_vals[trip_numcol]

        # job + du total
        job_du_tot = {
            "SUM_JOB_DU":
            ilut_buff_vals[p.col_du] + ilut_buff_vals[p.col_emptot]
        }

        # model-based vehicle occupancy
        veh_occ_data = link_occ.get_linkoccup_data(project_fc, project_type,
                                                   fc_modelhwylinks)

        # land use diversity index
        mix_index_data = mixidx.get_mix_idx(fc_pcl_pt, project_fc,
                                            project_type)

        # housing type mix
        housing_mix_data = lu_pt_buff.point_sum(fc_pcl_pt,
                                                project_fc,
                                                project_type, [p.col_du],
                                                p.du_mix_buffdist,
                                                p.col_housing_type,
                                                case_excs_list=['Other'])

        # acres of "natural resources" (land use type = forest or agriculture)
        nat_resources_data = urbn.nat_resources(project_fc, fc_pcl_poly, year)
Ejemplo n.º 3
0
        "{}_share".format(modetrp):
        ilut_buff_vals[modetrp] / ilut_buff_vals[p.col_persntrip_res]
        for modetrp in p.ilut_ptrip_mode_fields
    }
    ilut_buff_vals.update(ilut_mode_split)

    # cleanup to remove non-percentage mode split values, if we want to keep output CSV from getting too long.
    # for trip_numcol in p.ilut_ptrip_mode_fields: del ilut_buff_vals[trip_numcol]

    # job + du total
    job_du_tot = {
        "SUM_JOB_DU": ilut_buff_vals[p.col_du] + ilut_buff_vals[p.col_emptot]
    }

    # model-based vehicle occupancy
    veh_occ_data = link_occ.get_linkoccup_data(project_fc, p.ptype_arterial,
                                               p.model_links_fc)

    # land use diversity index
    mix_index_data = mixidx.get_mix_idx(p.parcel_pt_fc, project_fc,
                                        p.ptype_arterial)

    # housing type mix
    housing_mix_data = lu_pt_buff.point_sum(p.parcel_pt_fc,
                                            project_fc,
                                            project_type, [p.col_du],
                                            p.du_mix_buffdist,
                                            p.col_housing_type,
                                            case_excs_list=['Other'])

    # acres of "natural resources" (land use type = forest or agriculture)
    nat_resources_data = urbn.nat_resources(project_fc, p.parcel_poly_fc, 2016)