Ejemplo n.º 1
0
 def testCreate(self):
     rngs = []
     for name in afwMath.Random.getAlgorithmNames():
         rngs.append(afwMath.Random(name))
     for r in rngs:
         assert afwMath.Random(r.getAlgorithmName()).uniform() == r.uniform()
         r2 = afwMath.Random(r.getAlgorithm())
         r2.uniform()
         assert r2.uniform() == r.uniform()
Ejemplo n.º 2
0
 def testPolicy(self):
     """
     Tests that policy files and environment variables can override
     user specified algorithms and seed values.
     """
     pol = pexPolicy.Policy()
     seed = getSeed()
     pol.set("rngSeed", str(seed))
     pol.set("rngAlgorithm", afwMath.Random.getAlgorithmNames()[afwMath.Random.RANLXD2])
     r1 = afwMath.Random(afwMath.Random.RANLXD2, seed)
     r2 = afwMath.Random(pol)
     checkRngEquivalence(r1, r2)
Ejemplo n.º 3
0
    def testWeightedStats(self):
        """Test that bug from #1697 (weighted stats returning NaN) stays fixed."""
        
        rand = afwMath.Random()
        mu   = 10000

        edgeMask = afwImage.MaskU.getPlaneBitMask("EDGE")

        badPixelMask = afwImage.MaskU.getPlaneBitMask("EDGE")
        statsCtrl = afwMath.StatisticsControl()
        statsCtrl.setNumSigmaClip(3.0)
        statsCtrl.setNumIter(2)
        statsCtrl.setAndMask(badPixelMask)

        for weight in (300.0, 10.0, 1.0):
            print "Testing with weight=%0.1f" % (weight,)
            maskedImageList = afwImage.vectorMaskedImageF() # [] is rejected by afwMath.statisticsStack
            weightList = []

            nx, ny = 256, 256
            for i in range(3):
                print "Processing ", i
                maskedImage = afwImage.MaskedImageF(nx, ny)
                maskedImageList.append(maskedImage)

                afwMath.randomPoissonImage(maskedImage.getImage(), rand, mu)
                maskedImage.getVariance().set(mu)
                weightList.append(weight)
                    
            self.reportBadPixels(maskedImage, badPixelMask)

            print "Stack: ",
            coaddMaskedImage = afwMath.statisticsStack(
                maskedImageList, afwMath.MEANCLIP, statsCtrl, weightList)
            self.reportBadPixels(coaddMaskedImage, badPixelMask)
    def _testAverageVersusCopy(self, withNaNs=False):
        """Re-run `testExampleTaskNoOverlaps` and `testExampleTaskWithOverlaps`
        on a more complex image (with random noise). Ensure that the results are
        identical (within between 'copy' and 'average' reduceOperation.
        """
        exposure1 = self.exposure.clone()
        img = exposure1.getMaskedImage().getImage()
        afwMath.randomGaussianImage(img, afwMath.Random())
        exposure2 = exposure1.clone()

        config = AddAmountImageMapReduceConfig()
        task = ImageMapReduceTask(config)
        config.mapper.addAmount = 5.
        newExp = task.run(exposure1, addNans=withNaNs).exposure
        newMI1 = newExp.getMaskedImage()

        config.gridStepX = config.gridStepY = 8.
        config.reducer.reduceOperation = 'average'
        task = ImageMapReduceTask(config)
        newExp = task.run(exposure2, addNans=withNaNs).exposure
        newMI2 = newExp.getMaskedImage()

        newMA1 = newMI1.getImage().getArray()
        isnan = np.isnan(newMA1)
        if not withNaNs:
            self.assertEqual(np.sum(isnan), 0)
        newMA2 = newMI2.getImage().getArray()

        # Because the average uses a float accumulator, we can have differences, set a tolerance.
        # Turns out (in practice for this test), only 7 pixels seem to have a small difference.
        self.assertFloatsAlmostEqual(newMA1[~isnan], newMA2[~isnan], rtol=1e-7)
Ejemplo n.º 5
0
 def testCopy(self):
     """
     Test that the generator returned by deepCopy() produces an
     identical random number sequence to its prototype
     """
     rng1 = afwMath.Random(afwMath.Random.MT19937, getSeed())
     rng2 = rng1.deepCopy()
     checkRngEquivalence(rng1, rng2)
 def addNoise(self, mi):
     img = mi.getImage()
     seed = int(afwMath.makeStatistics(mi.getVariance(), afwMath.MEDIAN).getValue())
     rdm = afwMath.Random(afwMath.Random.MT19937, seed)
     rdmImage = img.Factory(img.getDimensions())
     afwMath.randomGaussianImage(rdmImage, rdm)
     img += rdmImage
     return afwMath.makeStatistics(rdmImage, afwMath.MEAN).getValue(afwMath.MEAN)
Ejemplo n.º 7
0
def makeFlatNoiseImage(mi, seedStat=afwMath.MAX):
    img = mi.getImage()
    seed = int(10. *
               afwMath.makeStatistics(mi.getImage(), seedStat).getValue() + 1)
    rdm = afwMath.Random(afwMath.Random.MT19937, seed)
    rdmImage = img.Factory(img.getDimensions())
    afwMath.randomGaussianImage(rdmImage, rdm)
    return rdmImage
Ejemplo n.º 8
0
 def __init__(self, **kwargs):
     BaseFakeSourcesTask.__init__(self, **kwargs)
     print("RNG seed:", self.config.seed)
     self.rng = afwMath.Random(seed=self.config.seed)
     self.npRand = np.random.RandomState(self.config.seed)
     try:
         self.starData = fits.open(self.config.starList)[1].data
     except Exception:
         raise
Ejemplo n.º 9
0
 def testChipGapHorizontalBackground(self):
     """ Test able to match image with horizontal chip gap (row of nans) with .Background"""
     self.matcher.config.usePolynomial = False
     self.matcher.config.binSize = 64
     chipGapHorizontal = afwImage.ExposureF(600, 600)
     im = chipGapHorizontal.getMaskedImage().getImage()
     afwMath.randomGaussianImage(im, afwMath.Random())
     im += 10
     im.getArray()[200:300, :] = np.nan  # simulate 100pix chip gap horizontal
     chipGapHorizontal.getMaskedImage().getVariance().set(1.0)
     self.checkAccuracy(self.vanilla, chipGapHorizontal)
Ejemplo n.º 10
0
def addNoise(mi):
    img = mi.getImage()
    seed = int(afwMath.makeStatistics(mi.getVariance(), afwMath.MAX).getValue())+1
    rdm = afwMath.Random(afwMath.Random.MT19937, seed)
    rdmImage = img.Factory(img.getDimensions())
    afwMath.randomGaussianImage(rdmImage, rdm)
    rdmImage *= num.sqrt(seed)
    img += rdmImage

    # and don't forget to add to the variance
    var = mi.getVariance()
    var += 1.0
Ejemplo n.º 11
0
    def setUp(self):
        np.random.seed(1)

