def get_trials_group_by_folder_name(): import copy if (get_trials_group_by_folder_name.done): return copy.deepcopy( get_trials_group_by_folder_name.trials_group_by_folder_name) import load_csv_data trials_group_by_folder_name = load_csv_data.run( success_path=training_config.success_path, interested_data_fields=training_config.interested_data_fields, preprocessing_normalize=False, preprocessing_scaling=False) get_trials_group_by_folder_name.done = True get_trials_group_by_folder_name.trials_group_by_folder_name = trials_group_by_folder_name return copy.deepcopy( get_trials_group_by_folder_name.trials_group_by_folder_name)
def get_trials_group_by_folder_name(training_config, data_class='success'): import load_csv_data import copy if data_class == 'success': data_path = training_config.success_path elif data_class == 'test_success': data_path = training_config.test_success_data_path else: raise Exception("unknown data class %s" % data_class) trials_group_by_folder_name = load_csv_data.run( data_path=data_path, interested_data_fields=training_config.interested_data_fields, preprocessing_normalize=training_config.preprocessing_normalize, preprocessing_scaling=training_config.preprocessing_scaling, norm_style=training_config.norm_style) trials_group_by_folder_name return trials_group_by_folder_name
sys.path.append("/home/birl_wu/TICC") import TICC_solver as TICC import numpy as np import sys import load_csv_data import ipdb base_path = 'anomaly_data_mix' interested_data_fields = [ '.wrench_stamped.wrench.force.x', '.wrench_stamped.wrench.force.y', '.wrench_stamped.wrench.force.z', '.wrench_stamped.wrench.torque.x', '.wrench_stamped.wrench.torque.y', '.wrench_stamped.wrench.torque.z', ] all_trial_data = load_csv_data.run(base_path, interested_data_fields) all_trial_data = all_trial_data.values() for i in range(len(all_trial_data)): if i == 0: _temp = all_trial_data[i] else: _temp = np.concatenate((_temp, all_trial_data[i]), axis=0) np.savetxt('anomaly_data.txt', _temp, delimiter=',') fname = 'anomaly_data.txt' (cluster_assignment, cluster_MRFs) = TICC.solve(window_size=5, number_of_clusters=2, lambda_parameter=11e-2, beta=100, maxIters=100, threshold=2e-5,