def testDeltaFunctionScaled(self, scaling=2.7, bg=11.3):
        sIm = afwImage.MaskedImageF(self.templateExposure2.getMaskedImage(),
                                    deep=True)
        sIm *= scaling
        kc = ipDiffim.KernelCandidateF(self.x02, self.y02,
                                       self.templateExposure2.getMaskedImage(),
                                       sIm, self.ps)

        kList = ipDiffim.makeKernelBasisList(self.subconfig)
        kc.build(kList)
        self.verifyDeltaFunctionSolution(kc.getKernelSolution(
            ipDiffim.KernelCandidateF.RECENT),
                                         kSum=scaling)

        sIm = afwImage.MaskedImageF(self.templateExposure2.getMaskedImage(),
                                    deep=True)
        sIm += bg
        kc = ipDiffim.KernelCandidateF(self.x02, self.y02,
                                       self.templateExposure2.getMaskedImage(),
                                       sIm, self.ps)

        kList = ipDiffim.makeKernelBasisList(self.subconfig)
        kc.build(kList)
        self.verifyDeltaFunctionSolution(kc.getKernelSolution(
            ipDiffim.KernelCandidateF.RECENT),
                                         bg=bg)
    def testGaussianWithNoise(self):
        # Convolve a real image with a gaussian and try and recover
        # it.  Add noise and perform the same test.

        gsize = self.policy.getInt("kernelSize")
        gaussFunction = afwMath.GaussianFunction2D(2, 3)
        gaussKernel = afwMath.AnalyticKernel(gsize, gsize, gaussFunction)
        kImageIn = afwImage.ImageD(afwGeom.Extent2I(gsize, gsize))
        kSumIn = gaussKernel.computeImage(kImageIn, False)

        imX, imY = self.templateExposure2.getMaskedImage().getDimensions()
        smi = afwImage.MaskedImageF(afwGeom.Extent2I(imX, imY))
        afwMath.convolve(smi, self.templateExposure2.getMaskedImage(), gaussKernel, False)

        bbox = gaussKernel.shrinkBBox(smi.getBBox(afwImage.LOCAL))

        tmi2 = afwImage.MaskedImageF(self.templateExposure2.getMaskedImage(), bbox, origin=afwImage.LOCAL)
        smi2 = afwImage.MaskedImageF(smi, bbox, origin=afwImage.LOCAL)

        kc = ipDiffim.KernelCandidateF(self.x02, self.y02, tmi2, smi2, self.policy)
        kList = ipDiffim.makeKernelBasisList(self.subconfig)
        kc.build(kList)
        self.assertEqual(kc.isInitialized(), True)
        kImageOut = kc.getImage()

        soln = kc.getKernelSolution(ipDiffim.KernelCandidateF.RECENT)
        self.assertAlmostEqual(soln.getKsum(), kSumIn)
        # 8.7499380640430563e-06 != 0.0 within 7 places
        self.assertAlmostEqual(soln.getBackground(), 0.0, 4)

        for j in range(kImageOut.getHeight()):
            for i in range(kImageOut.getWidth()):

                # in the outskirts of the kernel, the ratio can get screwed because of low S/N
                # e.g. 7.45817359824e-09 vs. 1.18062529402e-08
                # in the guts of the kernel it should look closer
                if kImageIn[i, j, afwImage.LOCAL] > 1e-4:
                    # sigh, too bad this sort of thing fails..
                    # 0.99941584433815966 != 1.0 within 3 places
                    self.assertAlmostEqual(kImageOut[i, j, afwImage.LOCAL]/kImageIn[i, j, afwImage.LOCAL],
                                           1.0, 2)

        # now repeat with noise added; decrease precision of comparison
        self.addNoise(smi2)
        kc = ipDiffim.KernelCandidateF(self.x02, self.y02, tmi2, smi2, self.policy)
        kList = ipDiffim.makeKernelBasisList(self.subconfig)
        kc.build(kList)
        self.assertEqual(kc.isInitialized(), True)
        kImageOut = kc.getImage()

        soln = kc.getKernelSolution(ipDiffim.KernelCandidateF.RECENT)
        self.assertAlmostEqual(soln.getKsum(), kSumIn, 3)
        if not (self.policy.get("fitForBackground")):
            self.assertEqual(soln.getBackground(), 0.0)

        for j in range(kImageOut.getHeight()):
            for i in range(kImageOut.getWidth()):
                if kImageIn[i, j, afwImage.LOCAL] > 1e-2:
                    self.assertAlmostEqual(kImageOut[i, j, afwImage.LOCAL],
                                           kImageIn[i, j, afwImage.LOCAL], 2)
    def testGaussianWithNoise(self):
        # Convolve a real image with a gaussian and try and recover
        # it.  Add noise and perform the same test.

