Ejemplo n.º 1
0
def test_signature_similarity():
    """The probability that two sets' signatures match at some index
    are equal is equal to the Jaccard similarity between the two"""
    dim = 100
    n_tests = 100
    expected_error = 1 / sqrt(dim)  # Expected error is O(1/sqrt(dim))
    mh = MinHashSignature(dim)
    err = 0.0

    for test in range(n_tests):
        # Create random sets and their signatures
        sets = (randset(), randset())
        sigs = map(mh.sign, sets)

        # Calculate true jaccard similarity, and sim of signatures
        jsim = jaccard_sim(*sets)
        ssim = sigsim(*sigs, dim=dim)

        # Accumulate error
        err += abs(jsim - ssim)

    # Over n_tests large, we should be within upper bound of expected error.
    avg_err = err / n_tests
    assert expected_error >= avg_err, "Accuracy test failed. (avg error: %f)" % avg_err
Ejemplo n.º 2
0
def test_signature_length():
    """Signatures should have correct dimension"""
    dim = 100
    mh = MinHashSignature(dim)
    assert dim == len(mh.sign(randset()))
Ejemplo n.º 3
0
def test_signature_length():
    """Signatures should have correct dimension"""
    dim = 100
    mh = MinHashSignature(dim)
    assert dim == len(mh.sign(randset()))
Ejemplo n.º 4
0
def test_consistent_signature():
    """Signatures should be consistent"""
    mh = MinHashSignature(100)
    s = randset()
    assert mh.sign(s) == mh.sign(s)
Ejemplo n.º 5
0
def test_consistent_signature():
    """Signatures should be consistent"""
    mh = MinHashSignature(100)
    s = randset()
    assert mh.sign(s) == mh.sign(s)