def start_container_on_node(spec):
     (out, err) = CLIUtils.run(
         START_POD_CONTAINER_SELF_CMD.format(spec["node"],
                                             spec["container"]["port"],
                                             spec["container"]["image"],
                                             spec["container"]["name"]))
     logger.debug('started container id: {}'.format(out))
Ejemplo n.º 2
0
    def test_logger_debug(self, mock_log):
        obj = object()
        logger.debug('test', request=obj)

        self.assertEqual(mock_log.call_args, (
            ('[{0}] test'.format(id(obj)), ),
            { 'extra': {} },
        ))
Ejemplo n.º 3
0
def load_config():
    config = json.load(open('config.json', 'r'))
    path_keys_to_expand = ['data_dir', 'save_dir', 'model_save_path', 'albert_cache_dir']
    for path_key in path_keys_to_expand:
        new_path = os.path.abspath(os.path.expanduser(config[path_key]))
        logger.debug("expand {} to {}".format(config[path_key], new_path))
        config[path_key] = new_path
    max_seq_len = config['max_seq_len']
    return config
Ejemplo n.º 4
0
 def make_get_request(self, router_name: str):
     url = f'{self.base_url}{router_name}'
     try:
         logger.info(f'request {url}')
         output = urllib.request.urlopen(url).read().decode()
         logger.debug(f'output: {output}')
         objs = json.loads(output)
         return objs
     except Exception as ex:
         logger.exception(f'error on {url}', exc_info=ex)
Ejemplo n.º 5
0
    def forward(self, batch: SquadBatch):
        memory, dec_init_hidden, tgt_embed, src_mask, src_ext_index = self.encode(
            batch)
        logger.debug("memory mask shape {}".format(src_mask))
        logger.debug("memory shape {}".format(memory.shape))

        gen_output, atten_output = self.decoder(memory, src_mask,
                                                src_ext_index, tgt_embed,
                                                dec_init_hidden)
        # (tgt_len - 1, B, vocab + oov), not probability
        return gen_output
Ejemplo n.º 6
0
    def parse(self, response):
        tr_list = response.xpath("//table[@class='tablelist']/tr")[1:-1]

        for tr in tr_list:
            item = TencentItem()
            item["title"] = tr.xpath("./td[1]/a/text()").extract_first()
            item["position"] = tr.xpath("./td[2]/text()").extract_first()
            item["publish_date"] = tr.xpath("./td[5]/text()").extract_first()

            logger.debug("item")

            yield item
Ejemplo n.º 7
0
 def make_post_request(self, router_name: str, values):
     url = f'{self.base_url}{router_name}'
     headers = {
         "Content-Type": "application/json",
         "Accept": "application/json",
     }
     data = json.dumps(values).encode("utf-8")
     try:
         req = urllib.request.Request(url, data, headers)
         with urllib.request.urlopen(req) as f:
             output = f.read()
         logger.debug(f'output: {output}')
         return json.loads(output.decode())
     except Exception as ex:
         logger.exception(f'error on {url}', exc_info=ex)
Ejemplo n.º 8
0
 def concat_attn(self, query, key, value, mask):
     """
     :param query: (B, query_size)
     :param key: (B, src_len, attn_size)
     :param value: (B, src_len, value_size)
     :param mask: (B, src_len)
     :return:
     """
     query = self.gru_hidden_attn_proj(query).unsqueeze(
         1)  # (B, 1, attn_size)
     tmp = torch.add(key, query)  # (B, src_len, attn_size)
     e = self.engy_attn_proj(torch.tanh(tmp)).squeeze(2)  # (B, src_len)
     if mask is not None:
         e = e * mask + (1 - mask) * (-1000000)
     score = torch.softmax(e, dim=1)  # (B, src_len)
     logger.debug("\nattention score\n{}".format(score))
     ctxt = torch.bmm(score.unsqueeze(1),
                      value).squeeze(1)  # (B, 1, value_size)
     return ctxt, score, e
Ejemplo n.º 9
0
Archivo: train.py Proyecto: Ba1Jun/MPCE
def train(config, model, optim:Optim, train_instances, dev_instances, word_vocab, bio_vocab, feat_vocab):
    model.train()
    start_time = time.time()
    batch_num = 0
    num_trial = 0
    report_start_time = start_time
    report_loss, report_words_num = 0, 0
    for epoch in range(config['epoch']):
        for batch in batch_iter(train_instances, config['batch_size'],
                                                     word_vocab=word_vocab,
                                                     bio_vocab=bio_vocab,
                                                     feat_vocab=feat_vocab):
            logger.debug("src_tokens\n{}".format(batch.src))
            logger.debug("ans_tokens\n{}".format(batch.ans))
            batch_num += 1
            model.zero_grad()
            gen_output = model(batch)  # (tgt_len-1, B, vocab)
            gen_output = gen_output.transpose(0, 1).contiguous() # (B, tgt_len-1, vocab)
            lprobs = torch.log_softmax(gen_output, dim=-1)
            batch_size = gen_output.size(0)
            if config['max_out_cpy']:
                gold = torch.tensor([x[1:] for x in batch.tgt_extended_index], dtype=torch.long, device=model.device)
            else:
                gold = torch.tensor([x[1:] for x in batch.tgt_index], dtype=torch.long, device=model.device)
                # (B, tgt_len-1)
            batch_loss = lloss(lprobs, gold, ignore_index=word_vocab.pad_idx)
            if config['ulloss']:
                batch_loss += config['ulloss_weight'] * ulloss(lprobs, gold, ignore_index=word_vocab.pad_idx)
            if config['seq_ulloss'] and torch.rand(1).item() < config['seq_ulloss_rate']:
                batch_loss += ulloss_seq(lprobs, config['seq_ulloss_ngram'], config['seq_ulloss_seq_type'],
                                         mask_p=config['seq_ulloss_mask_p'])
            report_loss += batch_loss.item()
            report_words_num += sum(batch.tgt_len) - batch_size
            batch_loss.backward()
            optim.step()