        gsize = self.ps["kernelSize"]
        gaussFunction = afwMath.GaussianFunction2D(2, 3)
        gaussKernel = afwMath.AnalyticKernel(gsize, gsize, gaussFunction)
        kImageIn = afwImage.ImageD(geom.Extent2I(gsize, gsize))
        kSumIn = gaussKernel.computeImage(kImageIn, False)

        imX, imY = self.templateExposure2.getMaskedImage().getDimensions()
        smi = afwImage.MaskedImageF(geom.Extent2I(imX, imY))
        afwMath.convolve(smi, self.templateExposure2.getMaskedImage(), gaussKernel, False)

        bbox = gaussKernel.shrinkBBox(smi.getBBox(afwImage.LOCAL))

        tmi2 = afwImage.MaskedImageF(self.templateExposure2.getMaskedImage(), bbox, origin=afwImage.LOCAL)
        smi2 = afwImage.MaskedImageF(smi, bbox, origin=afwImage.LOCAL)

        kc = ipDiffim.KernelCandidateF(self.x02, self.y02, tmi2, smi2, self.ps)
        kList = ipDiffim.makeKernelBasisList(self.subconfig)
        kc.build(kList)
        self.assertEqual(kc.isInitialized(), True)
        kImageOut = kc.getImage()

        soln = kc.getKernelSolution(ipDiffim.KernelCandidateF.RECENT)
        self.assertAlmostEqual(soln.getKsum(), kSumIn)
        # 8.7499380640430563e-06 != 0.0 within 7 places
        self.assertAlmostEqual(soln.getBackground(), 0.0, 4)

        for j in range(kImageOut.getHeight()):
            for i in range(kImageOut.getWidth()):

                # in the outskirts of the kernel, the ratio can get screwed because of low S/N
                # e.g. 7.45817359824e-09 vs. 1.18062529402e-08
                # in the guts of the kernel it should look closer
                if kImageIn[i, j, afwImage.LOCAL] > 1e-4:
                    # sigh, too bad this sort of thing fails..
                    # 0.99941584433815966 != 1.0 within 3 places
                    self.assertAlmostEqual(kImageOut[i, j, afwImage.LOCAL]/kImageIn[i, j, afwImage.LOCAL],
                                           1.0, 2)

        # now repeat with noise added; decrease precision of comparison
        self.addNoise(smi2)
        kc = ipDiffim.KernelCandidateF(self.x02, self.y02, tmi2, smi2, self.ps)
        kList = ipDiffim.makeKernelBasisList(self.subconfig)
        kc.build(kList)
        self.assertEqual(kc.isInitialized(), True)
        kImageOut = kc.getImage()

        soln = kc.getKernelSolution(ipDiffim.KernelCandidateF.RECENT)
        self.assertAlmostEqual(soln.getKsum(), kSumIn, 3)
        if not self.ps.get("fitForBackground"):
            self.assertEqual(soln.getBackground(), 0.0)

        for j in range(kImageOut.getHeight()):
            for i in range(kImageOut.getWidth()):
                if kImageIn[i, j, afwImage.LOCAL] > 1e-2:
                    self.assertAlmostEqual(kImageOut[i, j, afwImage.LOCAL],
                                           kImageIn[i, j, afwImage.LOCAL], 2)
    def testDeltaFunctionScaled(self, scaling = 2.7, bg = 11.3):
        if not self.defDataDir:
            print >> sys.stderr, "Warning: afwdata is not set up"
            return

        sIm  = afwImage.MaskedImageF(self.templateExposure2.getMaskedImage(), True)
        sIm *= scaling
        kc = ipDiffim.KernelCandidateF(self.x02, self.y02,
                                       self.templateExposure2.getMaskedImage(),
                                       sIm,
                                       self.policy)

        kList = ipDiffim.makeKernelBasisList(self.subconfig)
        kc.build(kList)
        self.verifyDeltaFunctionSolution(kc.getKernelSolution(ipDiffim.KernelCandidateF.RECENT),
                                         kSum = scaling)


        sIm  = afwImage.MaskedImageF(self.templateExposure2.getMaskedImage(), True)
        sIm += bg
        kc = ipDiffim.KernelCandidateF(self.x02, self.y02,
                                       self.templateExposure2.getMaskedImage(),
                                       sIm,
                                       self.policy)

        kList = ipDiffim.makeKernelBasisList(self.subconfig)
        kc.build(kList)
        self.verifyDeltaFunctionSolution(kc.getKernelSolution(ipDiffim.KernelCandidateF.RECENT),
                                         bg = bg)
    def testDeltaFunctionScaled(self, scaling=2.7, bg=11.3):
        if not self.defDataDir:
            print >> sys.stderr, "Warning: afwdata is not set up"
            return

        sIm = afwImage.MaskedImageF(self.templateExposure2.getMaskedImage(),
                                    True)
        sIm *= scaling
        kc = ipDiffim.KernelCandidateF(self.x02, self.y02,
                                       self.templateExposure2.getMaskedImage(),
                                       sIm, self.policy)

