Ejemplo n.º 1
0
def gan_loss(fake_flow_d, real_flow_d, conv_real, conv_fake, weight=1):

    EPS = 1e-12

    with tf.variable_scope('generator_loss'):
        g_total_loss = sops.replace_nonfinite(
            tf.reduce_mean(-tf.log(fake_flow_d + EPS)))

        # g_total_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=conv_fake,labels=tf.ones_like(conv_fake)))
        g_total_loss = tf.losses.compute_weighted_loss(g_total_loss, weights=1)

    with tf.variable_scope('discriminator_loss'):
        d_total_loss = sops.replace_nonfinite(
            tf.reduce_mean(-(tf.log(real_flow_d + EPS) +
                             tf.log(1 - fake_flow_d + EPS))))

        # d_total_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=conv_real,labels=tf.ones_like(conv_real)))
        # d_total_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=conv_fake,labels=tf.zeros_like(conv_fake)))
        # d_total_loss = d_total_loss_fake + d_total_loss_real
        # d_total_loss = sops.replace_nonfinite(d_total_loss)
        # feature_matching_loss = endpoint_loss(conv_real,conv_fake,weight=weight + 10,scope='feature_matching_loss')

        # tf.add_to_collection('disc_loss',feature_matching_loss)
        # tf.add_to_collection('disc_loss',d_total_loss)

        d_total_loss = tf.losses.compute_weighted_loss(d_total_loss, weights=1)

        # tf.summary.scalar('disc_loss'+summary_type,d_total_loss)
        # tf.summary.scalar('feature_matching_loss',feature_matching_loss)

    return g_total_loss, d_total_loss
Ejemplo n.º 2
0
def pointwise_l2_loss(inp, gt, epsilon=0.00001,mask = None):
    """Computes the pointwise unsquared l2 loss. One channel is equal to l1
    The input tensors must use the format NCHW. 
    This loss ignores nan values. 
    The loss is normalized by the number of pixels.
    
    inp: Tensor
        This is the prediction.
        
    gt: Tensor
        The ground truth with the same shape as 'inp'
        
    epsilon: float
        The epsilon value to avoid division by zero in the gradient computation
    """
    
    with tf.name_scope('pointwise_l2_loss'):
        gt_ = tf.stop_gradient(gt)
        diff = sops.replace_nonfinite(inp-gt_)
        if mask is not None:
            while len(mask.shape)<len(diff.shape):
                mask = tf.expand_dims(mask,-1)
            diff = mask*diff
    
        return tf.reduce_mean(tf.sqrt(tf.reduce_sum(diff**2, axis=3)+epsilon))
Ejemplo n.º 3
0
def train_for_sceneflow(image1, image2, depth1, depth2, depth_chng,
                        optical_flow):

    max_depth1 = tf.reduce_max(depth1)
    depth1 = depth1 / max_depth1
    depth2 = depth2 / max_depth1

    depth1 = sops.replace_nonfinite(depth1)
    depth2 = sops.replace_nonfinite(depth2)

    image1 = combine_depth_values(image1, depth1, 2)
    image2 = combine_depth_values(image2, depth2, 2)

    img_pair_rgbd = tf.concat([image1, image2], axis=-1)
    img_pair_rgbd_swapped = tf.concat([image2, image1], axis=-1)

    # optical_flow = optical_flow / 50
    # comment for optical flow. Uncomment for Sceneflow
    optical_flow_with_depth_change = combine_depth_values(
        optical_flow, depth_chng, 2)
    optical_flow_with_depth_change_swapped = tf.zeros(
        optical_flow_with_depth_change.get_shape())