            if batch_num % config['log_per_batches'] == 0:
                logger.info('epoch {}|batch {}|avg.loss {:.4f}|ppl {:.3f}|lr {}|t {}|total t {}'.format(
                    epoch,
                    batch_num,
                    report_loss/report_words_num,
                    math.exp(report_loss / report_words_num),
                    optim.lr,
                    user_friendly_time_since(report_start_time),
                    user_friendly_time_since(start_time)
                ))
                report_loss = report_words_num = 0
                report_start_time = time.time()

            if batch_num > config['start_validate_after_batches'] and batch_num % config['validate_per_batches'] == 0:
                ppl = evaluate_ppl(model, dev_instances,
                                           word_vocab=word_vocab,
                                           bio_vocab=bio_vocab,
                                           feat_vocab=feat_vocab)
                if optim.is_better(ppl):
                    model.save(config['model_save_path'])
                    logger.info("model saved!")
                hit_trial = optim.update_lr(ppl)
                optim.metric_history.append(ppl)
                logger.info('eval ppl {}|patience {}|current lr {}|best metric {}'.format(
                    ppl, optim.patience, optim.lr, optim.best_metric))
                if hit_trial:
                    num_trial += 1
                    logger.info("hit trial: [{}]".format(num_trial))
                    if num_trial >= config['max_num_trial']:
                        logger.info("early stop")
                        exit(0)
                    logger.info('restoring parameters')
                    state = torch.load(config['model_save_path'])
                    model.load_state_dict(state['model_state'])
                    model.to(device)
                import random
                test_instances = random.sample(train_instances, 100)
                bleus = evaluate_bleu(model, test_instances, config, word_vocab)
                logger.info("BLEU_1 {} BLEU_2 {} BLEU_3 {} BLEU_4 {} BLEU {}".format(*bleus))
Ejemplo n.º 10
0
 def process_item(self, item, spider):
     logger.debug(item)
     return item
    }
}
num_nodes = 5
num_replicas = 3
port = START_PORT
# for i in range(int(num_replicas)):
#     cont_port = START_PORT
#     image_name = "nginx"
#     # for i in range(int(num_replicas)):
#     #     cont_name = "{}_{}".format(image_name, cont_port)
#     #     (out, err) = CLIUtils.run(START_POD_CONTAINER_CMD.format(port, cont_port, image_name, cont_name))
#     #     logger.debug('started container id: {}'.format(out))
#         # cont_port = cont_port + 1
#     cont_name = "{}_{}".format(image_name, cont_port)
#     (out, err) = CLIUtils.run(START_POD_CONTAINER_CMD.format(port, cont_port, image_name, cont_name))
#     logger.debug('started container id: {}'.format(out))
#     port = port + 1
(out, err) = CLIUtils.run(
    START_POD_CONTAINER_CMD.format(cont_spec["node"],
                                   cont_spec["container"]["port"],
                                   cont_spec["container"]["image"],
                                   cont_spec["container"]["name"]))
logger.debug('started container id: {}'.format(out))

port = START_PORT
for i in range(int(num_nodes)):
    logger.info("Containers on Node co_node_{}: ".format(port))
    (out, err) = CLIUtils.run(LIST_POD_CONTAINERS_CMD.format(port))
    logger.info('list of containers: %s', out)
    port = port + 1
Ejemplo n.º 12
0
channel = connection.channel()
channel.exchange_declare('co_topic')

port = START_PORT
for i in range(int(num_nodes)):
    node_name = "co_node_{}".format(port)
    na = NodeAgent(node_name)
    na.nodes.insert_one({
        "name": node_name,
        "description": "worker node",
        "heart_beat_time": datetime.datetime.utcnow(),
        "free_mem": 10,
        "free_cpu": 4,
        "free_disk": 128
    })
    logger.debug('added worker node container')
    # create queues
    channel.queue_declare(node_name)
    # bind the queue to exchange
    channel.queue_bind(node_name, 'co_topic', routing_key=node_name)
    # start node agent
    cmd = "python3 /NodeAgent.py -n {} -c &".format(node_name)
    d_cmd = "docker exec {} {}".format(node_name, cmd)
    print(d_cmd)
    CLIUtils.run_nb(d_cmd)
    # start node agent poller
    cmd = "python3 /NodeAgent.py -n {} -p &".format(node_name)
    d_cmd = "docker exec {} {}".format(node_name, cmd)
    print(d_cmd)
    CLIUtils.run_nb(d_cmd)