        kList = ipDiffim.makeKernelBasisList(self.subconfig)
        kc.build(kList)
        self.verifyDeltaFunctionSolution(kc.getKernelSolution(
            ipDiffim.KernelCandidateF.RECENT),
                                         kSum=scaling)

        sIm = afwImage.MaskedImageF(self.templateExposure2.getMaskedImage(),
                                    True)
        sIm += bg
        kc = ipDiffim.KernelCandidateF(self.x02, self.y02,
                                       self.templateExposure2.getMaskedImage(),
                                       sIm, self.policy)

        kList = ipDiffim.makeKernelBasisList(self.subconfig)
        kc.build(kList)
        self.verifyDeltaFunctionSolution(kc.getKernelSolution(
            ipDiffim.KernelCandidateF.RECENT),
                                         bg=bg)
    def setUp(self):
        self.config = ipDiffim.ImagePsfMatchTask.ConfigClass()
        self.config.kernel.name = "DF"
        self.subconfig = self.config.kernel.active

        self.policy = pexConfig.makePolicy(self.subconfig)
        self.kList = ipDiffim.makeKernelBasisList(self.subconfig)
    def testDeltaFunction(self):
        if not self.defDataDir:
            print >> sys.stderr, "Warning: afwdata is not set up"
            return

        # Match an image to itself, with delta-function basis set
        # No regularization
        kc = ipDiffim.KernelCandidateF(self.x02, self.y02,
                                       self.templateExposure2.getMaskedImage(),
                                       self.templateExposure2.getMaskedImage(),
                                       self.policy)

        kList = ipDiffim.makeKernelBasisList(self.subconfig)

        kc.build(kList)
        self.assertEqual(kc.isInitialized(), True)

        # These should work
        for kType in (ipDiffim.KernelCandidateF.ORIG,
                      ipDiffim.KernelCandidateF.RECENT):
            for kMethod in (kc.getKernelSolution,
                            kc.getKernel,
                            kc.getBackground,
                            kc.getKsum,
                            kc.getKernelImage,
                            kc.getDifferenceImage):
                try:
                    kMethod(kType)
                except Exception, e:
                    print kMethod, e
                    self.fail()
                else:
                    pass
    def testDeltaFunction(self):
        if not self.defDataDir:
            print >> sys.stderr, "Warning: afwdata is not set up"
            return

        # Match an image to itself, with delta-function basis set
        # No regularization
        kc = ipDiffim.KernelCandidateF(self.x02, self.y02,
                                       self.templateExposure2.getMaskedImage(),
                                       self.templateExposure2.getMaskedImage(),
                                       self.policy)

        kList = ipDiffim.makeKernelBasisList(self.subconfig)

        kc.build(kList)
        self.assertEqual(kc.isInitialized(), True)

        # These should work
        for kType in (ipDiffim.KernelCandidateF.ORIG,
                      ipDiffim.KernelCandidateF.RECENT):
            for kMethod in (kc.getKernelSolution, kc.getKernel,
                            kc.getBackground, kc.getKsum, kc.getKernelImage,
                            kc.getDifferenceImage):
                try:
                    kMethod(kType)
                except Exception, e:
                    print kMethod, e
                    self.fail()
                else:
                    pass
Ejemplo n.º 9
0
    def setUp(self):
        self.config = ipDiffim.ImagePsfMatchTask.ConfigClass()
        self.config.kernel.name = "DF"
        self.subconfig = self.config.kernel.active

        self.ps = pexConfig.makePropertySet(self.subconfig)
        self.kList = ipDiffim.makeKernelBasisList(self.subconfig)
Ejemplo n.º 10
0
    def testSubtractMaskedImages(self):
        # Lets do some additional testing here to make sure we recover
        # the known spatial model.  No background, just the faked
        # alard-lupton basis set.  The rest of matchMaskedImages() and
        # subtractMaskedImages() functionality is tested by the
        # Exposure-based methods.
        fakeCoeffs = diffimTools.fakeCoeffs()

        # Quick note; you shouldn't change confake here, since the
        # candidates in the KernelCellSet are initialized in
        # makeFakeKernelSet
        tMi, sMi, sK, kcs, confake = diffimTools.makeFakeKernelSet(bgValue = 0.0, addNoise = False)

        svar = sMi.getVariance()
        svar.set(1.0)
        tvar = tMi.getVariance()
        tvar.set(1.0)

        basisList = ipDiffim.makeKernelBasisList(confake.kernel.active)
        psfMatchAL = ipDiffim.ImagePsfMatchTask(config=confake)
        spatialSolution, psfMatchingKernel, backgroundModel = psfMatchAL._solve(kcs, basisList)

        fitCoeffs = psfMatchingKernel.getSpatialParameters()

        for b in range(len(fakeCoeffs)):
            for s in range(len(fakeCoeffs[b])):