    # inputt = divide_inputs_to_patches(img_pair,8)
    # label = divide_inputs_to_patches(label_pair,3)

    # padding_input = tf.constant([[0, 0],[5, 4],[0, 0]])
    # x_dimension_padding = tf.constant([[4, 4],[0, 0],[0,0]])
    # padding2 = tf.constant([[4, 4],[0,0]])
    # padded_img_pair_rgbd = tf.pad(img_pair_rgbd,x_dimension_padding,'CONSTANT')
    # padded_optical_flow_with_depth_change = tf.pad(optical_flow_with_depth_change,x_dimension_padding,'CONSTANT')

    # padded_img_pair_rgbd_swapped = tf.pad(img_pair_rgbd_swapped,x_dimension_padding,'CONSTANT')
    # padded_optical_flow_with_depth_change_swapped = tf.pad(optical_flow_with_depth_change_swapped,x_dimension_padding,'CONSTANT')

    fb_rgbd_img_pair = tf.stack([img_pair_rgbd, img_pair_rgbd_swapped])
    fb_rgbd_optflow_with_depth_change = tf.stack([
        optical_flow_with_depth_change, optical_flow_with_depth_change_swapped
    ])

    return {
        'input_n': fb_rgbd_img_pair,
        'label_n': fb_rgbd_optflow_with_depth_change
    }
Ejemplo n.º 4
0
def KL_divergence_loss(z_mu, z_log_sigma_sq):

    with tf.variable_scope('kl_loss'):

        latent_loss = -tf.reduce_mean(0.5 * tf.reduce_sum(
            1 + z_log_sigma_sq - z_mu**2 - tf.exp(z_log_sigma_sq), axis=1))
        latent_loss = sops.replace_nonfinite(latent_loss)
        latent_loss = tf.losses.compute_weighted_loss(latent_loss, weights=1)

    return latent_loss
Ejemplo n.º 5
0
def reconstruction_loss_l2(prediction, gt):

    with tf.variable_scope('reconstruction_loss'):
        rec_loss = tf.reduce_mean(
            tf.reduce_sum((gt - prediction)**2, axis=[1, 2, 3]))
        # rec_loss = -tf.reduce_sum(gt * tf.log(1e-8 + prediction) + (1-gt) * tf.log(1e-8 + 1 - prediction), axis=[1, 2, 3])
        recon_loss = sops.replace_nonfinite(rec_loss)
        recon_loss = tf.losses.compute_weighted_loss(recon_loss, weights=1)

    return recon_loss
Ejemplo n.º 6
0
    def test_shape(self):
        with self.test_session(use_gpu=False, force_gpu=False):
            input1 = np.empty((8, 40, 31))
            input2 = np.empty((8, 1, 40, 31))
            input3 = np.empty((2, 2, 2, 40, 31))
            inputs = (input1, input2, input3)

            for i in inputs:
                output_tensor = ops.replace_nonfinite(input=i)
                out_shape = output_tensor.get_shape().as_list()
                self.assertAllEqual(out_shape, i.shape)
Ejemplo n.º 7
0
def l2_loss(inp, gt, epsilon,mask = None):
    """L1 loss

    Returns a scalar tensor with the loss
    """
    with tf.name_scope('l2_loss'):
        gt_ = tf.stop_gradient(gt)
        diff = sops.replace_nonfinite(inp-gt_)
        if mask is not None:
            while len(mask.shape)<len(diff.shape):
                mask = tf.expand_dims(mask,-1)
            diff = mask*diff
        return tf.reduce_mean(tf.sqrt(tf.reduce_sum(diff**2, axis=[1,2,3])+epsilon))
Ejemplo n.º 8
0
def pointwise_l2_loss(inp, gt, epsilon, data_format='NCHW'):
    """Computes the pointwise unsquared l2 loss.
    The input tensors must use the format NCHW. 
    This loss ignores nan values. 
    The loss is normalized by the number of pixels.
    
    inp: Tensor
        This is the prediction.
        
