Ejemplo n.º 1
0
def setup(opts):
    initial_context = tf.placeholder(tf.int32, [batch_size_per_chunk, None])
    p_for_topp = tf.placeholder(tf.float32, [batch_size_per_chunk])
    eos_token = tf.placeholder(tf.int32, [])
    tokens, probs = sample(news_config=news_config,
                           initial_context=initial_context,
                           eos_token=eos_token,
                           ignore_ids=None,
                           p_for_topp=p_for_topp,
                           do_topk=False)
    saver = tf.train.Saver()
    checkpoint_folder = glob_dir(opts['checkpoint_dir'])[0]
    checkpoint_path = '.'.join(glob_dir(checkpoint_folder)[0].split('.')[:-1])
    saver.restore(sess, checkpoint_path)
    return {
        'tokens': tokens,
        'probs': probs,
        'initial_context': initial_context,
        'eos_token': eos_token,
        'p_for_topp': p_for_topp
    }
Ejemplo n.º 2
0
    args.batch_size, max_batch_size, num_chunks, batch_size_per_chunk), flush=True)

# This controls the top p for each generation.
top_p = np.ones((num_chunks, batch_size_per_chunk), dtype=np.float32) * args.top_p

# with open(args.metadata_fn, 'r') as f:
#     articles = [json.loads(l) for i, l in enumerate(f) if i % args.num_folds == args.fold]

tf_config = tf.ConfigProto(allow_soft_placement=True)

with tf.Session(config=tf_config, graph=tf.Graph()) as sess:
    initial_context = tf.placeholder(tf.int32, [batch_size_per_chunk, None])
    p_for_topp = tf.placeholder(tf.float32, [batch_size_per_chunk])
    eos_token = tf.placeholder(tf.int32, [])
    tokens, probs = sample(news_config=news_config, initial_context=initial_context,
                           eos_token=eos_token, ignore_ids=None, p_for_topp=p_for_topp,
                           do_topk=False)

    saver = tf.train.Saver()
    saver.restore(sess, args.model_ckpt)
    print('Loaded model.')
    text = input()
    while text != "":
        for i in range(args.samples):
            print("Sample,", i + 1, " of ", args.samples)
            # Let's go!
            encoded = _tokenize_article_pieces(encoder, text)
            context_formatted = []
            # for key in ['domain', 'date', 'authors', 'title', 'article']:
            #     if key != args.target:
            #         context_formatted.extend(article_pieces.pop(key, []))