                if fakeCoeffs[b][s] == 0.0:
                    self.assertAlmostEqual(fitCoeffs[b][s], 0.0)
                else:
                    # OUTSTANDING ISSUE - WHY IS THIS ONE TERM OFF!?!?
                    if b != 4 and s != 0:
                       self.assertAlmostEqual(fitCoeffs[b][s]/fakeCoeffs[b][s], 1.0, 1)
Ejemplo n.º 11
0
    def setUp(self):
        self.config = ipDiffim.ImagePsfMatchTask.ConfigClass()
        self.config.kernel.name = "DF"
        self.subconfig = self.config.kernel.active

        self.kList = ipDiffim.makeKernelBasisList(self.subconfig)
        self.policy = pexConfig.makePolicy(self.subconfig)
        self.policy.set("useRegularization", False)
    def setUp(self):
        self.config = ipDiffim.ImagePsfMatchTask.ConfigClass()
        self.config.kernel.name = "AL"
        self.subconfig = self.config.kernel.active

        self.policy = pexConfig.makePolicy(self.subconfig)
        self.kList = ipDiffim.makeKernelBasisList(self.subconfig)

        self.ksize = self.policy.get('kernelSize')
    def testDeltaFunction(self):
        # Match an image to itself, with delta-function basis set
        # No regularization
        kc = ipDiffim.KernelCandidateF(self.x02, self.y02,
                                       self.templateExposure2.getMaskedImage(),
                                       self.templateExposure2.getMaskedImage(),
                                       self.policy)

        kList = ipDiffim.makeKernelBasisList(self.subconfig)

        kc.build(kList)
        self.assertEqual(kc.isInitialized(), True)

        # These should work
        for kType in (ipDiffim.KernelCandidateF.ORIG,
                      ipDiffim.KernelCandidateF.RECENT):
            for kMethod in (kc.getKernelSolution,
                            kc.getKernel,
                            kc.getBackground,
                            kc.getKsum,
                            kc.getKernelImage,
                            kc.getDifferenceImage):
                try:
                    kMethod(kType)
                except Exception as e:
                    print(kMethod, e)
                    self.fail()
                else:
                    pass
        try:
            kc.getImage()
        except Exception as e:
            print(kMethod, e)
            self.fail()
        else:
            pass

        # None of these should work
        for kType in (ipDiffim.KernelCandidateF.PCA,):
            for kMethod in (kc.getKernelSolution,
                            kc.getKernel,
                            kc.getBackground,
                            kc.getKsum,
                            kc.getKernelImage,
                            kc.getImage,
                            kc.getDifferenceImage):
                try:
                    kMethod(kType)
                except Exception:
                    pass
                else:
                    print(kMethod)
                    self.fail()

        self.verifyDeltaFunctionSolution(kc.getKernelSolution(ipDiffim.KernelCandidateF.RECENT))
    def testGaussian(self, imsize=50):
        # Convolve a delta function with a known gaussian; try to
        # recover using delta-function basis

        gsize = self.ps["kernelSize"]
        tsize = imsize + gsize

        gaussFunction = afwMath.GaussianFunction2D(2, 3)
        gaussKernel = afwMath.AnalyticKernel(gsize, gsize, gaussFunction)
        kImageIn = afwImage.ImageD(geom.Extent2I(gsize, gsize))
        gaussKernel.computeImage(kImageIn, False)

        # template image with a single hot pixel in the exact center
        tmi = afwImage.MaskedImageF(geom.Extent2I(tsize, tsize))
        tmi.set(0, 0x0, 1e-4)
        cpix = tsize // 2
        tmi[cpix, cpix, afwImage.LOCAL] = (1, 0x0, 1)

        # science image
        smi = afwImage.MaskedImageF(tmi.getDimensions())
        convolutionControl = afwMath.ConvolutionControl()
        convolutionControl.setDoNormalize(False)
        afwMath.convolve(smi, tmi, gaussKernel, convolutionControl)

        # get the actual kernel sum (since the image is not infinite)
        gscaling = afwMath.makeStatistics(smi,
                                          afwMath.SUM).getValue(afwMath.SUM)

        # grab only the non-masked subregion
        bbox = gaussKernel.shrinkBBox(smi.getBBox(afwImage.LOCAL))

        tmi2 = afwImage.MaskedImageF(tmi, bbox, origin=afwImage.LOCAL)
        smi2 = afwImage.MaskedImageF(smi, bbox, origin=afwImage.LOCAL)

