# posterior prob def lnprob(theta, x, y, yerr): lp = lnprior(theta) if not np.isfinite(lp): return -np.inf try: return lp + lnlike(theta, x, y, yerr) except: print theta raise if __name__ == "__main__": # Load real data x, y, yerr = load("/Users/angusr/angusr/data2/Q3_public/kplr010295224-2009350155506_llc.fits") # shorten data l = 300. x = x[:l] y = y[:l] yerr = yerr[:l] # # median normalise # yerr /= np.median(y) # y = y/np.median(y) -1 # normalise so range is 2 - no idea if this is the right thing to do... yerr = 2*yerr/(max(y)-min(y)) y = 2*y/(max(y)-min(y)) y = y-np.median(y)
# Load target list with ACF periods data = np.genfromtxt('/Users/angusr/Python/george/targets.txt').T KIDs = data[0] # p_init = data[1] save_results = np.zeros((len(KIDs), 8)) for k, KID in enumerate(KIDs): # p_init = p_init[k] print k, KID # Load real quarter 3 data x, y, yerr = load( "/Users/angusr/angusr/data2/Q3_public/kplr0%s-2009350155506_llc.fits" % int(KID)) r = .4 # range of periods to try s = 30. # number of periods to try b = .2 # prior boundaries # compute acf p_init = autocorrelation(x, y) # compute lomb scargle periodogram pgram(y, r, p_init, highres=True) # normalise so range is 2 - no idea if this is the right thing to do... yerr = 2 * yerr / (max(y) - min(y)) y = 2 * y / (max(y) - min(y))
pl.plot(xs, predict(xs, x, y, yerr, theta, P)[0], 'r-') pl.xlabel('time (days)') pl.savefig('%sresult' % name) savedata = np.empty(len(theta) + 1) savedata[:len(theta)] = theta savedata[-1] = like np.savetxt('%sresult.txt' % name, savedata) return like if __name__ == "__main__": # Load real data x, y, yerr = load( "/Users/angusr/angusr/data2/Q3_public/kplr010295224-2009350155506_llc.fits" ) # shorten data l = 550. x = x[:l] y = y[:l] yerr = yerr[:l] # normalise so range is 2 - no idea if this is the right thing to do... yerr = 2 * yerr / (max(y) - min(y)) y = 2 * y / (max(y) - min(y)) y = y - np.median(y) # theta, P = [0., .2, .2, 1.], 1.7 # initial # theta, P = [-2., -2., -1.2, 6.], 1.7 # better initialisation
cadence = 0.02043365 # Load target list with ACF periods data = np.genfromtxt('/Users/angusr/Python/george/targets.txt').T KIDs = data[0] # p_init = data[1] save_results = np.zeros((len(KIDs), 8)) for k, KID in enumerate(KIDs): # p_init = p_init[k] print k, KID # Load real quarter 3 data x, y, yerr = load("/Users/angusr/angusr/data2/Q3_public/kplr0%s-2009350155506_llc.fits" %int(KID)) r = .4 # range of periods to try s = 30. # number of periods to try b = .2 # prior boundaries # compute acf p_init = autocorrelation(x, y) # compute lomb scargle periodogram pgram(y, r, p_init, highres = True) # normalise so range is 2 - no idea if this is the right thing to do... yerr = 2*yerr/(max(y)-min(y)) y = 2*y/(max(y)-min(y)) y = y-np.median(y)