    gt: Tensor
        The ground truth with the same shape as 'inp'
        
    epsilon: float
        The epsilon value to avoid division by zero in the gradient computation
    """
    with tf.name_scope('pointwise_l2_loss'):
        gt_ = tf.stop_gradient(gt)
        diff = sops.replace_nonfinite(inp-gt_)
        if data_format == 'NCHW':
            return tf.reduce_mean(tf.sqrt(tf.reduce_sum(diff**2, axis=1)+epsilon))
        else: # NHWC
            return tf.reduce_mean(tf.sqrt(tf.reduce_sum(diff**2, axis=3)+epsilon))
 def _test_grad(self, dtype):
     A = np.random.rand(9).astype(dtype)
     A[2] = np.nan
     shape = A.shape
     data = tf.constant(A)
     output = ops.replace_nonfinite(input=data, value=123)
     #print(A)
     #print(output.eval())
     err = tf.test.compute_gradient_error(data,
                                          shape,
                                          output,
                                          output.get_shape().as_list(),
                                          x_init_value=A)
     print('error', err, flush=True)
     self.assertLess(err, 1e-3)
     grad = tf.test.compute_gradient(data,
                                     shape,
                                     output,
                                     output.get_shape().as_list(),
                                     x_init_value=A,
                                     delta=0.1)
     for g in grad:
         print(g)
         print(g.shape)
def main(_):

    if not tf.gfile.Exists(FLAGS.checkpoint_dir):
        tf.gfile.MakeDirs(FLAGS.checkpoint_dir)

    with tf.Graph().as_default():

        #============================================
        #Load image and labels
        #============================================
        with tf.name_scope("data_loading"):
            # imageloader = DataLoader(FLAGS.dataset_dir,
            #                          FLAGS.batch_size,
            #                          FLAGS.image_height,
            #                          FLAGS.image_width,
            #                          FLAGS.num_sources,
            #                          FLAGS.num_scales,
            #                          'train')

            # image_left, image_right, label, intrinsics = imageloader.load_train_batch()

            data_dict, ground_truth, intrinsics = Demon_Dataloader()
            image_left, image_right = tf.split(value=data_dict['IMAGE_PAIR'],
                                               num_or_size_splits=2,
                                               axis=3)
            label = ground_truth['depth0']
            gt_right_cam = tf.concat(
                [ground_truth['translation'], ground_truth['rotation']],
                axis=1)

        #============================================
        #Define the model
        #============================================
        with tf.variable_scope("model") as scope:

            with tf.name_scope("depth_prediction"):

                #Using left right to predict
                inputdata = tf.concat([image_left, image_right], axis=3)

                pred_depth_left, pred_poses_right, pred_exp_logits_left, depth_net_endpoints = depth_net(
                    inputdata, is_training=True)
                #Using right left to predict
                scope.reuse_variables()
                inputdata = tf.concat([image_right, image_left], axis=3)
                pred_depth_right, pred_poses_left, pred_exp_logits_right, depth_net_endpoints_right = depth_net(
                    inputdata, is_training=True)

                #import pdb;pdb.set_trace()
                # pred_depth_left = [tf.expand_dims(d[:,:,:,0],-1) for d in pred_depth]
                # pred_depth_right =  [tf.expand_dims(d[:,:,:,1],-1) for d in pred_depth]
                # pred_poses_left = pred_poses[:,1,:]
                # pred_poses_right = pred_poses[:,0,:]

        #============================================
        #Specify the loss function:
        #============================================

        with tf.name_scope("compute_loss"):
            depth_loss = 0
            optflow_loss = 0
            pixel_loss = 0
            smooth_loss = 0
            exp_loss = 0
            consist_loss = 0
            cam_consist_loss = 0
            cam_loss = 0
            sig_depth_loss = 0
            epsilon = 0.00001

            left_image_all = []
            right_image_all = []

            proj_image_left_all = []
            proj_image_right_all = []

            proj_error_stack_all = []
            optflow_x_all = []
            optflow_y_all = []
            exp_mask_all = []

            # =========
            # left right camera Consistent loss
            # =========
            # cam_consist_loss = tf.reduce_mean((pred_poses_right+pred_poses_left)**2)*FLAGS.cam_consist_weight