        # make sure its a valid subregion!
        for j in range(tmi2.getHeight()):
            for i in range(tmi2.getWidth()):
                self.assertEqual(tmi2.mask[i, j, afwImage.LOCAL], 0)
                self.assertEqual(smi2.mask[i, j, afwImage.LOCAL], 0)

        kc = ipDiffim.KernelCandidateF(0.0, 0.0, tmi2, smi2, self.ps)
        kList = ipDiffim.makeKernelBasisList(self.subconfig)
        kc.build(kList)
        self.assertEqual(kc.isInitialized(), True)
        kImageOut = kc.getImage()

        soln = kc.getKernelSolution(ipDiffim.KernelCandidateF.RECENT)
        self.assertAlmostEqual(soln.getKsum(), gscaling)
        self.assertAlmostEqual(soln.getBackground(), 0.0)

        for j in range(kImageOut.getHeight()):
            for i in range(kImageOut.getWidth()):
                self.assertAlmostEqual(
                    kImageOut[i, j, afwImage.LOCAL] /
                    kImageIn[i, j, afwImage.LOCAL], 1.0, 5)
    def testDeltaFunction(self):
        # Match an image to itself, with delta-function basis set
        # No regularization
        kc = ipDiffim.KernelCandidateF(self.x02, self.y02,
                                       self.templateExposure2.getMaskedImage(),
                                       self.templateExposure2.getMaskedImage(),
                                       self.ps)

        kList = ipDiffim.makeKernelBasisList(self.subconfig)

        kc.build(kList)
        self.assertEqual(kc.isInitialized(), True)

        # These should work
        for kType in (ipDiffim.KernelCandidateF.ORIG,
                      ipDiffim.KernelCandidateF.RECENT):
            for kMethod in (kc.getKernelSolution,
                            kc.getKernel,
                            kc.getBackground,
                            kc.getKsum,
                            kc.getKernelImage,
                            kc.getDifferenceImage):
                try:
                    kMethod(kType)
                except Exception as e:
                    print(kMethod, e)
                    self.fail()
                else:
                    pass
        try:
            kc.getImage()
        except Exception as e:
            print(kMethod, e)
            self.fail()
        else:
            pass

        # None of these should work
        for kType in (ipDiffim.KernelCandidateF.PCA,):
            for kMethod in (kc.getKernelSolution,
                            kc.getKernel,
                            kc.getBackground,
                            kc.getKsum,
                            kc.getKernelImage,
                            kc.getImage,
                            kc.getDifferenceImage):
                try:
                    kMethod(kType)
                except Exception:
                    pass
                else:
                    print(kMethod)
                    self.fail()

        self.verifyDeltaFunctionSolution(kc.getKernelSolution(ipDiffim.KernelCandidateF.RECENT))
Ejemplo n.º 16
0
    def setUp(self):
        self.config = ipDiffim.ImagePsfMatchTask.ConfigClass()
        self.config.kernel.name = "DF"
        self.subconfig = self.config.kernel.active

        self.policy = pexConfig.makePolicy(self.subconfig)

        self.policy.set("useRegularization", False)
        self.policy.set("checkConditionNumber", False)  # I am making shady kernels by hand
        self.policy.set("useCoreStats", False)  # I am making off-center resids
        self.kList = ipDiffim.makeKernelBasisList(self.subconfig)
        self.size = 51
    def testGaussian(self, imsize = 50):
        # Convolve a delta function with a known gaussian; try to
        # recover using delta-function basis

        gsize = self.policy.getInt("kernelSize")
        tsize = imsize + gsize

        gaussFunction = afwMath.GaussianFunction2D(2, 3)
        gaussKernel   = afwMath.AnalyticKernel(gsize, gsize, gaussFunction)
        kImageIn      = afwImage.ImageD(afwGeom.Extent2I(gsize, gsize))
        gaussKernel.computeImage(kImageIn, False)

        # template image with a single hot pixel in the exact center
        tmi = afwImage.MaskedImageF(afwGeom.Extent2I(tsize, tsize))
        tmi.set(0, 0x0, 1e-4)
        cpix = tsize // 2
        tmi.set(cpix, cpix, (1, 0x0, 1))

        # science image
        smi = afwImage.MaskedImageF(tmi.getDimensions())
        afwMath.convolve(smi, tmi, gaussKernel, False)

        # get the actual kernel sum (since the image is not infinite)
        gscaling = afwMath.makeStatistics(smi, afwMath.SUM).getValue(afwMath.SUM)

        # grab only the non-masked subregion
        bbox = gaussKernel.shrinkBBox(smi.getBBox(afwImage.LOCAL))

        tmi2 = afwImage.MaskedImageF(tmi, bbox, afwImage.LOCAL)
        smi2 = afwImage.MaskedImageF(smi, bbox, afwImage.LOCAL)

        # make sure its a valid subregion!
        for j in range(tmi2.getHeight()):
            for i in range(tmi2.getWidth()):
                self.assertEqual(tmi2.getMask().get(i, j), 0)
                self.assertEqual(smi2.getMask().get(i, j), 0)


        kc = ipDiffim.KernelCandidateF(0.0, 0.0, tmi2, smi2, self.policy)
        kList = ipDiffim.makeKernelBasisList(self.subconfig)
        kc.build(kList)
        self.assertEqual(kc.isInitialized(), True)
        kImageOut = kc.getImage()

        soln = kc.getKernelSolution(ipDiffim.KernelCandidateF.RECENT)
        self.assertAlmostEqual(soln.getKsum(), gscaling)
        self.assertAlmostEqual(soln.getBackground(), 0.0)

        for j in range(kImageOut.getHeight()):
            for i in range(kImageOut.getWidth()):
                self.assertAlmostEqual(kImageOut.get(i, j)/kImageIn.get(i, j), 1.0, 5)
    def testSourceStats(self):
        source = self.ss.addNew()
        source.setId(1)
        source.set(self.table.getCentroidKey().getX(), 276)
        source.set(self.table.getCentroidKey().getY(), 717)
        source.set("slot_PsfFlux_instFlux", 1.)

