def evaluate(original_file, test_file):    
    ori_arr, factors = read_file_test(original_file, 13, "factors")
    test_arr = read_file_test(test_file, 13)
    
    ori_arr = ori_arr[:,1:13] * factors #normalise_mfcc(ori_arr)               # take 12 coefficients
    
    #print ori_arr
    test_arr = test_arr[:,1:13]
    #print test_arr
    #exit()
    subtract = (ori_arr - test_arr) ** 2
    rms = sqrt(subtract.sum()) #/(ori_arr.shape[0] * ori_arr.shape[1])
    
    [m,n] = ori_arr.shape
    a = ori_arr.reshape(1,m*n)
    b = test_arr.reshape(1,m*n)
    return np.corrcoef(a,b)[0,1]
    
    return rms
Ejemplo n.º 2
0
 def _testing_original_file(self, test_dir, type_data):     
     dnn_predict_dir = '/home/danglab/Results/PR_ver2/' + type_data + 'no_EMA/'+'test_' + str(self.test_number) + '/' 
     
     if not os.path.exists(dnn_predict_dir):
         os.makedirs(dnn_predict_dir)
       
     for afile in self.missing_filename_list:
         test_arr, factors = read_file_test(test_dir + afile + '_in.txt', self.feature_dim_in, "factors")                                #read a missing_feature
         #print factors
         energy = test_arr[:,0]          #ko cho energy vao DNN
         test_arr = test_arr[:,1:self.feature_dim_in]            
         self._write_predict_missing(dnn_predict_dir + afile + '.txt', energy, test_arr, factors)      # write result to file
Ejemplo n.º 3
0
 def _testing_aritc_interpolation(self, test_dir):
     dnn_predict_dir = '/home/danglab/Results/New_PR/' + 'space/artic_inter/'+'test_' + str(self.test_number) + '/10ms/' 
     
     if not os.path.exists(dnn_predict_dir):
         os.makedirs(dnn_predict_dir)
       
     for afile in self.missing_filename_list:
         test_arr, factors = read_file_test(test_dir + afile + '_10ms_in.txt', self.feature_dim_in, "factors")                                #read a missing_feature
         #print factors
         energy = test_arr[:,0]          #ko cho energy vao DNN
         test_arr = test_arr[:,1:self.feature_dim_in]
         test_arr[:,12:self.feature_dim_in] = 0  # remove articulatory data
         self._write_predict_2_file(dnn_predict_dir + afile + '.txt', energy, self.predict(test_arr), factors)      # write result to file
def evaluate(original_file, test_file):   
    #print original_file
    #print test_file 
    ori_arr, factors = read_file_test(original_file, 13, "factors")
    test_arr = read_file_test(test_file, 13)
    [m,n] = ori_arr.shape
    #print m,n
    ori_arr = ori_arr[:,1:13] * factors #normalise_mfcc(ori_arr)               # take 12 coefficients
    test_arr = test_arr[:,1:13]
    
    subtract = (ori_arr - test_arr) ** 2
    #subtract = (ori_arr[2:m-3,:] - test_arr[2:m-3,:]) ** 2
    rms = sqrt(subtract.sum()) #/(ori_arr.shape[0] * ori_arr.shape[1])
    
    #print 
    #print ori_arr[m-3]
    #print test_arr[m-3]
    #print subtract[m-3]
    #exit()
    #a = ori_arr.reshape(1,m*n)
    #b = test_arr.reshape(1,m*n)
    #return np.corrcoef(a,b)[0,1]
    
    return rms
Ejemplo n.º 5
0
 def _testing_original_file(self, test_dir, type_data):     
     dnn_predict_dir = '/home/danglab/Results/New_PR/' + type_data + 'full_EMA/'+'test_' + str(self.test_number) + '/' 
     
     if not os.path.exists(dnn_predict_dir):
         os.makedirs(dnn_predict_dir)
       