            #=========
            #Cam pose loss
            #=========

            gt_proj_l2r = pose_vec2mat(gt_right_cam, 'angleaxis')
            pose_left2right = pose_vec2mat(pred_poses_right[:, 0, :],
                                           'angleaxis')
            pose_righ2left = pose_vec2mat(pred_poses_left[:, 0, :],
                                          'angleaxis')

            cam_loss += tf.reduce_mean(
                (gt_proj_l2r[:, 0:3, 0:3] - pose_left2right[:, 0:3, 0:3])**
                2) * FLAGS.cam_weight_rot
            cam_loss += tf.reduce_mean(
                (tf.matrix_inverse(gt_proj_l2r)[:, 0:3, 3] -
                 pose_righ2left[:, 0:3, 3])**2) * FLAGS.cam_weight_tran

            #=========
            #Gradient loss
            #=========

            sig_params = {
                'deltas': [1, 2, 4, 8, 16],
                'weights': [1, 1, 1, 1, 1],
                'epsilon': 0.001
            }

            pr_depth_sig = scale_invariant_gradient(
                tf.transpose(pred_depth_left[0], perm=[0, 3, 1, 2]),
                **sig_params)
            gt_depth_sig = scale_invariant_gradient(
                tf.transpose(label, perm=[0, 3, 1, 2]), **sig_params)

            sig_depth_loss += FLAGS.sig_depth_weight * pointwise_l2_loss(
                pr_depth_sig, gt_depth_sig, epsilon=epsilon)

            for s in range(FLAGS.num_scales):

                #=======
                #Smooth loss
                #=======
                # smooth_loss += FLAGS.smooth_weight/(2**s) * \
                #     compute_smooth_loss(1.0/pred_depth_left[s])

                # smooth_loss += FLAGS.smooth_weight/(2**s) * \
                #     compute_smooth_loss(1.0/pred_depth_right[s])

                curr_label = tf.image.resize_area(label, [
                    int(FLAGS.resizedheight / (2**s)),
                    int(FLAGS.resizedwidth / (2**s))
                ])
                curr_image_left = tf.image.resize_area(image_left, [
                    int(FLAGS.resizedheight / (2**s)),
                    int(FLAGS.resizedwidth / (2**s))
                ])
                curr_image_right = tf.image.resize_area(
                    image_right, [
                        int(FLAGS.resizedheight / (2**s)),
                        int(FLAGS.resizedwidth / (2**s))
                    ])

                #=======
                #Depth loss
                #=======

                diff = sops.replace_nonfinite(curr_label - pred_depth_left[s])
                curr_depth_error = tf.abs(diff)
                depth_loss += tf.reduce_mean(
                    curr_depth_error) * FLAGS.depth_weight / (2**s)

                #=======
                #Pixel loss
                #=======
                # wmask = tf.concat([wmask,wmask,wmask],axis=3)

                #import pdb;pdb.set_trace()

                curr_proj_image_left, src_pixel_coords_right, wmask_left, warp_depth_right, _ = projective_inverse_warp(
                    curr_image_right,
                    tf.squeeze(1.0 / pred_depth_left[s], axis=3),
                    #pred_poses_right[:,0,:],
                    pose_left2right,
                    intrinsics[:, s, :, :],
                    format='matrix')

                #wmask_left = tf.concat([wmask_left,wmask_left,wmask_left],axis=3)
                curr_proj_error_left = tf.abs(curr_proj_image_left -
                                              curr_image_left)

                curr_proj_image_right, src_pixel_coords_left, wmask_right, warp_depth_left, _ = projective_inverse_warp(
                    curr_image_left,
                    tf.squeeze(1.0 / pred_depth_right[s], axis=3),
                    #pred_poses_left[:,0,:],
                    pose_righ2left,
                    intrinsics[:, s, :, :],
                    format='matrix')