        # Make a few test images here
        # 1) full coverage (plain vanilla image) has mean = 50counts
        self.vanilla = afwImage.ExposureF(600, 600)
        im = self.vanilla.getMaskedImage().getImage()
        afwMath.randomGaussianImage(im, afwMath.Random('MT19937', 1))
        im += 50
        self.vanilla.getMaskedImage().getVariance().set(1.0)

        # 2) has chip gap and mean = 10 counts
        self.chipGap = afwImage.ExposureF(600, 600)
        im = self.chipGap.getMaskedImage().getImage()
        afwMath.randomGaussianImage(im, afwMath.Random('MT19937', 2))
        im += 10
        im.getArray()[:, 200:300] = np.nan  # simulate 100pix chip gap
        self.chipGap.getMaskedImage().getVariance().set(1.0)

        # 3) has low coverage and mean = 20 counts
        self.lowCover = afwImage.ExposureF(600, 600)
        im = self.lowCover.getMaskedImage().getImage()
        afwMath.randomGaussianImage(im, afwMath.Random('MT19937', 3))
        im += 20
        self.lowCover.getMaskedImage().getImage().getArray()[:, 200:] = np.nan
        self.lowCover.getMaskedImage().getVariance().set(1.0)

        # make a matchBackgrounds object
        self.matcher = MatchBackgroundsTask()
        self.matcher.config.usePolynomial = True
        self.matcher.binSize = 64
        self.matcher.debugDataIdString = 'Test Visit'

        self.sctrl = afwMath.StatisticsControl()
        self.sctrl.setNanSafe(True)
        self.sctrl.setAndMask(
            afwImage.Mask.getPlaneBitMask([
                "NO_DATA", "DETECTED", "DETECTED_NEGATIVE", "SAT", "BAD",
                "INTRP", "CR"
            ]))
Ejemplo n.º 12
0
 def testRampApproximate(self):
     """Test basic matching of a linear gradient with Approximate."""
     self.matcher.config.binSize = 64
     testExp = afwImage.ExposureF(self.vanilla, True)
     testIm = testExp.getMaskedImage().getImage()
     afwMath.randomGaussianImage(testIm, afwMath.Random())
     nx, ny = testExp.getDimensions()
     dzdx, dzdy, z0 = 1, 2, 0.0
     for x in range(nx):
         for y in range(ny):
             z = testIm.get(x, y)
             testIm.set(x, y, z + dzdx * x + dzdy * y + z0)
     self.checkAccuracy(testExp, self.vanilla)
Ejemplo n.º 13
0
 def testRampBackground(self):
     """Test basic matching of a linear gradient with .Background."""
     self.matcher.config.usePolynomial = False
     self.matcher.config.binSize = 64
     testExp = afwImage.ExposureF(self.vanilla, True)
     testIm = testExp.getMaskedImage().getImage()
     afwMath.randomGaussianImage(testIm, afwMath.Random())
     nx, ny = testExp.getDimensions()
     dzdx, dzdy, z0 = 1, 2, 0.0
     for x in range(nx):
         for y in range(ny):
             z = testIm[x, y, afwImage.LOCAL]
             testIm[x, y, afwImage.LOCAL] = z + dzdx * x + dzdy * y + z0
     self.checkAccuracy(testExp, self.vanilla)
Ejemplo n.º 14
0
def makeImage(width=500, height=1000):
    mi = afwImage.MaskedImageF(width, height)
    var = 50
    mi.set(1000, 0x0, var)

    addSaturated(mi, addCrosstalk=True)

    ralg, rseed = "MT19937", int(time.time()) if True else 1234

    noise = afwImage.ImageF(width, height)
    afwMath.randomGaussianImage(noise, afwMath.Random(ralg, rseed))
    noise *= math.sqrt(var)
    mi += noise

    return mi
Ejemplo n.º 15
0
 def setUp(self):
     self.random = afwMath.Random()
     self.imWidth = 200
     self.imHeight = 200
     self.maskedImage0 = afwImage.MaskedImageF(
         lsst.geom.Extent2I(self.imWidth, self.imHeight))
     afwMath.randomUniformImage(self.maskedImage0.getImage(), self.random)
     afwMath.randomUniformImage(self.maskedImage0.getVariance(),
                                self.random)
     #        afwMath.randomUniformImage(self.maskedImage0.getMask(), self.random)
     self.maskedImage1 = afwImage.MaskedImageF(
         lsst.geom.Extent2I(self.imWidth, self.imHeight))
     afwMath.randomUniformImage(self.maskedImage1.getImage(), self.random)
     afwMath.randomUniformImage(self.maskedImage1.getVariance(),
                                self.random)
Ejemplo n.º 16
0
    def test1(self):
        task = measAlg.ReplaceWithNoiseTask()
        schema = afwTable.SourceTable.makeMinimalSchema()
        table = afwTable.SourceTable.make(schema)
        sources = afwTable.SourceCatalog(table)

        im = afwImage.ImageF(200, 50)
        seed = 42
        rand = afwMath.Random(afwMath.Random.MT19937, seed)
        afwMath.randomGaussianImage(im, rand)

        s = sources.addNew()
        s.setId(1)
        fp = afwDet.Footprint()
        y, x0, x1 = (10, 10, 190)
        im.getArray()[y, x0:x1] = 10
        fp.addSpan(y, x0, x1)
        s.setFootprint(fp)
        s = sources.addNew()
        s.setId(2)
        fp = afwDet.Footprint()
        y, x0, x1 = (40, 10, 190)
        im.getArray()[y, x0:x1] = 10
        fp.addSpan(y, x0, x1)
        s.setFootprint(fp)

        mi = afwImage.MaskedImageF(im)
        exposure = afwImage.makeExposure(mi)
        self._save(mi, 'a')
        task.begin(exposure, sources)
        self._save(mi, 'b')

        sourcei = 0
        task.insertSource(exposure, sourcei)
        self._save(mi, 'c')
        # do something
        task.removeSource(exposure, sources, sources[sourcei])
        self._save(mi, 'd')

        sourcei = 1
        task.insertSource(exposure, sourcei)
        self._save(mi, 'e')
        # do something
        task.removeSource(exposure, sources, sources[sourcei])
        self._save(mi, 'f')

        task.end(exposure, sources)
        self._save(mi, 'g')
Ejemplo n.º 17
0
def addCosmicRays(image, nCR=100, emin=800, emax=1000, seed=None):
    """Add nCR fake cosmic rays to a frame, with pixel values between emin and emax (and some extra associated fainter pixels too)"""
    #
    if seed is None:
        seed = int(afwMath.makeStatistics(image, afwMath.MAX).getValue())
    if seed == 0:
        seed = 1

    width = image.getWidth()
    height = image.getHeight()
    
    rand = afwMath.Random(afwMath.Random.RANLUX, seed)

    for i in range(nCR):
        #
        # Initial point in CR
        #
        x = rand.uniformInt(width)
        y = rand.uniformInt(height)
        amp = emin + rand.uniformInt(emax - emin)
        #
        # Extra contamination at about the initial amplitude
        #
        badPixels = []
        while True:
            badPixels.append([x, y, amp + 0.1*(emax - emin)*rand.uniform()])
            
