def run(env): from lola.train_pg import train train(env, num_episodes=num_episodes, trace_length=trace_length, batch_size=batch_size, gamma=gamma, lr=lr, lr_correction=lr_correction, corrections=lola, simple_net=simple_net, hidden=hidden)
def run(env): from lola.train_pg import train train(env, num_episodes=num_episodes, trace_length=trace_length, batch_size=batch_size, gamma=gamma, set_zero=0, lr=lr, corrections=lola, simple_net=simple_net, hidden=hidden, mem_efficient=mem_efficient)
def run(env): from lola.train_exact import train train(env, num_episodes=num_episodes, trace_length=trace_length, simple_net=simple_net, corrections=lola, pseudo=pseudo, num_hidden=hidden, reg=reg, lr=lr, lr_correction=lr_correction, gamma=gamma)
def run(env): from lola.train_cg import train train(env, num_episodes=num_episodes, trace_length=trace_length, batch_size=batch_size, bs_mul=bs_mul, gamma=gamma, grid_size=grid_size, lr=lr, corrections=lola, opp_model=opp_model, hidden=hidden, mem_efficient=mem_efficient)
def run(env): from lola.train_cg_le import train train(env, num_episodes=num_episodes, trace_length=trace_length, batch_size=batch_size, bs_mul=bs_mul, gamma=gamma, grid_size=grid_size, lr=lr, corrections=lola, opp_model=opp_model, hidden=hidden, welfare0=welfare_fn0, welfare1=welfare_fn1, punish=True, mem_efficient=mem_efficient)