                #wmask_right = tf.concat([wmask_right,wmask_right,wmask_right],axis=3)
                curr_proj_error_right = tf.abs(curr_proj_image_right -
                                               curr_image_right)

                #import pdb;pdb.set_trace()

                # =========
                # left right camera Consistent loss
                # =========

                #cam_consist_loss = tf.reduce_mean((tf.matrix_inverse(pose_left2right)-pose_righ2left)**2)*FLAGS.cam_consist_weight

                #===============
                #exp mask
                #===============
                ref_exp_mask = get_reference_explain_mask(s, FLAGS)

                if FLAGS.explain_reg_weight > 0:
                    curr_exp_logits_left = tf.slice(pred_exp_logits_left[s],
                                                    [0, 0, 0, 0],
                                                    [-1, -1, -1, 2])
                    exp_loss += FLAGS.explain_reg_weight * \
                        compute_exp_reg_loss(curr_exp_logits_left,
                                                  ref_exp_mask)
                    curr_exp_left = tf.nn.softmax(curr_exp_logits_left)
                # Photo-consistency loss weighted by explainability
                if FLAGS.explain_reg_weight > 0:
                    pixel_loss += tf.reduce_mean(curr_proj_error_left * \
                        tf.expand_dims(curr_exp_left[:,:,:,1], -1))*FLAGS.data_weight/(2**s)

                exp_mask = tf.expand_dims(curr_exp_left[:, :, :, 1], -1)
                exp_mask_all.append(exp_mask)

                if FLAGS.explain_reg_weight > 0:
                    curr_exp_logits_right = tf.slice(pred_exp_logits_right[s],
                                                     [0, 0, 0, 0],
                                                     [-1, -1, -1, 2])
                    exp_loss += FLAGS.explain_reg_weight * \
                        compute_exp_reg_loss(curr_exp_logits_right,
                                                  ref_exp_mask)
                    curr_exp_right = tf.nn.softmax(curr_exp_logits_right)
                # Photo-consistency loss weighted by explainability
                if FLAGS.explain_reg_weight > 0:
                    pixel_loss += tf.reduce_mean(curr_proj_error_right * \
                        tf.expand_dims(curr_exp_right[:,:,:,1], -1))*FLAGS.data_weight/(2**s)

                #=======
                #left right depth Consistent loss
                #=======

                right_depth_proj_error = consistent_depth_loss(
                    1.0 / pred_depth_right[s], warp_depth_right,
                    src_pixel_coords_right)
                left_depth_proj_error = consistent_depth_loss(
                    1.0 / pred_depth_left[s], warp_depth_left,
                    src_pixel_coords_left)

                consist_loss += tf.reduce_mean(
                    right_depth_proj_error *
                    tf.expand_dims(curr_exp_left[:, :, :, 1],
                                   -1)) * FLAGS.consist_weight / (2**s)
                consist_loss += tf.reduce_mean(
                    left_depth_proj_error *
                    tf.expand_dims(curr_exp_right[:, :, :, 1],
                                   -1)) * FLAGS.consist_weight / (2**s)

                #import pdb;pdb.set_trace()
                #========
                #For tensorboard visualize
                #========
                left_image_all.append(curr_image_left)
                right_image_all.append(curr_image_right)

                proj_image_left_all.append(curr_proj_image_left)
                proj_image_right_all.append(curr_proj_image_right)

                proj_error_stack_all.append(curr_proj_error_right)

            total_loss = pixel_loss + smooth_loss + exp_loss + cam_loss + consist_loss + cam_consist_loss + depth_loss + sig_depth_loss