        kc = ipDiffim.KernelCandidateF(source,
                                       self.templateExposure2.getMaskedImage(),
                                       self.scienceImage2.getMaskedImage(),
                                       self.policy)
        kList = ipDiffim.makeKernelBasisList(self.subconfig)

        kc.build(kList)
        self.assertEqual(kc.isInitialized(), True)
    def testDeltaFunctionScaled(self, scaling=2.7, bg=11.3):
        sIm = afwImage.MaskedImageF(self.templateExposure2.getMaskedImage(), deep=True)
        sIm *= scaling
        kc = ipDiffim.KernelCandidateF(self.x02, self.y02,
                                       self.templateExposure2.getMaskedImage(),
                                       sIm,
                                       self.policy)

        kList = ipDiffim.makeKernelBasisList(self.subconfig)
        kc.build(kList)
        self.verifyDeltaFunctionSolution(kc.getKernelSolution(ipDiffim.KernelCandidateF.RECENT),
                                         kSum=scaling)

        sIm = afwImage.MaskedImageF(self.templateExposure2.getMaskedImage(), deep=True)
        sIm += bg
        kc = ipDiffim.KernelCandidateF(self.x02, self.y02,
                                       self.templateExposure2.getMaskedImage(),
                                       sIm,
                                       self.policy)

        kList = ipDiffim.makeKernelBasisList(self.subconfig)
        kc.build(kList)
        self.verifyDeltaFunctionSolution(kc.getKernelSolution(ipDiffim.KernelCandidateF.RECENT),
                                         bg=bg)
    def testSourceStats(self):
        source = self.ss.addNew()
        source.setId(1)
        source.set(self.table.getCentroidSlot().getMeasKey().getX(), 276)
        source.set(self.table.getCentroidSlot().getMeasKey().getY(), 717)
        source.set("slot_PsfFlux_instFlux", 1.)

        kc = ipDiffim.KernelCandidateF(source,
                                       self.templateExposure2.getMaskedImage(),
                                       self.scienceImage2.getMaskedImage(),
                                       self.ps)
        kList = ipDiffim.makeKernelBasisList(self.subconfig)

        kc.build(kList)
        self.assertEqual(kc.isInitialized(), True)
    def runAlSpatialModel(self, sko, bgo):
        basisList = ipDiffim.makeKernelBasisList(self.subconfig)
        self.policy.set('spatialKernelOrder', sko)
        self.policy.set('spatialBgOrder', bgo)
        self.policy.set('fitForBackground', True)

        bbox = afwGeom.Box2I(afwGeom.Point2I(0, 0),
                             afwGeom.Extent2I(self.size * 10, self.size * 10))

        bsikv = ipDiffim.BuildSingleKernelVisitorF(basisList, self.policy)
        bspkv = ipDiffim.BuildSpatialKernelVisitorF(basisList, bbox,
                                                    self.policy)

        for x in range(1, self.size, 10):
            for y in range(1, self.size, 10):
                cand = self.makeCandidate(1.0, x, y)
                bsikv.processCandidate(cand)
                bspkv.processCandidate(cand)

        bspkv.solveLinearEquation()
        sk, sb = bspkv.getSolutionPair()

        # Kernel
        if sko == 0:
            # Specialization for speedup
            spatialKernelSolution = sk.getKernelParameters()

            # One term for each basis function
            self.assertEqual(len(spatialKernelSolution), len(basisList))

        else:
            spatialKernelSolution = sk.getSpatialParameters()

            nSpatialTerms = int(0.5 * (sko + 1) * (sko + 2))
            # One model for each basis function
            self.assertEqual(len(spatialKernelSolution), len(basisList))
            # First basis has no spatial variation
            for i in range(1, nSpatialTerms):
                self.assertEqual(spatialKernelSolution[0][i], 0.)
            # All bases have correct number of terms
            for i in range(len(spatialKernelSolution)):
                self.assertEqual(len(spatialKernelSolution[i]), nSpatialTerms)

