Ejemplo n.º 1
0
    def run(self, sensor_id, qe_files, pd_ratio_file, mask_files, gains,
            bias_frame=None, medians_file=None, vendor_data=False,
            correction_image=None, mondiode_func=None):
        imutils.check_temperatures(qe_files, self.config.temp_set_point_tol,
                                   setpoint=self.config.temp_set_point,
                                   warn_only=True)
        qe_data = QE.QE_Data(verbose=self.config.verbose, logger=self.log,
                             mondiode_func=mondiode_func)

        if medians_file is None:
            medians_file = os.path.join(self.config.output_dir,
                                        '%s_QE_medians.txt' % sensor_id)
            qe_data.calculate_medians(qe_files, medians_file,
                                      mask_files=mask_files,
                                      bias_frame=bias_frame,
                                      overwrite=True,
                                      correction_image=correction_image)

        qe_data.read_medians(medians_file)

        if vendor_data:
            qe_data.incidentPower_e2v()
        else:
            qe_data.incidentPower(pd_ratio_file)

        qe_data.calculate_QE(gains, amps=imutils.allAmps(qe_files[0]))

        fits_outfile = os.path.join(self.config.output_dir,
                                    '%s_QE.fits' % sensor_id)
        qe_data.write_fits_tables(fits_outfile)
Ejemplo n.º 2
0
    def run(self, sensor_id, dark_files, mask_files, gains, bias_frame=None):
        imutils.check_temperatures(dark_files,
                                   self.config.temp_set_point_tol,
                                   setpoint=self.config.temp_set_point,
                                   warn_only=True)
        median_images = {}
        for amp in imutils.allAmps(dark_files[0]):
            median_images[amp] = imutils.fits_median(dark_files,
                                                     imutils.dm_hdu(amp))
        medfile = os.path.join(self.config.output_dir,
                               '%s_median_dark_bp.fits' % sensor_id)
        imutils.writeFits(median_images, medfile, dark_files[0])

        ccd = MaskedCCD(medfile, mask_files=mask_files, bias_frame=bias_frame)
        md = imutils.Metadata(dark_files[0], 1)
        exptime = ccd.md.get('EXPTIME')
        total_bright_pixels = 0
        total_bright_columns = 0
        if self.config.verbose:
            self.log.info("Amp         # bright pixels     # bright columns")
        #
        # Write bright pixel and column counts to results file.
        #
        results_file = self.config.eotest_results_file
        if results_file is None:
            results_file = os.path.join(self.config.output_dir,
                                        '%s_eotest_results.fits' % sensor_id)

        results = EOTestResults(results_file, namps=len(ccd))
        pixels = {}
        columns = {}
        for amp in ccd:
            bright_pixels = BrightPixels(ccd, amp, exptime, gains[amp])
            pixels[amp], columns[amp] = bright_pixels.find()
            pix_count = len(pixels[amp])
            col_count = len(columns[amp])
            total_bright_pixels += pix_count
            total_bright_columns += col_count
            results.add_seg_result(amp, 'NUM_BRIGHT_PIXELS', pix_count)
            results.add_seg_result(amp, 'NUM_BRIGHT_COLUMNS', col_count)
            self.log.info("%2i          %i          %i" %
                          (amp, pix_count, col_count))
        if self.config.verbose:
            self.log.info("Total bright pixels: %i" % total_bright_pixels)
            self.log.info("Total bright columns: %i" % total_bright_columns)
        results.write(clobber=True)

        # Generate the mask file based on the pixel and columns.
        mask_file = os.path.join(self.config.output_dir,
                                 '%s_bright_pixel_mask.fits' % sensor_id)
        if os.path.isfile(mask_file):
            os.remove(mask_file)
        generate_mask(medfile,
                      mask_file,
                      self.config.mask_plane,
                      pixels=pixels,
                      columns=columns)
Ejemplo n.º 3
0
def eotest_check_input_data(rootdir='.', use_baselined=True):
    """
    Check electro-optical datasets according to relevant specs in
    LCA-128-E, LCA-10103-A, and LCA-10140-A?. Not all specs are tested.