            if rand.uniform() > 0.5:
                break

            x += rand.uniformInt(3) - 1
            y += rand.uniformInt(3) - 1
        #
        # Add a little extra CR flux to the pixels surrounding badPixels
        #
        for x, y, amp in badPixels:
            while rand.uniform() < 0.5:
                image.set(x, y, amp*rand.uniform())
                
                x += rand.uniformInt(3) - 1
                y += rand.uniformInt(3) - 1
        #
        # And set the initial badPixels themselves
        #
        for x, y, amp in badPixels:
            if x >= 0 and x < width and y >= 0 and y < height:
                image.set(x, y, amp)
Ejemplo n.º 18
0
Archivo: test_rgb.py Proyecto: lsst/afw
    def setUp(self):
        self.min, self.range, self.Q = 0, 5, 20  # asinh

        width, height = 85, 75
        self.images = []
        self.images.append(afwImage.ImageF(lsst.geom.ExtentI(width, height)))
        self.images.append(afwImage.ImageF(lsst.geom.ExtentI(width, height)))
        self.images.append(afwImage.ImageF(lsst.geom.ExtentI(width, height)))

        for (x, y, A, g_r, r_i) in [
            (15, 15, 1000, 1.0, 2.0),
            (50, 45, 5500, -1.0, -0.5),
            (30, 30, 600, 1.0, 2.5),
            (45, 15, 20000, 1.0, 1.0),
        ]:
            for i in range(len(self.images)):
                if i == B:
                    amp = A
                elif i == G:
                    amp = A * math.pow(10, 0.4 * g_r)
                elif i == R:
                    amp = A * math.pow(10, 0.4 * r_i)

                self.images[i][x, y, afwImage.LOCAL] = amp

        psf = afwMath.AnalyticKernel(15, 15,
                                     afwMath.GaussianFunction2D(2.5, 1.5, 0.5))

        convolvedImage = type(self.images[0])(self.images[0].getDimensions())
        randomImage = type(self.images[0])(self.images[0].getDimensions())
        rand = afwMath.Random("MT19937", 666)
        convolutionControl = afwMath.ConvolutionControl()
        convolutionControl.setDoNormalize(True)
        convolutionControl.setDoCopyEdge(True)
        for i in range(len(self.images)):
            afwMath.convolve(convolvedImage, self.images[i], psf,
                             convolutionControl)
            afwMath.randomGaussianImage(randomImage, rand)
            randomImage *= 2
            convolvedImage += randomImage
            self.images[i][:] = convolvedImage
        del convolvedImage
        del randomImage
Ejemplo n.º 19
0
def addCosmicRays(image, nCR=100, emin=100, emax=1000):
    seed = int(afwMath.makeStatistics(image, afwMath.MAX).getValue())
    if seed == 0:
        seed = 1

    width = image.getWidth()
    height = image.getHeight()

    rand = afwMath.Random(afwMath.Random.RANLUX, seed)

    for i in range(nCR):
        #
        # Initial point in CR
        #
        x = rand.uniformInt(width)
        y = rand.uniformInt(height)
        amp = emin + rand.uniformInt(emax - emin)

        badPixels = []
        while True:
            badPixels.append([x, y, amp + 0.1*(emax - emin)*rand.uniform()])

            if rand.uniform() > 0.5:
                break

            x += rand.uniformInt(3) - 1
            y += rand.uniformInt(3) - 1

        for x, y, amp in badPixels:
            if x >= 0 and x < width and y >= 0 and y < height:
                image.set(x, y, image.get(x,y)+amp)

            while rand.uniform() < 0.1:
                image.set(x, y, image.get(x,y)+(emax - emin)*rand.uniform())

                x += rand.uniformInt(3) - 1
                y += rand.uniformInt(3) - 1

            for x, y, amp in badPixels:
                if x >= 0 and x < width and y >= 0 and y < height:
                    image.set(x, y, image.get(x,y)+amp)
Ejemplo n.º 20
0
 def __init__(self, **kwargs):
     FakeSourcesTask.__init__(self, **kwargs)
     print "RNG seed:", self.config.seed
     self.rng = afwMath.Random(self.config.seed)
     self.npRand = np.random.RandomState(self.config.seed)
     self.starData = fits.open(self.config.starList)[1].data
    def setUp(self):

        self.schema = afwTable.SourceTable.makeMinimalSchema()
        config = measBase.SingleFrameMeasurementConfig()
        config.algorithms.names = [
            "base_PixelFlags",
            "base_SdssCentroid",
            "base_GaussianFlux",
            "base_SdssShape",
            "base_CircularApertureFlux",
            "base_PsfFlux",
        ]
        config.algorithms["base_CircularApertureFlux"].radii = [3.0]
        config.slots.centroid = "base_SdssCentroid"
        config.slots.psfFlux = "base_PsfFlux"
        config.slots.apFlux = "base_CircularApertureFlux_3_0"
        config.slots.modelFlux = None
        config.slots.instFlux = None
        config.slots.calibFlux = None
        config.slots.shape = "base_SdssShape"

        self.measureTask = measBase.SingleFrameMeasurementTask(self.schema,
                                                               config=config)

        width, height = 110, 301

        self.mi = afwImage.MaskedImageF(afwGeom.ExtentI(width, height))
        self.mi.set(0)
        sd = 3  # standard deviation of image
        self.mi.getVariance().set(sd * sd)
        self.mi.getMask().addMaskPlane("DETECTED")

        self.FWHM = 5
        self.ksize = 31  # size of desired kernel

        sigma1 = 1.75
        sigma2 = 2 * sigma1

        self.exposure = afwImage.makeExposure(self.mi)
        self.exposure.setPsf(
            measAlg.DoubleGaussianPsf(self.ksize, self.ksize, 1.5 * sigma1, 1,
                                      0.1))
        self.exposure.setDetector(DetectorWrapper().detector)

        #
        # Make a kernel with the exactly correct basis functions.  Useful for debugging
        #
        basisKernelList = []
        for sigma in (sigma1, sigma2):
            basisKernel = afwMath.AnalyticKernel(
                self.ksize, self.ksize,
                afwMath.GaussianFunction2D(sigma, sigma))
            basisImage = afwImage.ImageD(basisKernel.getDimensions())
            basisKernel.computeImage(basisImage, True)
            basisImage /= np.sum(basisImage.getArray())

            if sigma == sigma1:
                basisImage0 = basisImage
            else:
                basisImage -= basisImage0

            basisKernelList.append(afwMath.FixedKernel(basisImage))

        order = 1  # 1 => up to linear
        spFunc = afwMath.PolynomialFunction2D(order)

        exactKernel = afwMath.LinearCombinationKernel(basisKernelList, spFunc)
        exactKernel.setSpatialParameters([[1.0, 0, 0],
                                          [0.0, 0.5 * 1e-2, 0.2e-2]])
        self.exactPsf = measAlg.PcaPsf(exactKernel)

        rand = afwMath.Random()  # make these tests repeatable by setting seed

        addNoise = True

        if addNoise:
            im = self.mi.getImage()
            afwMath.randomGaussianImage(im, rand)  # N(0, 1)
            im *= sd  # N(0, sd^2)
            del im

        xarr, yarr = [], []

        for x, y in [
            (20, 20),
            (60, 20),
            (30, 35),
            (50, 50),
            (20, 90),
            (70, 160),
            (25, 265),
            (75, 275),
            (85, 30),
            (50, 120),
            (70, 80),
            (60, 210),
            (20, 210),
        ]:
            xarr.append(x)
            yarr.append(y)

        for x, y in zip(xarr, yarr):
            dx = rand.uniform() - 0.5  # random (centered) offsets
            dy = rand.uniform() - 0.5

            k = exactKernel.getSpatialFunction(1)(
                x, y)  # functional variation of Kernel ...
            b = (k * sigma1**2 / ((1 - k) * sigma2**2)
                 )  # ... converted double Gaussian's "b"