        #============================================
        #Start training
        #============================================

        with tf.name_scope("train_op"):
            tf.summary.scalar('losses/total_loss', total_loss)
            tf.summary.scalar('losses/smooth_loss', smooth_loss)
            tf.summary.scalar('losses/depth_loss', depth_loss)
            tf.summary.scalar('losses/pixel_loss', pixel_loss)
            tf.summary.scalar('losses/cam_loss', cam_loss)
            tf.summary.scalar('losses/exp_loss', exp_loss)
            tf.summary.scalar('losses/consist_loss', consist_loss)
            tf.summary.scalar('losses/cam_consist_loss', cam_consist_loss)
            tf.summary.scalar('losses/sig_depth_loss', sig_depth_loss)

            tf.summary.histogram('scale%d_pred_depth_left' % s,
                                 pred_depth_left[0])

            tf.summary.histogram('scale%d_pred_depth_right' % s,
                                 pred_depth_right[0])

            tf.summary.histogram('GT_left_depth', \
                             sops.replace_nonfinite(label))

            for s in range(FLAGS.num_scales):

                tf.summary.image('scale%d_left_image' % s, \
                                 left_image_all[s])
                tf.summary.image('scale%d_right_image' % s, \
                                 right_image_all[s])
                tf.summary.image('scale%d_projected_image_left' % s, \
                                 proj_image_left_all[s])
                tf.summary.image('scale%d_projected_image_right' % s, \
                                 proj_image_right_all[s])

                tf.summary.image('scale%d_projected_error_left' % s, \
                                 proj_error_stack_all[s])

                tf.summary.image('scale%d_pred_depth_left' % s,
                                 1.0 / pred_depth_left[s])

                tf.summary.image('scale%d_pred_depth_right' % s,
                                 1.0 / pred_depth_right[s])

                tf.summary.image('scale%d_exp_mask' % s, exp_mask_all[s])

            #tf.get_variable_scope().reuse_variables()
            # Specify the optimization scheme:
            # with tf.variable_scope("scope_global_step") as scope_global_step:
            #     global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False)
            #with tf.variable_scope(tf.get_variable_scope(), reuse=False):
            optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate,
                                               FLAGS.beta1)

            # create_train_op that ensures that when we evaluate it to get the loss,
            # the update_ops are done and the gradient updates are computed.
            train_op = slim.learning.create_train_op(total_loss, optimizer)

            global_step = tf.Variable(0, name='global_step', trainable=False)
            incr_global_step = tf.assign(global_step, global_step + 1)

            saver = tf.train.Saver([var for var in tf.model_variables()])
            #import pdb;pdb.set_trace()
            with tf.Session() as sess:

                merged = tf.summary.merge_all()
                train_writer = tf.summary.FileWriter(
                    FLAGS.checkpoint_dir + '/sum', sess.graph)

                tf.initialize_all_variables().run()
                tf.initialize_local_variables().run()

                coord = tf.train.Coordinator()
                threads = tf.train.start_queue_runners(sess=sess, coord=coord)

                if FLAGS.continue_train:
                    if FLAGS.init_checkpoint_file is None:
                        checkpoint = tf.train.latest_checkpoint(
                            FLAGS.checkpoint_dir)
                    else:
                        checkpoint = FLAGS.init_checkpoint_file
                    print("Resume training from previous checkpoint: %s" %
                          checkpoint)
                    saver.restore(sess, checkpoint)

                for step in range(1, FLAGS.max_steps):
                    #print("steps %d" % (step))
                    fetches = {
                        "train": train_op,
                        "global_step": global_step,
                        "incr_global_step": incr_global_step
                    }

                    if step % FLAGS.summary_freq == 0:
                        fetches["loss"] = total_loss
                        fetches["summary"] = merged
                        fetches["GT_cam"] = gt_right_cam
                        fetches["est_cam"] = pred_poses_right
                        fetches["est_cam_left"] = pred_poses_left

                    results = sess.run(fetches)
                    gs = results["global_step"]

                    if step % FLAGS.summary_freq == 0:
                        train_writer.add_summary(results["summary"], gs)

                        print("steps: %d === loss: %.3f" \
                                % (gs,
                                    results["loss"]))