    rootdir is assumed to point to a directory that ends in the sensor
    ID, i.e., it is of the form "<...>/NNN-MM".  Checks are performed
    only for files and directories below rootdir.
    """
    errors = {'dirs': [], 'temperature': [], 'lambda': []}
    full_path = lambda x: os.path.join(rootdir, x)
    if use_baselined:  # Use the baselined version in docushare
        print "Assuming baselined version of LCA-10140-A (from docushare)"
        test_types = ('dark', 'fe55', 'flat', 'lambda', 'spot',
                      'superflat_500', 'trap')
        file_pattern = os.path.join('*', '*.fits')
    else:  # Use the version in the most recent revision (2014-04-11)
        print "Assuming 2014-04-11 revision of LCA-10140-A"
        test_types = ('dark', 'fe55', 'flat', 'lambda', 'spot', 'sflat_500',
                      'trap')
        file_pattern = os.path.join('*', '*', '*.fits')
    files = {}
    #
    # Check basic directory structure and glob for filenames as
    # specified in LCA-10140-A.
    #
    for test in test_types:
        target = full_path(test)
        if not os.path.isdir(target):
            what = "Expected test type subdir %(target)s not found" % locals()
            errors['dirs'].append(what)
        glob_target = os.path.join(rootdir, test, file_pattern)
        files[test] = glob.glob(glob_target)
        if len(files[test]) == 0:
            what = "No files found for test type %(test)s in %(glob_target)s" \
                % locals()
            errors['dirs'].append(what)
    #
    # Check temperature ranges of datasets need for read noise (fe55),
    # crosstalk (spot), dark current (dark), and QE (lambda) as
    # specified in LCA-128-E.
    #
    for test in ('fe55', 'spot', 'dark', 'lambda'):
        for infile in files[test]:
            try:
                imutils.check_temperatures([infile], 1., setpoint=-95)
            except RuntimeError, eObj:
                errors['temperature'].append(eObj.message)
Ejemplo n.º 4
0
 def run(self, sensor_id, xtalk_files, mask_files, system_xtalk_file=None):
     imutils.check_temperatures(xtalk_files,
                                self.config.temp_set_point_tol,
                                setpoint=self.config.temp_set_point,
                                warn_only=True)
     #
     # Test if we have a single (and therefore multi-aggressor) file.
     #
     if len(xtalk_files) == 1:
         xtalk_files = xtalk_files[0]
     xtalk = make_crosstalk_matrix(xtalk_files, mask_files=mask_files)
     if system_xtalk_file is not None:
         system_xtalk_matrix = CrosstalkMatrix(system_xtalk_file)
     xtalk = xtalk - system_xtalk_matrix
     xtalk.write_fits(
         os.path.join(self.config.output_dir,
                      '%s_xtalk_matrix.fits' % sensor_id))
Ejemplo n.º 5
0
    def run(self, sensor_id, pre_flat_darks, flat, post_flat_darks, mask_files,
            gains):
        darks = list(pre_flat_darks) + list(post_flat_darks)
        imutils.check_temperatures(darks,
                                   self.config.temp_set_point_tol,
                                   setpoint=self.config.temp_set_point,
                                   warn_only=True)
        # Check that pre-flat dark frames all have the same exposure time
        md = imutils.Metadata(pre_flat_darks[0], 1)
        exptime = md.get('EXPTIME')
        for item in pre_flat_darks[1:]:
            md = imutils.Metadata(item, 1)
            if exptime != md.get('EXPTIME'):
                raise RuntimeError("Exposure times of pre-flat darks differ.")