            # flux = 80000 - 20*x - 10*(y/float(height))**2
            flux = 80000 * (1 + 0.1 * (rand.uniform() - 0.5))
            I0 = flux * (1 + b) / (2 * np.pi * (sigma1**2 + b * sigma2**2))
            for iy in range(y - self.ksize // 2, y + self.ksize // 2 + 1):
                if iy < 0 or iy >= self.mi.getHeight():
                    continue

                for ix in range(x - self.ksize // 2, x + self.ksize // 2 + 1):
                    if ix < 0 or ix >= self.mi.getWidth():
                        continue

                    intensity = I0 * psfVal(ix, iy, x + dx, y + dy, sigma1,
                                            sigma2, b)
                    Isample = rand.poisson(
                        intensity) if addNoise else intensity
                    self.mi.getImage().set(
                        ix, iy,
                        self.mi.getImage().get(ix, iy) + Isample)
                    self.mi.getVariance().set(
                        ix, iy,
                        self.mi.getVariance().get(ix, iy) + intensity)
        #
        bbox = afwGeom.BoxI(afwGeom.PointI(0, 0),
                            afwGeom.ExtentI(width, height))
        self.cellSet = afwMath.SpatialCellSet(bbox, 100)

        self.footprintSet = afwDetection.FootprintSet(
            self.mi, afwDetection.Threshold(100), "DETECTED")
        self.catalog = self.measure(self.footprintSet, self.exposure)

        for source in self.catalog:
            try:
                cand = measAlg.makePsfCandidate(source, self.exposure)
                self.cellSet.insertCandidate(cand)

            except Exception as e:
                print(e)
                continue
import lsst.afw.image as afwImage
import lsst.afw.geom as afwGeom
import lsst.afw.math as afwMath
import lsst.ip.diffim as ipDiffim
import numpy as num
import lsst.pex.logging as pexLogging
import lsst.pex.config as pexConfig
import lsst.afw.display.ds9 as ds9
verbosity = 5
pexLogging.Trace_setVerbosity("lsst.ip.diffim", verbosity)

imSize = 2**7
kSize = 2**5 + 1
rdm = afwMath.Random(afwMath.Random.MT19937, 10101)
scaling = 10000
doNorm = True
#gScale         = 1.0 # FFT works!
gScale = 5.0  # FFT fails!?

doAddNoise = False
writeFits = False


def makeTest1(doAddNoise):
    gaussian1 = afwMath.GaussianFunction2D(1. * gScale, 1. * gScale, 0.)
    kernel1 = afwMath.AnalyticKernel(imSize, imSize, gaussian1)
    image1 = afwImage.ImageD(kernel1.getDimensions())
    kernel1.computeImage(image1, doNorm)
    image1 *= scaling  # total counts = scaling
    image1 = image1.convertF()
    mask1 = afwImage.MaskU(kernel1.getDimensions())
Ejemplo n.º 23
0
def showPsfCandidates(exposure, psfCellSet, psf=None, display=None, normalize=True, showBadCandidates=True,
                      fitBasisComponents=False, variance=None, chi=None):
    """Display the PSF candidates.

    If psf is provided include PSF model and residuals;  if normalize is true normalize the PSFs
    (and residuals)

    If chi is True, generate a plot of residuals/sqrt(variance), i.e. chi

    If fitBasisComponents is true, also find the best linear combination of the PSF's components
    (if they exist)
    """
    if not display:
        display = afwDisplay.Display()

    if chi is None:
        if variance is not None:        # old name for chi
            chi = variance
    #
    # Show us the ccandidates
    #
    mos = displayUtils.Mosaic()
    #
    candidateCenters = []
    candidateCentersBad = []
    candidateIndex = 0

    for cell in psfCellSet.getCellList():
        for cand in cell.begin(False):  # include bad candidates
            rchi2 = cand.getChi2()
            if rchi2 > 1e100:
                rchi2 = numpy.nan

            if not showBadCandidates and cand.isBad():
                continue

            if psf:
                im_resid = displayUtils.Mosaic(gutter=0, background=-5, mode="x")

                try:
                    im = cand.getMaskedImage()  # copy of this object's image
                    xc, yc = cand.getXCenter(), cand.getYCenter()

                    margin = 0 if True else 5
                    w, h = im.getDimensions()
                    bbox = lsst.geom.BoxI(lsst.geom.PointI(margin, margin), im.getDimensions())

                    if margin > 0:
                        bim = im.Factory(w + 2*margin, h + 2*margin)

                        stdev = numpy.sqrt(afwMath.makeStatistics(im.getVariance(), afwMath.MEAN).getValue())
                        afwMath.randomGaussianImage(bim.getImage(), afwMath.Random())
                        bim.getVariance().set(stdev**2)

                        bim.assign(im, bbox)
                        im = bim
                        xc += margin
                        yc += margin

                    im = im.Factory(im, True)
                    im.setXY0(cand.getMaskedImage().getXY0())
                except Exception:
                    continue

                if not variance:
                    im_resid.append(im.Factory(im, True))

                if True:                # tweak up centroids
                    mi = im
                    psfIm = mi.getImage()
                    config = measBase.SingleFrameMeasurementTask.ConfigClass()
                    config.slots.centroid = "base_SdssCentroid"

                    schema = afwTable.SourceTable.makeMinimalSchema()
                    measureSources = measBase.SingleFrameMeasurementTask(schema, config=config)
                    catalog = afwTable.SourceCatalog(schema)

                    extra = 10          # enough margin to run the sdss centroider
                    miBig = mi.Factory(im.getWidth() + 2*extra, im.getHeight() + 2*extra)
                    miBig[extra:-extra, extra:-extra, afwImage.LOCAL] = mi
                    miBig.setXY0(mi.getX0() - extra, mi.getY0() - extra)
                    mi = miBig
                    del miBig

                    exp = afwImage.makeExposure(mi)
                    exp.setPsf(psf)

                    footprintSet = afwDet.FootprintSet(mi,
                                                       afwDet.Threshold(0.5*numpy.max(psfIm.getArray())),
                                                       "DETECTED")
                    footprintSet.makeSources(catalog)

                    if len(catalog) == 0:
                        raise RuntimeError("Failed to detect any objects")

                    measureSources.run(catalog, exp)
                    if len(catalog) == 1:
                        source = catalog[0]
                    else:               # more than one source; find the once closest to (xc, yc)
                        dmin = None  # an invalid value to catch logic errors
                        for i, s in enumerate(catalog):
                            d = numpy.hypot(xc - s.getX(), yc - s.getY())
                            if i == 0 or d < dmin:
                                source, dmin = s, d
                    xc, yc = source.getCentroid()

