Ejemplo n.º 1
0
    def test_axiom_function_replacement(self):
        f = Symbol.Function('f', ['x'])
        t = Symbol.Function('t', ['y'])
        a = Symbol.Predicate('A', [f])
        b = Symbol.Predicate('B', [f, t])

        axi = Axiom.Axiom(Quantifier.Universal(['x'], a | a & a))
        self.assertEqual(repr(axi), '∀(x)[(A(f(x)) | (A(f(x)) & A(f(x))))]')

        axi = Axiom.Axiom(Quantifier.Universal(['x', 'y'], b))
Ejemplo n.º 2
0
    def test_axiom_to_pcnf(self):
        a = Symbol.Predicate('A', ['x'])
        b = Symbol.Predicate('B', ['y'])
        c = Symbol.Predicate('C', ['z'])

        # Simple test of disjunction over conjunction
        axi_one = Axiom.Axiom(Quantifier.Universal(['x','y','z'], a | b & c))
        axi_one = axi_one.to_pcnf()
        self.assertEqual('∀(z,y,x)[((A(z) | B(y)) & (A(z) | C(x)))]', repr(axi_one))

        # Test recursive distribution 

        #axi_one = Axiom.Axiom(Quantifier.Universal(['x','y','z'], a | (b & (a | (c & b)))))
        #print(repr(axi_one))
        #self.assertEqual('', repr(axi_one.to_pcnf()))

        # Simple sanity check, it's already FF-PCNF
        axi_two = Axiom.Axiom(Quantifier.Universal(['x','y','z'], (a | b) & c))
        axi_two = axi_two.to_pcnf()
        self.assertEqual('∀(z,y,x)[(C(x) & (A(z) | B(y)))]', repr(axi_two))

        # Sanity check we remove functions
        c = Symbol.Predicate('C', ['z', Symbol.Function('F', ['z'])])
        axi_three = Axiom.Axiom(Quantifier.Universal(['x','y','z'], a | b & c))
        axi_three = axi_three.to_pcnf()
        self.assertEqual('∀(z,y,x,w,v)[((A(z) | ~C(w,v) | F(w,v)) & (A(z) | B(y)))]', repr(axi_three))
Ejemplo n.º 3
0
    def test_axiom_simple_function_replacement(self):
        f = Symbol.Function('f', ['x'])
        t = Symbol.Function('t', ['y'])
        p = Symbol.Function('p', ['z'])
        a = Symbol.Predicate('A', [f, t, p])
        b = Symbol.Predicate('B', [f, t])
        c = Symbol.Predicate('C', [f])


        axi = Axiom.Axiom(Quantifier.Universal(['x', 'y', 'z'], a ))
        self.assertEqual(repr(axi.substitute_functions()), '∀(x,y,z)[∀(f2,t3,p4)[(~A(f2,t3,p4) | (f(x,f2) & t(y,t3) & p(z,p4)))]]')

        axi = Axiom.Axiom(Quantifier.Universal(['x',], ~c ))
        self.assertEqual(repr(axi.substitute_functions()), '∀(x)[~~∀(f5)[(C(f5) | f(x,f5))]]')

        c = Symbol.Predicate('C', [Symbol.Function('f', [Symbol.Function('g', [Symbol.Function('h', ['x'])])])])
        axi = Axiom.Axiom(Quantifier.Universal(['x'], c))
        self.assertEqual(repr(axi.substitute_functions()), '∀(x)[∀(f5,g6,h7)[(~C(f5) | (h(x,h7) & g(h7,g6) & f(g6,f5)))]]')
Ejemplo n.º 4
0
def p_function(p):
    """
    function : LPAREN NONLOGICAL parameter RPAREN
    """

    p[0] = Symbol.Function(p[2], p[3])