        # Make a median image of the preflat darks
        median_images = {}
        for amp in imutils.allAmps(darks[0]):
            median_images[amp] = imutils.fits_median(pre_flat_darks,
                                                     imutils.dm_hdu(amp))
        medfile = os.path.join(self.config.output_dir,
                               '%s_persistence_dark_median.fits' % sensor_id)
        imutils.writeFits(median_images, medfile, darks[0])
        ccd = MaskedCCD(medfile, mask_files=mask_files)

        # Define the sub-region for assessing the deferred charge.
        # This is the same bounding box for all segments, so use amp=1.
        image = ccd.unbiased_and_trimmed_image(1)
        xllc = ((image.getWidth() - self.config.region_size) / 2. -
                self.config.region_x_offset)
        yllc = ((image.getHeight() - self.config.region_size) / 2. -
                self.config.region_y_offset)
        imaging_reg = afwGeom.Box2I(
            afwGeom.Point2I(int(xllc), int(yllc)),
            afwGeom.Extent2I(self.config.region_size, self.config.region_size))
        overscan = ccd.amp_geom.serial_overscan
        # Compute reference dark current for each segment.
        dc_ref = {}
        for amp in ccd:
            mi = imutils.unbias_and_trim(ccd[amp], overscan, imaging_reg)
            dc_ref[amp] = afwMath.makeStatistics(mi, afwMath.MEDIAN,
                                                 ccd.stat_ctrl).getValue()
            dc_ref[amp] *= gains[amp] / exptime

        # Extract reference time for computing the time dependence
        # of the deferred charge as the observation time + exposure time
        # from the saturated flat.
        tref = readout_time(flat)

        # Loop over post-flat darks, compute median e-/pixel in
        # subregion, subtract dc_ref*exptime, persist, and report the
        # deferred charge vs time (using MJD-OBS + EXPTIME) for each amp.
        deferred_charges = []
        times = []
        for dark in post_flat_darks:
            ccd = MaskedCCD(dark, mask_files=mask_files)
            dt = readout_time(dark) - tref
            times.append(dt.sec)
            exptime = ccd.md.get('EXPTIME')
            charge = {}
            for amp in ccd:
                mi = imutils.unbias_and_trim(ccd[amp], overscan, imaging_reg)
                estimators = afwMath.MEDIAN | afwMath.STDEV
                stats = afwMath.makeStatistics(mi, estimators, ccd.stat_ctrl)
                value = (stats.getValue(afwMath.MEDIAN) * gains[amp] -
                         dc_ref[amp] * exptime)
                stdev = (stats.getValue(afwMath.STDEV) * gains[amp] -
                         dc_ref[amp] * exptime)
                charge[amp] = (value, stdev)
            deferred_charges.append(charge)

        if self.config.verbose:
            for amp in ccd:
                self.log.info("amp: %i" % amp)
                for i, time in enumerate(times):
                    self.log.info("%.1f  %e  %e" %
                                  (time, deferred_charges[i][amp][0],
                                   deferred_charges[i][amp][1]))

        outfile = os.path.join(self.config.output_dir,
                               '%s_persistence.fits' % sensor_id)
        self.write(times, deferred_charges, outfile, clobber=True)
Ejemplo n.º 6
0
    def run(self,
            sensor_id,
            bias_files,
            gains,
            system_noise_files=None,
            system_noise=None,
            mask_files=(),
            use_overscan=False):
        all_amps = imutils.allAmps(bias_files[0])
        imutils.check_temperatures(bias_files,
                                   self.config.temp_set_point_tol,
                                   setpoint=self.config.temp_set_point,
                                   warn_only=True)
        outfiles = []
        Ntot = NoiseDistributions(amps=all_amps)
        Nsys = NoiseDistributions(amps=all_amps)
        if system_noise_files is None:
            system_noise_files = [None] * len(bias_files)
        for i, bias, sysnoise in zip(range(len(bias_files)), bias_files,
                                     system_noise_files):
            outfile = "%s_read_noise_%03i.fits" % (sensor_id, i)
            outfile = os.path.join(self.config.output_dir, outfile)
            outfiles.append(outfile)

            if self.config.verbose:
                self.log.info("Processing %s %s -> %s" %
                              (bias, sysnoise, outfile))