                # residuals using spatial model
                try:
                    subtractPsf(psf, im, xc, yc)
                except Exception:
                    continue

                resid = im
                if variance:
                    resid = resid.getImage()
                    var = im.getVariance()
                    var = var.Factory(var, True)
                    numpy.sqrt(var.getArray(), var.getArray())  # inplace sqrt
                    resid /= var

                im_resid.append(resid)

                # Fit the PSF components directly to the data (i.e. ignoring the spatial model)
                if fitBasisComponents:
                    im = cand.getMaskedImage()

                    im = im.Factory(im, True)
                    im.setXY0(cand.getMaskedImage().getXY0())

                    try:
                        noSpatialKernel = psf.getKernel()
                    except Exception:
                        noSpatialKernel = None

                    if noSpatialKernel:
                        candCenter = lsst.geom.PointD(cand.getXCenter(), cand.getYCenter())
                        fit = fitKernelParamsToImage(noSpatialKernel, im, candCenter)
                        params = fit[0]
                        kernels = afwMath.KernelList(fit[1])
                        outputKernel = afwMath.LinearCombinationKernel(kernels, params)

                        outImage = afwImage.ImageD(outputKernel.getDimensions())
                        outputKernel.computeImage(outImage, False)

                        im -= outImage.convertF()
                        resid = im

                        if margin > 0:
                            bim = im.Factory(w + 2*margin, h + 2*margin)
                            afwMath.randomGaussianImage(bim.getImage(), afwMath.Random())
                            bim *= stdev

                            bim.assign(resid, bbox)
                            resid = bim

                        if variance:
                            resid = resid.getImage()
                            resid /= var

                        im_resid.append(resid)

                im = im_resid.makeMosaic()
            else:
                im = cand.getMaskedImage()

            if normalize:
                im /= afwMath.makeStatistics(im, afwMath.MAX).getValue()

            objId = splitId(cand.getSource().getId(), True)["objId"]
            if psf:
                lab = "%d chi^2 %.1f" % (objId, rchi2)
                ctype = afwDisplay.RED if cand.isBad() else afwDisplay.GREEN
            else:
                lab = "%d flux %8.3g" % (objId, cand.getSource().getPsfInstFlux())
                ctype = afwDisplay.GREEN

            mos.append(im, lab, ctype)

            if False and numpy.isnan(rchi2):
                display.mtv(cand.getMaskedImage().getImage(), title="showPsfCandidates: candidate")
                print("amp", cand.getAmplitude())

            im = cand.getMaskedImage()
            center = (candidateIndex, xc - im.getX0(), yc - im.getY0())
            candidateIndex += 1
            if cand.isBad():
                candidateCentersBad.append(center)
            else:
                candidateCenters.append(center)

    if variance:
        title = "chi(Psf fit)"
    else:
        title = "Stars & residuals"
    mosaicImage = mos.makeMosaic(display=display, title=title)

    with display.Buffering():
        for centers, color in ((candidateCenters, afwDisplay.GREEN), (candidateCentersBad, afwDisplay.RED)):
            for cen in centers:
                bbox = mos.getBBox(cen[0])
                display.dot("+", cen[1] + bbox.getMinX(), cen[2] + bbox.getMinY(), ctype=color)

    return mosaicImage
Ejemplo n.º 24
0
    def setUp(self):
        config = SingleFrameMeasurementTask.ConfigClass()
        config.slots.apFlux = 'base_CircularApertureFlux_12_0'
        self.schema = afwTable.SourceTable.makeMinimalSchema()

        self.measureSources = SingleFrameMeasurementTask(self.schema,
                                                         config=config)

        width, height = 110, 301

        self.mi = afwImage.MaskedImageF(geom.ExtentI(width, height))
        self.mi.set(0)
        sd = 3  # standard deviation of image
        self.mi.getVariance().set(sd * sd)
        self.mi.getMask().addMaskPlane("DETECTED")

        self.ksize = 31  # size of desired kernel

        sigma1 = 1.75
        sigma2 = 2 * sigma1

        self.exposure = afwImage.makeExposure(self.mi)
        self.exposure.setPsf(
            measAlg.DoubleGaussianPsf(self.ksize, self.ksize, 1.5 * sigma1, 1,
                                      0.1))
        cdMatrix = np.array([1.0, 0.0, 0.0, 1.0])
        cdMatrix.shape = (2, 2)
        wcs = afwGeom.makeSkyWcs(crpix=geom.PointD(0, 0),
                                 crval=geom.SpherePoint(
                                     0.0, 0.0, geom.degrees),
                                 cdMatrix=cdMatrix)
        self.exposure.setWcs(wcs)

        #
        # Make a kernel with the exactly correct basis functions.
        # Useful for debugging
        #
        basisKernelList = []
        for sigma in (sigma1, sigma2):
            basisKernel = afwMath.AnalyticKernel(
                self.ksize, self.ksize,
                afwMath.GaussianFunction2D(sigma, sigma))
            basisImage = afwImage.ImageD(basisKernel.getDimensions())
            basisKernel.computeImage(basisImage, True)
            basisImage /= np.sum(basisImage.getArray())

            if sigma == sigma1:
                basisImage0 = basisImage
            else:
                basisImage -= basisImage0

            basisKernelList.append(afwMath.FixedKernel(basisImage))

        order = 1  # 1 => up to linear
        spFunc = afwMath.PolynomialFunction2D(order)

        exactKernel = afwMath.LinearCombinationKernel(basisKernelList, spFunc)
        exactKernel.setSpatialParameters([[1.0, 0, 0],
                                          [0.0, 0.5 * 1e-2, 0.2e-2]])

        rand = afwMath.Random()  # make these tests repeatable by setting seed

        addNoise = True

        if addNoise:
            im = self.mi.getImage()
            afwMath.randomGaussianImage(im, rand)  # N(0, 1)
            im *= sd  # N(0, sd^2)
            del im

        xarr, yarr = [], []

        for x, y in [
            (20, 20),
            (60, 20),
            (30, 35),
            (50, 50),
            (20, 90),
            (70, 160),
            (25, 265),
            (75, 275),
            (85, 30),
            (50, 120),
            (70, 80),
            (60, 210),
            (20, 210),
        ]:
            xarr.append(x)
            yarr.append(y)

        for x, y in zip(xarr, yarr):
            dx = rand.uniform() - 0.5  # random (centered) offsets
            dy = rand.uniform() - 0.5

            k = exactKernel.getSpatialFunction(1)(
                x, y)  # functional variation of Kernel ...
            b = (k * sigma1**2 / ((1 - k) * sigma2**2)
                 )  # ... converted double Gaussian's "b"