        # Background
        spatialBgSolution = sb.getParameters()
        nBgTerms = int(0.5 * (bgo + 1) * (bgo + 2))
        self.assertEqual(len(spatialBgSolution), nBgTerms)
    def testModelType(self):
        bbox = geom.Box2I(geom.Point2I(10, 10), geom.Extent2I(10, 10))
        basisList = ipDiffim.makeKernelBasisList(self.subconfig)

        self.ps["spatialModelType"] = "polynomial"
        ipDiffim.BuildSpatialKernelVisitorF(basisList, bbox, self.ps)

        self.ps["spatialModelType"] = "chebyshev1"
        ipDiffim.BuildSpatialKernelVisitorF(basisList, bbox, self.ps)

        try:
            self.ps["spatialModelType"] = "foo"
            ipDiffim.BuildSpatialKernelVisitorF(basisList, bbox, self.ps)
        except Exception:
            pass
        else:
            self.fail()
    def testModelType(self):
        bbox = afwGeom.Box2I(afwGeom.Point2I(10, 10), afwGeom.Extent2I(10, 10))
        basisList = ipDiffim.makeKernelBasisList(self.subconfig)

        self.policy.set("spatialModelType", "polynomial")
        ipDiffim.BuildSpatialKernelVisitorF(basisList, bbox, self.policy)

        self.policy.set("spatialModelType", "chebyshev1")
        ipDiffim.BuildSpatialKernelVisitorF(basisList, bbox, self.policy)

        try:
            self.policy.set("spatialModelType", "foo")
            ipDiffim.BuildSpatialKernelVisitorF(basisList, bbox, self.policy)
        except Exception:
            pass
        else:
            self.fail()
Ejemplo n.º 24
0
    def runAlSpatialModel(self, sko, bgo):
        basisList = ipDiffim.makeKernelBasisList(self.subconfig)
        self.policy.set('spatialKernelOrder', sko)
        self.policy.set('spatialBgOrder', bgo)
        self.policy.set('fitForBackground', True)

        bbox = afwGeom.Box2I(afwGeom.Point2I(0, 0),
                             afwGeom.Extent2I(self.size*10, self.size*10))

        bsikv = ipDiffim.BuildSingleKernelVisitorF(basisList, self.policy)
        bspkv = ipDiffim.BuildSpatialKernelVisitorF(basisList, bbox, self.policy)
        
        for x in range(1, self.size, 10):
            for y in range(1, self.size, 10):
                cand = self.makeCandidate(1.0, x, y)
                bsikv.processCandidate(cand)
                bspkv.processCandidate(cand)
                
        bspkv.solveLinearEquation()
        sk, sb = bspkv.getSolutionPair()

        # Kernel
        if sko == 0:
            # Specialization for speedup
            spatialKernelSolution = sk.getKernelParameters()

            # One term for each basis function
            self.assertEqual(len(spatialKernelSolution), len(basisList))
            
        else:
            spatialKernelSolution = sk.getSpatialParameters()

            nSpatialTerms = int(0.5 * (sko + 1) * (sko + 2))
            # One model for each basis function
            self.assertEqual(len(spatialKernelSolution), len(basisList))
            # First basis has no spatial variation
            for i in range(1, nSpatialTerms):
                self.assertEqual(spatialKernelSolution[0][i], 0.)
            # All bases have correct number of terms
            for i in range(len(spatialKernelSolution)):
                self.assertEqual(len(spatialKernelSolution[i]), nSpatialTerms)

        # Background
        spatialBgSolution = sb.getParameters()
        nBgTerms = int(0.5 * (bgo + 1) * (bgo + 2))
        self.assertEqual(len(spatialBgSolution), nBgTerms)
Ejemplo n.º 25
0
    def testModelType(self):
        bbox = afwGeom.Box2I(afwGeom.Point2I(10, 10),
                             afwGeom.Extent2I(10, 10))
        basisList = ipDiffim.makeKernelBasisList(self.subconfig)
        
        self.policy.set("spatialModelType", "polynomial") 
        ipDiffim.BuildSpatialKernelVisitorF(basisList, bbox, self.policy)

        self.policy.set("spatialModelType", "chebyshev1") 
        ipDiffim.BuildSpatialKernelVisitorF(basisList, bbox, self.policy)

        try:
            self.policy.set("spatialModelType", "foo") 
            ipDiffim.BuildSpatialKernelVisitorF(basisList, bbox, self.policy)
        except Exception:
            pass
        else:
            self.fail()
    def testSourceStats(self):
        # Original and uninitialized
        if not self.defDataDir:
            print >> sys.stderr, "Warning: afwdata is not set up"
            return
        source = self.ss.addNew()
        source.setId(1)
        source.set(self.table.getCentroidKey().getX(), 276)
        source.set(self.table.getCentroidKey().getY(), 717)
        source.set(self.table.getPsfFluxKey(), 1.)

        kc = ipDiffim.KernelCandidateF(source,
                                       self.templateExposure2.getMaskedImage(),
                                       self.scienceImage2.getMaskedImage(),
                                       self.policy)
        kList = ipDiffim.makeKernelBasisList(self.subconfig)

        kc.build(kList)
        self.assertEqual(kc.isInitialized(), True)
    def testSourceStats(self):
        # Original and uninitialized
        if not self.defDataDir:
            print >> sys.stderr, "Warning: afwdata is not set up"
            return
        source = self.ss.addNew()
        source.setId(1)
        source.set(self.table.getCentroidKey().getX(), 276)
        source.set(self.table.getCentroidKey().getY(), 717)
        source.set(self.table.getPsfFluxKey(), 1.)