                        translation_rotation = results["GT_cam"]
                        print(translation_rotation[0])
                        print(results["est_cam"][0])
                        print(results["est_cam_left"][0])

                    if step % FLAGS.save_latest_freq == 0:
                        saver.save(sess,
                                   FLAGS.checkpoint_dir + '/model',
                                   global_step=step)

                coord.request_stop()
                coord.join(threads)
 def _test_nonfinite(self, dtype):
     value = 123
     A = np.array([np.nan, np.inf, -np.inf, 100], dtype=dtype)
     result = ops.replace_nonfinite(A, value=value).eval()
     self.assertAllEqual(result, [value] * 3 + [100])
Ejemplo n.º 12
0
def compute_sad_volume_for_sequence(img0,
                                    images,
                                    rotations,
                                    translations,
                                    intrinsics,
                                    depth_values,
                                    channel_weights=None,
                                    patch_size=3,
                                    sad_shift=None,
                                    name=None):
    """Computes the confidence weighted sum of SAD cost volumes between img0 and the given images
    
    img0: Tensor
        image in NCHW format
    
    images: list of Tensor
        List of images in NCHW format
        
    rotations: list of Tensor
        rotations in 3d angle axis format for each image in 'images'
        
    translations: list Tensor
        translations for each image in 'images'
        
    intrinsics: Tensor
        Intrinsic parameters valid for all images and img0
        
    depth_values: list of float or Tensor
        Either a list of inverse depth values or
        a tensor with shape NCHW
        
    channel_weights: list of float
        Individual weighting factors for the image channels. Defaults to 
        [5/32, 16/32, 11/32] for 3 channel images and [1,..]/num_channels for channels != 3.
    
    patch_size: int
        The spatial patch size

    sad_shift: float
        Shift the valid sad values by this value

    """
    with tf.name_scope(name, "computeSADVolumeForSequence",
                       [img0, intrinsics] + images + rotations + translations):
        img0 = tf.convert_to_tensor(img0, name='img0', dtype=tf.float32)
        images = [
            tf.convert_to_tensor(v,
                                 name='images{0}'.format(i),
                                 dtype=np.float32)
            for i, v in enumerate(images)
        ]
        rotations = [
            tf.convert_to_tensor(v,
                                 name='rotations{0}'.format(i),
                                 dtype=np.float32)
            for i, v in enumerate(rotations)
        ]
        translations = [
            tf.convert_to_tensor(v,
                                 name='translations{0}'.format(i),
                                 dtype=np.float32)
            for i, v in enumerate(translations)
        ]
        intrinsics = tf.convert_to_tensor(intrinsics,
                                          name='img0',
                                          dtype=tf.float32)

        assert len(images) == len(rotations)
        assert len(images) == len(translations)
        assert not isinstance(intrinsics, (list, tuple))

        border_radius = patch_size // 2 + 1

        cv_list = []
        conf_list = []
        depths = depth_values
        for i in range(len(images)):
            image = images[i]
            rotation = rotations[i]
            translation = translations[i]

            warped, mask, depths = create_depthsweep_images_tensor(
                image=image,
                rotation=rotation,
                translation=translation,
                intrinsics=intrinsics,
                depth_values=depths,
                border_radius=border_radius,
            )
            cv, conf = compute_sad_volume_with_confidence(
                img0,
                warped,
                mask,
                channel_weights=channel_weights,
                patch_size=patch_size)
            cv_list.append(cv)
            conf_list.append(conf)

        if sad_shift is None:
            multiplied_cv = [
                cv_list[i] * conf_list[i] for i in range(len(cv_list))
            ]
        else:
            multiplied_cv = [(cv_list[i] + sad_shift) * conf_list[i]
                             for i in range(len(cv_list))]
        conf_sum = tf.add_n(conf_list)
        cv = sops.replace_nonfinite(tf.add_n(multiplied_cv) / conf_sum)

        return cv, conf_sum