            # flux = 80000 - 20*x - 10*(y/float(height))**2
            flux = 80000 * (1 + 0.1 * (rand.uniform() - 0.5))
            I0 = flux * (1 + b) / (2 * np.pi * (sigma1**2 + b * sigma2**2))
            for iy in range(y - self.ksize // 2, y + self.ksize // 2 + 1):
                if iy < 0 or iy >= self.mi.getHeight():
                    continue

                for ix in range(x - self.ksize // 2, x + self.ksize // 2 + 1):
                    if ix < 0 or ix >= self.mi.getWidth():
                        continue

                    II = I0 * psfVal(ix, iy, x + dx, y + dy, sigma1, sigma2, b)
                    Isample = rand.poisson(II) if addNoise else II
                    self.mi.image[ix, iy, afwImage.LOCAL] += Isample
                    self.mi.variance[ix, iy, afwImage.LOCAL] += II

        bbox = geom.BoxI(geom.PointI(0, 0), geom.ExtentI(width, height))
        self.cellSet = afwMath.SpatialCellSet(bbox, 100)

        self.footprintSet = afwDetection.FootprintSet(
            self.mi, afwDetection.Threshold(100), "DETECTED")

        self.catalog = self.measure(self.footprintSet, self.exposure)

        for source in self.catalog:
            try:
                cand = measAlg.makePsfCandidate(source, self.exposure)
                self.cellSet.insertCandidate(cand)

            except Exception as e:
                print(e)
                continue
Ejemplo n.º 25
0
    def setUp(self):
        width, height = 110, 301

        self.mi = afwImage.MaskedImageF(afwGeom.ExtentI(width, height))
        self.mi.set(0)
        sd = 3                          # standard deviation of image
        self.mi.getVariance().set(sd*sd)
        self.mi.getMask().addMaskPlane("DETECTED")

        self.FWHM = 5
        self.ksize = 31                      # size of desired kernel

        sigma1 = 1.75
        sigma2 = 2*sigma1

        self.exposure = afwImage.makeExposure(self.mi)
        self.exposure.setPsf(measAlg.DoubleGaussianPsf(self.ksize, self.ksize,
                                                    1.5*sigma1, 1, 0.1))
        crval = afwCoord.makeCoord(afwCoord.ICRS, 0.0*afwGeom.degrees, 0.0*afwGeom.degrees)
        wcs = afwImage.makeWcs(crval, afwGeom.PointD(0, 0), 1.0, 0, 0, 1.0)
        self.exposure.setWcs(wcs)

        ccd = cameraGeom.Ccd(cameraGeom.Id(1))
        ccd.addAmp(cameraGeom.Amp(cameraGeom.Id(0),
                                  afwGeom.BoxI(afwGeom.PointI(0,0), self.exposure.getDimensions()),
                                  afwGeom.BoxI(afwGeom.PointI(0,0), afwGeom.ExtentI(0,0)),
                                  afwGeom.BoxI(afwGeom.PointI(0,0), self.exposure.getDimensions()),
                                  cameraGeom.ElectronicParams(1.0, 100.0, 65535)))
        self.exposure.setDetector(ccd)
        self.exposure.getDetector().setDistortion(None)        
        #
        # Make a kernel with the exactly correct basis functions.  Useful for debugging
        #
        basisKernelList = afwMath.KernelList()
        for sigma in (sigma1, sigma2):
            basisKernel = afwMath.AnalyticKernel(self.ksize, self.ksize,
                                                 afwMath.GaussianFunction2D(sigma, sigma))
            basisImage = afwImage.ImageD(basisKernel.getDimensions())
            basisKernel.computeImage(basisImage, True)
            basisImage /= np.sum(basisImage.getArray())

            if sigma == sigma1:
                basisImage0 = basisImage
            else:
                basisImage -= basisImage0

            basisKernelList.append(afwMath.FixedKernel(basisImage))

        order = 1                                # 1 => up to linear
        spFunc = afwMath.PolynomialFunction2D(order)

        exactKernel = afwMath.LinearCombinationKernel(basisKernelList, spFunc)
        exactKernel.setSpatialParameters([[1.0, 0,          0],
                                          [0.0, 0.5*1e-2, 0.2e-2]])

        rand = afwMath.Random()               # make these tests repeatable by setting seed

        addNoise = True

        if addNoise:
            im = self.mi.getImage()
            afwMath.randomGaussianImage(im, rand) # N(0, 1)
            im *= sd                              # N(0, sd^2)
            del im

        xarr, yarr = [], []

        for x, y in [(20, 20), (60, 20), 
                     (30, 35),
                     (50, 50),
                     (20, 90), (70, 160), (25, 265), (75, 275), (85, 30),
                     (50, 120), (70, 80),
                     (60, 210), (20, 210),
                     ]:
            xarr.append(x)
            yarr.append(y)

        for x, y in zip(xarr, yarr):
            dx = rand.uniform() - 0.5   # random (centered) offsets
            dy = rand.uniform() - 0.5

            k = exactKernel.getSpatialFunction(1)(x, y) # functional variation of Kernel ...
            b = (k*sigma1**2/((1 - k)*sigma2**2))       # ... converted double Gaussian's "b"

            #flux = 80000 - 20*x - 10*(y/float(height))**2
            flux = 80000*(1 + 0.1*(rand.uniform() - 0.5))
            I0 = flux*(1 + b)/(2*np.pi*(sigma1**2 + b*sigma2**2))
            for iy in range(y - self.ksize//2, y + self.ksize//2 + 1):
                if iy < 0 or iy >= self.mi.getHeight():
                    continue

                for ix in range(x - self.ksize//2, x + self.ksize//2 + 1):
                    if ix < 0 or ix >= self.mi.getWidth():
                        continue

                    I = I0*psfVal(ix, iy, x + dx, y + dy, sigma1, sigma2, b)
                    Isample = rand.poisson(I) if addNoise else I
                    self.mi.getImage().set(ix, iy, self.mi.getImage().get(ix, iy) + Isample)
                    self.mi.getVariance().set(ix, iy, self.mi.getVariance().get(ix, iy) + I)
        # 
        bbox = afwGeom.BoxI(afwGeom.PointI(0,0), afwGeom.ExtentI(width, height))
        self.cellSet = afwMath.SpatialCellSet(bbox, 100)

        self.footprintSet = afwDetection.FootprintSet(self.mi, afwDetection.Threshold(100), "DETECTED")

        self.catalog = SpatialModelPsfTestCase.measure(self.footprintSet, self.exposure)

        for source in self.catalog:
            try:
                cand = measAlg.makePsfCandidate(source, self.exposure)
                self.cellSet.insertCandidate(cand)

            except Exception, e:
                print e
                continue
Ejemplo n.º 26
0
 def __init__(self, rand=None):
     if rand is None:
         rand = afwMath.Random()
     self.rand = rand
Ejemplo n.º 27
0
    def getNoiseGenerator(self,
                          exposure,
                          noiseImage,
                          noiseMeanVar,
                          exposureId=None):
        """Return a generator of artificial noise.

