Ejemplo n.º 1
0
split = 1
test_fname = 'test' + str(split) + '.txt'

part_dat = False

df_test = create_df(os.path.join(datapath, test_fname),
                    img_path,
                    partial_dataset=part_dat,
                    seed=123)

#%% Create TF dataloader

IMSIZE = (224, 224, 3)
BATCH_SIZE = 32

test_ds = create_tf_dataset(df_test, imsize=IMSIZE, onehot=True)
test_ds = test_ds.batch(BATCH_SIZE)
##

#%% Evaluation

modelpth = 'D:\\Users\\Mikko Impiö\\kandi\\models'

from tensorflow.keras.models import load_model
model = load_model(os.path.join(modelpth, '09-02-2020_cont_colab.h5'))

preds = model.predict(test_ds, verbose=True)

yhat = np.argmax(preds, axis=1) + 1

y_test = df_test['label']
Ejemplo n.º 2
0
df_val = create_df(os.path.join(datapath, val_fname),
                   img_path,
                   partial_dataset=part_dat,
                   seed=123)

from sklearn.utils import shuffle

df_train = shuffle(df_train)
df_val = shuffle(df_val)

#%% Create TF dataloader
AUTOTUNE = tf.data.experimental.AUTOTUNE
IMSIZE = (224, 224, 3)
BATCH_SIZE = 8

train_ds = create_tf_dataset(df_train, imsize=IMSIZE, onehot=True)

val_ds = create_tf_dataset(df_val, imsize=IMSIZE, onehot=True)

train_ds = prepare_for_training(train_ds,
                                shuffle_buffer_size=1000,
                                batch_size=BATCH_SIZE)

val_ds = prepare_for_training(val_ds,
                              shuffle_buffer_size=1000,
                              batch_size=BATCH_SIZE)

for image, label in train_ds.take(5):
    print(image.shape)
    print(label.shape)
Ejemplo n.º 3
0
df_test = create_df(os.path.join(datapath, test_fname),
                    img_path,
                    partial_dataset=part_dat,
                    seed=123)

df_val = create_df(os.path.join(datapath, val_fname),
                   img_path,
                   partial_dataset=part_dat,
                   seed=123)

#%% Create TF dataloader
AUTOTUNE = tf.data.experimental.AUTOTUNE
IMSIZE = (224, 224, 3)
BATCH_SIZE = 8

train_ds = create_tf_dataset(df_train, imsize=IMSIZE, onehot=False)
test_ds = create_tf_dataset(df_test, imsize=IMSIZE, onehot=False)
val_ds = create_tf_dataset(df_val, imsize=IMSIZE, onehot=False)

##

train_ds = prepare_for_training(train_ds,
                                shuffle_buffer_size=len(df_train),
                                batch_size=BATCH_SIZE)

val_ds = prepare_for_training(val_ds,
                              shuffle_buffer_size=len(df_val),
                              batch_size=BATCH_SIZE)

for image, label in train_ds.take(5):
    print(image.shape)