     for afile in self.missing_filename_list:
         test_arr, factors = read_file_test(test_dir + afile + '_in.txt', self.feature_dim_in, "factors")                                #read a missing_feature
         #print factors
         energy = test_arr[:,0]          #ko cho energy vao DNN
         test_arr = test_arr[:,1:self.feature_dim_in]
         if "full_EMA" not in dnn_predict_dir:
             print "no_ema"
             test_arr[:,12:self.feature_dim_in] = 0  # remove articulatory data
         
         test_arr  = self._stack_segment_test(test_arr)
         print test_arr.shape
         self._write_predict_2_file(dnn_predict_dir + afile + '.txt', energy, self.predict(test_arr), factors)      # write result to file
Ejemplo n.º 6
0
 def _testing_space(self, test_dir, type_data):
     dnn_predict_dir = '/home/danglab/Results/New_PR/' + type_data + 'full_EMA/'+'test_' + str(self.test_number) + '/' 
     
     if not os.path.exists(dnn_predict_dir):
         os.makedirs(dnn_predict_dir)
       
     for afile in self.missing_filename_list:
         test_arr, factors = read_file_test(test_dir + afile + '_20ms_in.txt', self.feature_dim_in, "factors")                                #read a missing_feature
         #print factors
         energy = test_arr[:,0]          #ko cho energy vao DNN
         test_arr = test_arr[:,1:self.feature_dim_in]
         if "full_EMA" not in dnn_predict_dir:
             print "no_ema"
             test_arr[:,12:self.feature_dim_in] = 0  # remove articulatory data
         
         test_arr = self._stack_segment_test(test_arr)
         #position 0,2,4,6,... is missing audio, only test these parts
         test_missing_part = test_arr[0:test_arr.shape[0]:2]     # lay nhung frame bi mat du lieu
         no_missing_part = test_arr[1:test_arr.shape[0]:2]
         print test_missing_part.shape, no_missing_part.shape, test_arr.shape
         self._write_predict_missing(dnn_predict_dir + afile + '.txt', energy, self.predict(test_missing_part), no_missing_part, factors)      # write result to file
Ejemplo n.º 7
0
 def _testing_noise_space(self, test_dir, type_data):             
     for type_test in sorted(os.listdir(test_dir)):
         if (not type_test.endswith('zip')) and 'output' not in type_test:                
             type_test_dir = test_dir + type_test + '/'
             print type_test_dir
             dnn_predict_dir = '/home/danglab/Results/New_PR/' + type_data + 'SP_no_EMA/'+'test_' + str(self.test_number) + '/' + type_test + '/'
     
             if not os.path.exists(dnn_predict_dir):
                 os.makedirs(dnn_predict_dir)
             print type_test
             duration = type_test.split('_')[1]     # 50ms, 100ms
               
             #listtest = sorted(os.listdir(type_test_dir))
             #for afile in listtest:
             for prefix_file in self.missing_filename_list:
                 afile = prefix_file + '_' + duration + '_in.txt' 
                 test_arr, factors = read_file_test(type_test_dir + afile, self.feature_dim_in, "factors")                                #read a missing_feature
                 find_ = [m.start() for m in re.finditer('_', afile)]  
                 energy = test_arr[:,0]          #ko cho energy vao DNN
                 test_arr = test_arr[:,1:self.feature_dim_in]
                 #test_arr[:,12:self.n_input_f] = 0           # remove articulatory data
                 #print factors
                 self._write_predict_2_file(dnn_predict_dir + afile.replace(afile[find_[4]:len(afile)-4],''), energy, self.predict(test_arr), factors)      # write result to file
def get_data(filename):
    arr = read_file_test(filename, num_features)  # 0:13, enegy+MFCC, 13:49, articulotory position
    # position = arr[:,13:13 + 12]        # position at i
    return arr[:, 0], arr[:, 1:13], arr[:, 13 : 13 + 12]