        Returns
        -------
        noiseGenerator : `lsst.afw.image.noiseReplacer.NoiseGenerator`
        """
        if noiseImage is not None:
            return ImageNoiseGenerator(noiseImage)
        rand = None
        if self.noiseSeedMultiplier:
            # default plugin, our seed
            if exposureId is not None and exposureId != 0:
                seed = exposureId * self.noiseSeedMultiplier
            else:
                seed = self.noiseSeedMultiplier
            rand = afwMath.Random(afwMath.Random.MT19937, seed)
        if noiseMeanVar is not None:
            try:
                # Assume noiseMeanVar is an iterable of floats
                noiseMean, noiseVar = noiseMeanVar
                noiseMean = float(noiseMean)
                noiseVar = float(noiseVar)
                noiseStd = math.sqrt(noiseVar)
                if self.log:
                    self.log.debug(
                        'Using passed-in noise mean = %g, variance = %g -> stdev %g',
                        noiseMean, noiseVar, noiseStd)
                return FixedGaussianNoiseGenerator(noiseMean,
                                                   noiseStd,
                                                   rand=rand)
            except Exception:
                if self.log:
                    self.log.debug(
                        'Failed to cast passed-in noiseMeanVar to floats: %s',
                        str(noiseMeanVar))
        offset = self.noiseOffset
        noiseSource = self.noiseSource

        if noiseSource == 'meta':
            # check the exposure metadata
            meta = exposure.getMetadata()
            # this key name correspond to SubtractBackgroundTask() in meas_algorithms
            try:
                bgMean = meta.getAsDouble('BGMEAN')
                # We would have to adjust for GAIN if ip_isr didn't make it 1.0
                noiseStd = math.sqrt(bgMean)
                if self.log:
                    self.log.debug(
                        'Using noise variance = (BGMEAN = %g) from exposure metadata',
                        bgMean)
                return FixedGaussianNoiseGenerator(offset, noiseStd, rand=rand)
            except Exception:
                if self.log:
                    self.log.debug(
                        'Failed to get BGMEAN from exposure metadata')

        if noiseSource == 'variance':
            if self.log:
                self.log.debug(
                    'Will draw noise according to the variance plane.')
            var = exposure.getMaskedImage().getVariance()
            return VariancePlaneNoiseGenerator(var, mean=offset, rand=rand)

        if noiseSource == 'variance_median':
            if self.log:
                self.log.debug(
                    'Will draw noise using the median of the variance plane.')
            var = exposure.getMaskedImage().getVariance()
            s = afwMath.makeStatistics(var, afwMath.MEDIAN)
            varMedian = s.getValue(afwMath.MEDIAN)
            if self.log:
                self.log.debug("Measured from variance: median variance = %g",
                               varMedian)
            return FixedGaussianNoiseGenerator(offset,
                                               math.sqrt(varMedian),
                                               rand=rand)

        # Compute an image-wide clipped variance.
        im = exposure.getMaskedImage().getImage()
        s = afwMath.makeStatistics(im, afwMath.MEANCLIP | afwMath.STDEVCLIP)
        noiseMean = s.getValue(afwMath.MEANCLIP)
        noiseStd = s.getValue(afwMath.STDEVCLIP)
        if self.log:
            self.log.debug(
                "Measured from image: clipped mean = %g, stdev = %g",
                noiseMean, noiseStd)
        return FixedGaussianNoiseGenerator(noiseMean + offset,
                                           noiseStd,
                                           rand=rand)
Ejemplo n.º 28
0
    def test2(self):
        # Check that doReplaceWithNoise works with deblended source
        # hierarchies.
        seed = 42
        rand = afwMath.Random(afwMath.Random.MT19937, seed)

        psf = self.getpsf()
        im = afwImage.ImageF(200, 50)
        skystd = 100
        afwMath.randomGaussianImage(im, rand)
        im *= skystd
        imorig = afwImage.ImageF(im, True)
        noiseim = imorig

        mi = afwImage.MaskedImageF(im)
        mi.getVariance().set(skystd**2)
        exposure = afwImage.makeExposure(mi)
        exposure.setPsf(psf)

        detconf = measAlg.SourceDetectionConfig()
        detconf.returnOriginalFootprints = True
        detconf.reEstimateBackground = False
        measconf = measAlg.SourceMeasurementConfig()
        measconf.doReplaceWithNoise = True
        measconf.replaceWithNoise.noiseSeed = 42

        schema = afwTable.SourceTable.makeMinimalSchema()
        detect = measAlg.SourceDetectionTask(config=detconf, schema=schema)
        measure = MySourceMeasurementTask(config=measconf,
                                          schema=schema,
                                          doplot=plots)
        table = afwTable.SourceTable.make(schema)
        table.preallocate(10)

        # We're going to fake up a perfect deblend hierarchy here, by
        # creating individual images containing single sources and
        # measuring them, and then creating a deblend hierarchy where
        # the children have the correct HeavyFootprints.  We want to
        # find that the measurements on the deblend hierarchy and the
        # blended image are equal to the individual images.
        #
        # Note that in the normal setup we don't expect the
        # measurements to be *identical* because of the faint wings of
        # the objects; when measuring a deblended child, we pick up
        # the wings of the other objects.
        #
        # In order to get exactly equal measurements, we'll fake some
        # sources that have no wings -- we'll copy just the source
        # pixels within the footprint.  This means that all the
        # footprints are the same, and the pixels inside the footprint
        # are the same.

        fullim = None
        sources = None
        # "normal" measurements
        xx0, yy0, vx0, vy0 = [], [], [], []
        # "no-wing" measurements
        xx1, yy1, vx1, vy1 = [], [], [], []

        y = 25
        for i in range(5):
            # no-noise source image
            sim = afwImage.ImageF(imorig.getWidth(), imorig.getHeight())
            # Put all four sources in the parent (i==0), and one
            # source in each child (i=[1 to 4])
            if i in [0, 1]:
                addPsf(sim, psf, 20, y, 1000)
            if i in [0, 2]:
                addGaussian(sim, 40, y, 10, 3, 2e5)
            if i in [0, 3]:
                addGaussian(sim, 75, y, 10, 3, 2e5)
            if i in [0, 4]:
                addPsf(sim, psf, 95, y, 1000)
            imcopy = afwImage.ImageF(imorig, True)
            imcopy += sim
            # copy the pixels into the exposure object
            im <<= imcopy

            if i == 0:
                detected = detect.makeSourceCatalog(table, exposure)
                sources = detected.sources
                print 'detected', len(sources), 'sources'
                self.assertEqual(len(sources), 1)
            else:
                fpSets = detect.detectFootprints(exposure)
                print 'detected', fpSets.numPos, 'sources'
                fpSets.positive.makeSources(sources)
                self.assertEqual(fpSets.numPos, 1)
                print len(sources), 'sources total'

            measure.plotpat = 'single-%i.png' % i
            measure.run(exposure, sources[-1:])
            s = sources[-1]
            fp = s.getFootprint()
            if i == 0:
                # This is the blended image
                fullim = imcopy
            else:
                print 'Creating heavy footprint...'
                heavy = afwDet.makeHeavyFootprint(fp, mi)
                s.setFootprint(heavy)