            # Determine the nominal imaging region from the bias file.
            ccd = MaskedCCD(bias)
            if use_overscan:
                imaging = ccd.amp_geom.serial_overscan
                dx = imaging.getWidth() / 2
                dy = self.config.dy
                nsamp = self.config.nsamp
            else:
                imaging = ccd.amp_geom.imaging
                dx = self.config.dx
                dy = self.config.dy
                nsamp = self.config.nsamp
            #
            # Create a single sub-region sampler so that the same
            # sub-regions will be used for both the bias and system
            # noise frames.
            #
            sampler = imutils.SubRegionSampler(dx, dy, nsamp, imaging=imaging)

            Ntot_amp = noise_dists(bias, gains, sampler, mask_files=mask_files)
            Nsys_amp = noise_dists(sysnoise,
                                   gains,
                                   sampler,
                                   mask_files=mask_files)

            _write_read_noise_dists(outfile, Ntot_amp, Nsys_amp, gains, bias,
                                    sysnoise)
            #
            # Accumulate noise distributions for final median calculation
            #
            Ntot.append(Ntot_amp)
            Nsys.append(Nsys_amp)

        results_file = self.config.eotest_results_file
        if results_file is None:
            results_file = os.path.join(self.config.output_dir,
                                        '%s_eotest_results.fits' % sensor_id)

        results = EOTestResults(results_file, namps=len(ccd))
        if self.config.verbose:
            self.log.info("Amp    read noise    total noise    system noise")
        for amp in ccd:
            Ntot_med = imutils.median(Ntot[amp])
            if system_noise is not None:
                Nsys_med = float(system_noise[amp])
            else:
                Nsys_med = imutils.median(Nsys[amp])
            var = Ntot_med**2 - Nsys_med**2
            if var >= 0:
                Nread = np.sqrt(var)
            else:
                Nread = -1
            line = "%2s       %7.4f        %7.4f        %7.4f" % (
                amp, Nread, Ntot_med, Nsys_med)
            if self.config.verbose:
                self.log.info(line)
            results.add_seg_result(amp, 'READ_NOISE', Nread)
            results.add_seg_result(amp, 'TOTAL_NOISE', Ntot_med)
            results.add_seg_result(amp, 'SYSTEM_NOISE', Nsys_med)
        results.write(clobber=True)
Ejemplo n.º 7
0
    def run(self, sensor_id, dark_files, mask_files, gains, bias_frame=None):
        imutils.check_temperatures(dark_files,
                                   self.config.temp_set_point_tol,
                                   setpoint=self.config.temp_set_point,
                                   warn_only=True)
        median_images = {}
        md = imutils.Metadata(dark_files[0], 1)
        for amp in imutils.allAmps(dark_files[0]):
            median_images[amp] = imutils.fits_median(dark_files,
                                                     imutils.dm_hdu(amp))
        medfile = os.path.join(self.config.output_dir,
                               '%s_median_dark_current.fits' % sensor_id)
        imutils.writeFits(median_images, medfile, dark_files[0])

        ccd = MaskedCCD(medfile, mask_files=mask_files, bias_frame=bias_frame)

