Ejemplo n.º 1
0
vis = VIS(save_path=opt.checkpoint_path)

# configuration session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
K.set_session(sess)
K.set_learning_phase(1)

# define data loader (with train and test)
train_generator, _, train_samples, _ = dataLoader(opt.data_path,
                                                  opt.batch_size, opt.imSizeX,
                                                  opt.imSizeY)

# define test loader (optional to replace above test_generator)
test_generator, test_samples = folderLoader(opt.data_path, opt.imSizeX,
                                            opt.imSizeY)
opt.iter_epoch = int(train_samples)

# define input holders
img_shape = (opt.imSizeY, opt.imSizeX, 3)
#img = tf.placeholder(tf.float32, shape=img_shape)
img = tf.placeholder(tf.int32, shape=img_shape)
label = tf.placeholder(tf.int32, shape=(None, opt.imSizeY, opt.imSizeX))

# define model
with tf.name_scope('unet'):
    model = UNet().create_model(img_shape=img_shape, num_class=opt.num_class)
    img = model.input
    pred = model.output

# define loss
Ejemplo n.º 2
0
# configure args
from opts import *
# assert(opt.load_from_checkpoint != '')
# assert(opt.batch_size == 1)
vis = VIS(save_path=opt.load_from_checkpoint)

# configuration session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
K.set_session(sess)
K.set_learning_phase(0)

# define data loader
test_generator, test_samples = folderLoader(opt.data_path)

# define model, the last dimension is the channel
img_shape = (opt.imSize, opt.imSize, 3)
# img = tf.placeholder(tf.float32, shape=img_shape)
label = tf.placeholder(tf.int32, shape=(None, opt.imSize, opt.imSize))
with tf.name_scope('unet'):
    model = UNet().create_model(img_shape=img_shape, num_class=opt.num_class)
    img = model.input
    pred = model.output
# define loss
with tf.name_scope('cross_entropy'):
    cross_entropy_loss = tf.reduce_mean(
        tf.nn.sparse_softmax_cross_entropy_with_logits(labels=label,
                                                       logits=pred))
Ejemplo n.º 3
0
from utils import VIS, mean_IU

# configure args
from opts import *
# assert(opt.load_from_checkpoint != '')
# assert(opt.batch_size == 1)
vis = VIS(save_path=opt.load_from_checkpoint)

# configuration session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)

# define data loader
img_shape = [opt.imSize, opt.imSize]
test_generator, test_samples = folderLoader(opt.data_path, imSize=img_shape)

# define model, the last dimension is the channel
label = tf.placeholder(tf.int32, shape=[None]+img_shape)
with tf.name_scope('unet'):
    model = UNet().create_model(img_shape=img_shape, num_class=opt.num_class)
    img = model.input
    pred = model.output
# define loss
with tf.name_scope('cross_entropy'): 
    cross_entropy_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=label, logits=pred))

saver = tf.train.Saver() # must be added in the end

''' Main '''
init_op = tf.global_variables_initializer()