            # Record the single-source measurements.
            xx0.append(s.getX())
            yy0.append(s.getY())
            vx0.append(s.getIxx())
            vy0.append(s.getIyy())

            # "no-wings": add just the source pixels within the footprint
            im <<= sim
            h = afwDet.makeHeavyFootprint(fp, mi)
            sim2 = afwImage.ImageF(imorig.getWidth(), imorig.getHeight())
            h.insert(sim2)
            imcopy = afwImage.ImageF(imorig, True)
            imcopy += sim2
            im <<= imcopy
            measure.plotpat = 'single2-%i.png' % i
            measure.run(exposure, sources[i:i + 1], noiseImage=noiseim)
            s = sources[i]
            xx1.append(s.getX())
            yy1.append(s.getY())
            vx1.append(s.getIxx())
            vy1.append(s.getIyy())
            if i == 0:
                fullim2 = imcopy

        # Now we'll build the fake deblended hierarchy.
        parent = sources[0]
        kids = sources[1:]
        # Ensure that the parent footprint contains all the child footprints
        pfp = parent.getFootprint()
        for s in kids:
            for span in s.getFootprint().getSpans():
                pfp.addSpan(span)
        pfp.normalize()
        #parent.setFootprint(pfp)
        # The parent-child relationship is established through the IDs
        parentid = parent.getId()
        for s in kids:
            s.setParent(parentid)

        # Reset all the measurements
        shkey = sources.getTable().getShapeKey()
        ckey = sources.getTable().getCentroidKey()
        for s in sources:
            sh = s.get(shkey)
            sh.setIxx(np.nan)
            sh.setIyy(np.nan)
            sh.setIxy(np.nan)
            s.set(shkey, sh)
            c = s.get(ckey)
            c.setX(np.nan)
            c.setY(np.nan)
            s.set(ckey, c)

        # Measure the "deblended" normal sources
        im <<= fullim
        measure.plotpat = 'joint-%(sourcenum)i.png'
        measure.run(exposure, sources)
        xx2, yy2, vx2, vy2 = [], [], [], []
        for s in sources:
            xx2.append(s.getX())
            yy2.append(s.getY())
            vx2.append(s.getIxx())
            vy2.append(s.getIyy())

        # Measure the "deblended" no-wings sources
        im <<= fullim2
        measure.plotpat = 'joint2-%(sourcenum)i.png'
        measure.run(exposure, sources, noiseImage=noiseim)
        xx3, yy3, vx3, vy3 = [], [], [], []
        for s in sources:
            xx3.append(s.getX())
            yy3.append(s.getY())
            vx3.append(s.getIxx())
            vy3.append(s.getIyy())

        print 'Normal:'
        print 'xx  ', xx0
        print '  vs', xx2
        print 'yy  ', yy0
        print '  vs', yy2
        print 'vx  ', vx0
        print '  vs', vx2
        print 'vy  ', vy0
        print '  vs', vy2

        print 'No wings:'
        print 'xx  ', xx1
        print '  vs', xx3
        print 'yy  ', yy1
        print '  vs', yy3
        print 'vx  ', vx1
        print '  vs', vx3
        print 'vy  ', vy1
        print '  vs', vy3

        # These "normal" tests are not very stringent.
        # 0.1-pixel centroids
        self.assertTrue(all([abs(v1 - v2) < 0.1 for v1, v2 in zip(xx0, xx2)]))
        self.assertTrue(all([abs(v1 - v2) < 0.1 for v1, v2 in zip(yy0, yy2)]))
        # 10% variances
        self.assertTrue(
            all([
                abs(v1 - v2) / ((v1 + v2) / 2.) < 0.1
                for v1, v2 in zip(vx0, vx2)
            ]))
        self.assertTrue(
            all([
                abs(v1 - v2) / ((v1 + v2) / 2.) < 0.1
                for v1, v2 in zip(vy0, vy2)
            ]))

        # The "no-wings" tests should be exact.
        self.assertTrue(xx1 == xx3)
        self.assertTrue(yy1 == yy3)
        self.assertTrue(vx1 == vx3)
        self.assertTrue(vy1 == vy3)

        # Reset sources
        for s in sources:
            sh = s.get(shkey)
            sh.setIxx(np.nan)
            sh.setIyy(np.nan)
            sh.setIxy(np.nan)
            s.set(shkey, sh)
            c = s.get(ckey)
            c.setX(np.nan)
            c.setY(np.nan)
            s.set(ckey, c)

        # Test that the parent/child order is unimportant.
        im <<= fullim2
        measure.doplot = False
        sources2 = sources.copy()
        perm = [2, 1, 0, 3, 4]
        for i, j in enumerate(perm):
            sources2[i] = sources[j]
            # I'm not convinced that HeavyFootprints get copied correctly...
            sources2[i].setFootprint(sources[j].getFootprint())
        measure.run(exposure, sources2, noiseImage=noiseim)
        # "measure.run" reorders the sources!
        xx3, yy3, vx3, vy3 = [], [], [], []
        for s in sources:
            xx3.append(s.getX())
            yy3.append(s.getY())
            vx3.append(s.getIxx())
            vy3.append(s.getIyy())
        self.assertTrue(xx1 == xx3)
        self.assertTrue(yy1 == yy3)
        self.assertTrue(vx1 == vx3)
        self.assertTrue(vy1 == vy3)

        # Reset sources
        for s in sources:
            sh = s.get(shkey)
            sh.setIxx(np.nan)
            sh.setIyy(np.nan)
            sh.setIxy(np.nan)
            s.set(shkey, sh)
            c = s.get(ckey)
            c.setX(np.nan)
            c.setY(np.nan)
            s.set(ckey, c)

        # Test that it still works when the parent ID falls in the middle of
        # the child IDs.
        im <<= fullim2
        measure.doplot = False
        sources2 = sources.copy()
        parentid = 3
        ids = [parentid, 1, 2, 4, 5]
        for i, s in enumerate(sources2):
            s.setId(ids[i])
            if i != 0:
                s.setParent(parentid)
            s.setFootprint(sources[i].getFootprint())

        measure.run(exposure, sources2, noiseImage=noiseim)
        # The sources get reordered!
        xx3, yy3, vx3, vy3 = [], [], [], []
        xx3, yy3, vx3, vy3 = [0] * 5, [0] * 5, [0] * 5, [0] * 5
        for i, j in enumerate(ids):
            xx3[i] = sources2[j - 1].getX()
            yy3[i] = sources2[j - 1].getY()
            vx3[i] = sources2[j - 1].getIxx()
            vy3[i] = sources2[j - 1].getIyy()
        self.assertTrue(xx1 == xx3)
        self.assertTrue(yy1 == yy3)
        self.assertTrue(vx1 == vx3)
        self.assertTrue(vy1 == vy3)
Ejemplo n.º 29
0
    def test1(self):
        seed = 42
        rand = afwMath.Random(afwMath.Random.MT19937, seed)

        #for k in range(5):
        self.runone(1, rand)
Ejemplo n.º 30
0
 def setUp(self):
     self.rand = afwMath.Random()
     self.image = afwImage.ImageF(afwGeom.Extent2I(1000, 1000))