        dark95s = {}
        exptime = md.get('EXPTIME')
        if self.config.verbose:
            self.log.info("Amp        95 percentile    median")
        dark_curr_pixels = []
        dark_curr_pixels_per_amp = {}
        for amp in ccd:
            imaging_region = ccd.amp_geom.imaging
            overscan = ccd.amp_geom.serial_overscan
            image = imutils.unbias_and_trim(ccd[amp].getImage(), overscan,
                                            imaging_region)
            mask = imutils.trim(ccd[amp].getMask(), imaging_region)
            imarr = image.getArray()
            mskarr = mask.getArray()
            pixels = imarr.reshape(1, imarr.shape[0] * imarr.shape[1])[0]
            masked = mskarr.reshape(1, mskarr.shape[0] * mskarr.shape[1])[0]
            unmasked = [
                pixels[i] for i in range(len(pixels)) if masked[i] == 0
            ]
            unmasked.sort()
            unmasked = np.array(unmasked) * gains[amp] / exptime
            dark_curr_pixels_per_amp[amp] = unmasked
            dark_curr_pixels.extend(unmasked)
            try:
                dark95s[amp] = unmasked[int(len(unmasked) * 0.95)]
                median = unmasked[len(unmasked) / 2]
            except IndexError as eobj:
                print str(eobj)
                dark95s[amp] = -1.
                median = -1.
            if self.config.verbose:
                self.log.info("%2i         %.2e         %.2e" %
                              (amp, dark95s[amp], median))
        #
        # Compute 95th percentile dark current for CCD as a whole.
        #
        dark_curr_pixels = sorted(dark_curr_pixels)
        darkcurr95 = dark_curr_pixels[int(len(dark_curr_pixels) * 0.95)]
        dark95mean = np.mean(dark95s.values())
        if self.config.verbose:
            #self.log.info("CCD: mean 95 percentile value = %s" % dark95mean)
            self.log.info("CCD-wide 95 percentile value = %s" % darkcurr95)
        #
        # Update header of dark current median image file with dark
        # files used and dark95 values, and write dark95 values to the
        # eotest results file.
        #
        results_file = self.config.eotest_results_file
        if results_file is None:
            results_file = os.path.join(self.config.output_dir,
                                        '%s_eotest_results.fits' % sensor_id)
        results = EOTestResults(results_file, namps=len(ccd))
        output = fits.open(medfile)
        for i, dark in enumerate(dark_files):
            output[0].header['DARK%02i' % i] = os.path.basename(dark)
        # Write overall dark current 95th percentile
        results.output['AMPLIFIER_RESULTS'].header['DARK95'] = darkcurr95
        for amp in ccd:
            output[0].header['DARK95%s' %
                             imutils.channelIds[amp]] = dark95s[amp]
            results.add_seg_result(amp, 'DARK_CURRENT_95', dark95s[amp])
        fitsWriteto(output, medfile, clobber=True, checksum=True)
        results.write(clobber=True)
        return dark_curr_pixels_per_amp, dark95s
Ejemplo n.º 8
0
def eotest_check_input_data(rootdir='.', use_baselined=True):
    """
    Check electro-optical datasets according to relevant specs in
    LCA-128-E, LCA-10103-A, and LCA-10140-A?. Not all specs are tested.

    rootdir is assumed to point to a directory that ends in the sensor
    ID, i.e., it is of the form "<...>/NNN-MM".  Checks are performed
    only for files and directories below rootdir.
    """
    errors = {'dirs': [], 'temperature': [], 'lambda': []}

    def full_path(x):
        return os.path.join(rootdir, x)

