Ejemplo n.º 1
0
def run_improve(g,
                gname,
                method,
                methodname,
                delta,
                nthreads=24,
                timeout=1000):
    ratio = 1.0
    if g._num_vertices > 1000000:
        ratio = 0.05
    elif g._num_vertices > 100000:
        ratio = 0.1
    elif g._num_vertices > 10000:
        ratio = 0.4
    elif g._num_vertices > 7500:
        ratio = 0.6
    elif g._num_vertices > 5000:
        ratio = 0.8
    print("ratio: ", ratio)
    start = time.time()
    ncp = lgc.NCPData(g, store_output_clusters=True)
    ncp.approxPageRank(ratio=ratio,
                       nthreads=nthreads,
                       localmins=False,
                       neighborhoods=False,
                       random_neighborhoods=False)
    end = time.time()
    print("Elapsed time for acl-ncp for dataset ", gname, " is ", end - start,
          " the method is ", methodname, " delta is ", delta)
    sets = [st["output_cluster"] for st in ncp.results]
    print("Make an NCP object for Improve Algo")
    start2 = time.time()
    ncp2 = lgc.NCPData(g)
    print("Going into improve mode")
    output = ncp2.refine(sets,
                         method=method,
                         methodname=methodname,
                         nthreads=nthreads,
                         timeout=timeout,
                         **{"delta": delta})
    end2 = time.time()
    print("Elapsed time for improve-ncp for dataset ", gname, " is ",
          end2 - start2, " the method is ", methodname, " delta is ", delta)
    fig = lgc.NCPPlots(ncp2).mqi_input_output_cond_plot()[0]
    fig.axes[0].set_title(gname + " " + methodname + "-NCP")
    fig.savefig("figures/" + method + "-ncp-" + gname + ".pdf",
                bbox_inches="tight",
                figsize=(100, 100))
    plt.show()
    pickle.dump(ncp,
                open('results/' + method + "-ncp-" + gname + '.pickle', 'wb'))
    ncp.write('results/' + method + "-ncp-csv-" + gname, writepython=False)
    pickle.dump(ncp2,
                open('results/' + method + "-ncp2-" + gname + '.pickle', 'wb'))
    ncp2.write('results/' + method + "-ncp2-csv-" + gname, writepython=False)
Ejemplo n.º 2
0
def test_ncpplots():
    G = load_example_graph()
    ncp = lgc.NCPData(G)
    ncp.mqi()
    plots = lgc.NCPPlots(ncp)
    plots.cond_by_vol()
    plots.cond_by_size()
    plots.isop_by_size()
    plots.mqi_input_output_cond_plot()
    plots.cond_by_vol_itrv(alpha=0.2)
    plots.cond_by_size_itrv(alpha=0.2)
    plots.isop_by_size_itrv(alpha=0.2)

    plots = lgc.NCPPlots(ncp, method_name="mqi")

    G = load_example_graph()
    ncp = lgc.NCPData(G)
    ncp.approxPageRank()
    df = ncp.as_data_frame()
    plots = lgc.NCPPlots(df)
    plots.cond_by_vol()

    ncp.crd()
    ncp.l1reg()
    plots = lgc.NCPPlots(ncp, method_name="crd")
    plots = lgc.NCPPlots(ncp, method_name="l1reg")
    plots = lgc.NCPPlots(ncp, method_name="ncpapr")
Ejemplo n.º 3
0
    sep = ' '
    if isinstance(gfile, tuple):
        sep = gfile[1]
        gfile = gfile[0]
        
    print("Running " + gname)
    
    g = lgc.GraphLocal(os.path.join("..", "data", gfile),'edgelist', "	")
    g.discard_weights()

    start = time.time()
    
    ncp_instance = lgc.NCPData(g)
    ncp_instance.approxPageRank(ratio=0.1,timeout=5000000,nthreads=24)

    ncp_plots = lgc.NCPPlots(ncp_instance,method_name = "acl")
    #plot conductance vs size
    fig, ax, min_tuples = ncp_plots.cond_by_size()
    plt.savefig('figures/cond_card_' + gname + '.png', bbox_inches='tight')
    plt.show()
    #plot conductance vs volume
    fig, ax, min_tuples = ncp_plots.cond_by_vol()
    plt.savefig('figures/cond_vol_' + gname + '.png', bbox_inches='tight')
    plt.show()
    #plot isoperimetry vs size
    fig, ax, min_tuples = ncp_plots.isop_by_size()
    plt.savefig('figures/expand_card_' + gname + '.png', bbox_inches='tight')
    plt.show()
    
    end = time.time()
    print(" Elapsed time: ", end - start)