Ejemplo n.º 1
0
Ny = 256
Re = 1000
Ny_test = 192
Re_test = 550

# Filenames
filepath_mean = 'data/channel/re1000/LM_Channel_1000_mean_prof.dat'
filepath_fluc = 'data/channel/re1000/LM_Channel_1000_vel_fluc_prof.dat'
filepath_tke = 'data/channel/re1000/LM_Channel_1000_RSTE_k_prof.dat'

filepath_mean_test = 'data/channel/re0550/LM_Channel_0550_mean_prof.dat'
filepath_fluc_test = 'data/channel/re0550/LM_Channel_0550_vel_fluc_prof.dat'
filepath_tke_test = 'data/channel/re0550/LM_Channel_0550_RSTE_k_prof.dat'

# Load data
y_train, U_train, dUdy_train = ld.load_mean_data(filepath_mean, Ny)
uus_train, tke_train = ld.load_fluc_data(filepath_fluc, Ny)
eps_train = ld.load_tke_data(filepath_tke, Ny)

y_raw, U_raw, dUdy_raw = ld.load_mean_data(filepath_mean_test, Ny_test)
uus_raw, tke_raw = ld.load_fluc_data(filepath_fluc_test, Ny_test)
eps_raw = ld.load_tke_data(filepath_tke_test, Ny_test)

# Filter for synthetic RANS
y_filt_train = pd.rans_filter(y_train, fsize)
U_filt_train = pd.rans_filter(U_train, fsize)
dUdy_filt_train = pd.rans_filter(dUdy_train, fsize)
uus_filt_train = pd.rans_filter(uus_train, fsize)
tke_filt_train = pd.rans_filter(tke_train, fsize)
eps_filt_train = pd.rans_filter(eps_train, fsize)
Ejemplo n.º 2
0
# Input/Settings
seed_no = 3
np.random.seed(seed_no)
fsize = 3

Ny = 384
Re = 2000

# Filenames
filepath_mean = 'data/channel/re2000/LM_Channel_2000_mean_prof.dat'
filepath_fluc = 'data/channel/re2000/LM_Channel_2000_vel_fluc_prof.dat'
filepath_tke = 'data/channel/re2000/LM_Channel_2000_RSTE_k_prof.dat'

# Load data
y_raw, U_raw, dUdy_raw = ld.load_mean_data(filepath_mean, Ny)
uus_raw, tke_raw = ld.load_fluc_data(filepath_fluc, Ny)
eps_raw = ld.load_tke_data(filepath_tke, Ny)

# Filter for synthetic RANS
y_filt = pd.rans_filter(y_raw, fsize)
U_filt = pd.rans_filter(U_raw, fsize)
dUdy_filt = pd.rans_filter(dUdy_raw, fsize)
uus_filt = pd.rans_filter(uus_raw, fsize)
tke_filt = pd.rans_filter(tke_raw, fsize)
eps_filt = pd.rans_filter(eps_raw, fsize)

# Shuffle data
shuffler = np.random.permutation(Ny)

y_filt_sh = y_filt[shuffler]
Ejemplo n.º 3
0
filepath_mean1 = 'data/channel/re0550/LM_Channel_0550_mean_prof.dat'
filepath_fluc1 = 'data/channel/re0550/LM_Channel_0550_vel_fluc_prof.dat'
filepath_mean2 = 'data/channel/re1000/LM_Channel_1000_mean_prof.dat'
filepath_fluc2 = 'data/channel/re1000/LM_Channel_1000_vel_fluc_prof.dat'

# Filenames - couette
filepath_mean3 = 'data/couette/re0220/LM_Couette_R0220_100PI_mean_prof.dat'
filepath_fluc3 = 'data/couette/re0220/LM_Couette_R0220_100PI_vel_fluc_prof.dat'
filepath_mean4 = 'data/couette/re0500/LM_Couette_R0500_100PI_mean_prof.dat'
filepath_fluc4 = 'data/couette/re0500/LM_Couette_R0500_100PI_vel_fluc_prof.dat'

# Filenames - shs
filepath_shs = 'data/shs/tbnn_stats.npz'

# Load data
y1, U1 = ld.load_mean_data(filepath_mean1, Ny1)[0:2]
tke1 = ld.load_fluc_data(filepath_fluc1, Ny1)[1]

y2, U2 = ld.load_mean_data(filepath_mean2, Ny2)[0:2]
tke2 = ld.load_fluc_data(filepath_fluc2, Ny2)[1]

y3, U3 = ld.load_mean_data(filepath_mean3, Ny3)[0:2]
tke3 = ld.load_fluc_data(filepath_fluc3, Ny3)[1]

y4, U4 = ld.load_mean_data(filepath_mean4, Ny4)[0:2]
tke4 = ld.load_fluc_data(filepath_fluc4, Ny4)[1]

_, y5, U5, _, _, tke5, _ = ld.load_shs_data(filepath_shs)

# Plot
plt.figure()