    if use_baselined:  # Use the baselined version in docushare
        print("Assuming baselined version of LCA-10140-A (from docushare)")
        test_types = ('dark', 'fe55', 'flat', 'lambda', 'spot',
                      'superflat_500', 'trap')
        file_pattern = os.path.join('*', '*.fits')
    else:  # Use the version in the most recent revision (2014-04-11)
        print("Assuming 2014-04-11 revision of LCA-10140-A")
        test_types = ('dark', 'fe55', 'flat', 'lambda', 'spot', 'sflat_500',
                      'trap')
        file_pattern = os.path.join('*', '*', '*.fits')
    files = {}
    #
    # Check basic directory structure and glob for filenames as
    # specified in LCA-10140-A.
    #
    for test in test_types:
        target = full_path(test)
        if not os.path.isdir(target):
            what = "Expected test type subdir %(target)s not found" % locals()
            errors['dirs'].append(what)
        glob_target = os.path.join(rootdir, test, file_pattern)
        files[test] = glob.glob(glob_target)
        if len(files[test]) == 0:
            what = "No files found for test type %(test)s in %(glob_target)s" \
                % locals()
            errors['dirs'].append(what)
    #
    # Check temperature ranges of datasets need for read noise (fe55),
    # crosstalk (spot), dark current (dark), and QE (lambda) as
    # specified in LCA-128-E.
    #
    for test in ('fe55', 'spot', 'dark', 'lambda'):
        for infile in files[test]:
            try:
                imutils.check_temperatures([infile], 1., setpoint=-95)
            except RuntimeError as eObj:
                errors['temperature'].append(eObj.message)
    #
    # Check for required wavelengths for QE and PRNU as specified in
    # LCA-128-E.
    #
    required_wls = (330, 350, 370, 450, 500, 620, 750, 870, 1000)
    acquired_wls = []
    for item in files['lambda']:
        wl = int(np.round(fits.open(item)[0].header['MONOWL']))
        acquired_wls.append(wl)
    for target_wl in required_wls:
        if target_wl not in acquired_wls:
            what = 'Flat at %(target_wl)s nm missing from lambda dataset' \
                % locals()
            errors['lambda'].append(what)
    #
    # Print summary of failures.
    #
    for test in errors:
        if errors[test]:
            print("%i error(s) of type %s:" % (len(errors[test]), test))
            for message in errors[test]:
                print("  ", message)
            print()
Ejemplo n.º 9
0
    def run(self,
            sensor_id,
            infiles,
            mask_files,
            bias_frame=None,
            fe55_catalog=None,
            minClustersPerAmp=None,
            chiprob_min=0.1,
            accuracy_req=0,
            hist_nsig=10,
            linearity_correction=None):
        imutils.check_temperatures(infiles,
                                   self.config.temp_set_point_tol,
                                   setpoint=self.config.temp_set_point,
                                   warn_only=True)
        if self.config.verbose and fe55_catalog is None:
            self.log.info("Input files:")
            for item in infiles:
                self.log.info("  %s" % item)
        #
        # Detect and fit 2D Gaussian to Fe55 charge clusters,
        # accumulating the results by amplifier.
        #
        fitter = PsfGaussFit(nsig=self.config.nsig, fit_xy=self.config.fit_xy)
        gains, gain_errors, sigma_modes = {}, {}, {}
        if fe55_catalog is None:
            for infile in infiles:
                if self.config.verbose:
                    self.log.info("processing %s" % infile)
                ccd = MaskedCCD(infile,
                                mask_files=mask_files,
                                bias_frame=bias_frame,
                                linearity_correction=linearity_correction)
                for amp in ccd:
                    if self.config.verbose:
                        self.log.info("  amp %i" % amp)
                    if amp in gain_errors:
                        gain_accuracy = np.abs(gain_errors[amp] / gains[amp])
                        if self.config.verbose:
                            message = "  Relative gain accuracy, dgain/gain " \
                                + "= %.2e" % gain_accuracy
                            self.log.info(message)
                        if gain_accuracy < accuracy_req:
                            # Requested accuracy already obtained, so
                            # skip cluster fitting.
                            continue
                    fitter.process_image(ccd, amp, logger=self.log)
                    gains, gain_errors, sigma_modes = \
                        self.fit_gains(fitter, gains, gain_errors, sigma_modes,
                                       amps=[amp], hist_nsig=hist_nsig)
            if self.config.output_file is None:
                psf_results = os.path.join(
                    self.config.output_dir, '%s_psf_results_nsig%i.fits' %
                    (sensor_id, self.config.nsig))
            else:
                psf_results = self.config.output_file
            if self.config.verbose:
                self.log.info("Writing psf results file to %s" % psf_results)
            fitter.write_results(outfile=psf_results)
            namps = len(ccd)
        else:
            fitter.read_fe55_catalog(fe55_catalog)
            namps = fits.open(fe55_catalog)[0].header['NAMPS']

        results_file = self.config.eotest_results_file
        if results_file is None:
            results_file = os.path.join(self.config.output_dir,
                                        '%s_eotest_results.fits' % sensor_id)

        if self.config.verbose:
            self.log.info("Writing gain and psf sigma results to %s" %
                          results_file)

        results = EOTestResults(results_file, namps=namps)
        for amp in gains:
            results.add_seg_result(amp, 'GAIN', gains[amp])
            results.add_seg_result(amp, 'GAIN_ERROR', gain_errors[amp])
            results.add_seg_result(amp, 'PSF_SIGMA', sigma_modes[amp])
        results.write(clobber=True)

        return gains