        kc = ipDiffim.KernelCandidateF(source,
                                       self.templateExposure2.getMaskedImage(),
                                       self.scienceImage2.getMaskedImage(),
                                       self.policy)
        kList = ipDiffim.makeKernelBasisList(self.subconfig)

        kc.build(kList)
        self.assertEqual(kc.isInitialized(), True)
    def testZeroVariance(self, imsize=50):
        gsize = self.ps["kernelSize"]
        tsize = imsize + gsize

        tmi = afwImage.MaskedImageF(geom.Extent2I(tsize, tsize))
        tmi.set(0, 0x0, 1.0)
        cpix = tsize // 2
        tmi[cpix, cpix, afwImage.LOCAL] = (1, 0x0, 0.0)
        smi = afwImage.MaskedImageF(geom.Extent2I(tsize, tsize))
        smi.set(0, 0x0, 1.0)
        smi[cpix, cpix, afwImage.LOCAL] = (1, 0x0, 0.0)

        kList = ipDiffim.makeKernelBasisList(self.subconfig)
        self.ps["constantVarianceWeighting"] = False
        kc = ipDiffim.KernelCandidateF(0.0, 0.0, tmi, smi, self.ps)
        try:
            kc.build(kList)
        except Exception:
            pass
        else:
            self.fail()
    def testZeroVariance(self, imsize=50):
        gsize = self.policy.getInt("kernelSize")
        tsize = imsize + gsize

        tmi = afwImage.MaskedImageF(afwGeom.Extent2I(tsize, tsize))
        tmi.set(0, 0x0, 1.0)
        cpix = tsize // 2
        tmi.set(cpix, cpix, (1, 0x0, 0.0))
        smi = afwImage.MaskedImageF(afwGeom.Extent2I(tsize, tsize))
        smi.set(0, 0x0, 1.0)
        smi.set(cpix, cpix, (1, 0x0, 0.0))

        kList = ipDiffim.makeKernelBasisList(self.subconfig)
        self.policy.set("constantVarianceWeighting", False)
        kc = ipDiffim.KernelCandidateF(0.0, 0.0, tmi, smi, self.policy)
        try:
            kc.build(kList)
        except Exception:
            pass
        else:
            self.fail()
    def testZeroVariance(self, imsize = 50):
        gsize = self.policy.getInt("kernelSize")
        tsize = imsize + gsize

        tmi = afwImage.MaskedImageF(afwGeom.Extent2I(tsize, tsize))
        tmi.set(0, 0x0, 1.0)
        cpix = tsize // 2
        tmi.set(cpix, cpix, (1, 0x0, 0.0))
        smi = afwImage.MaskedImageF(afwGeom.Extent2I(tsize, tsize))
        smi.set(0, 0x0, 1.0)
        smi.set(cpix, cpix, (1, 0x0, 0.0))

        kList = ipDiffim.makeKernelBasisList(self.subconfig)
        self.policy.set("constantVarianceWeighting", False)
        kc = ipDiffim.KernelCandidateF(0.0, 0.0, tmi, smi, self.policy)
        try:
            kc.build(kList)
        except Exception:
            pass
        else:
            self.fail()
Ejemplo n.º 31
0
    def testSubtractMaskedImages(self):
        # Lets do some additional testing here to make sure we recover
        # the known spatial model.  No background, just the faked
        # alard-lupton basis set.  The rest of matchMaskedImages() and
        # subtractMaskedImages() functionality is tested by the
        # Exposure-based methods.
        fakeCoeffs = diffimTools.fakeCoeffs()

        # Quick note; you shouldn't change confake here, since the
        # candidates in the KernelCellSet are initialized in
        # makeFakeKernelSet
        tMi, sMi, sK, kcs, confake = diffimTools.makeFakeKernelSet(
            bgValue=0.0, addNoise=False)

        svar = sMi.getVariance()
        svar.set(1.0)
        tvar = tMi.getVariance()
        tvar.set(1.0)

        basisList = ipDiffim.makeKernelBasisList(confake.kernel.active)
        psfMatchAL = ipDiffim.ImagePsfMatchTask(config=confake)
        spatialSolution, psfMatchingKernel, backgroundModel = psfMatchAL._solve(
            kcs, basisList)

        fitCoeffs = psfMatchingKernel.getSpatialParameters()

        for b in range(len(fakeCoeffs)):
            for s in range(len(fakeCoeffs[b])):

                if fakeCoeffs[b][s] == 0.0:
                    self.assertAlmostEqual(fitCoeffs[b][s], 0.0)
                else:
                    # OUTSTANDING ISSUE - WHY IS THIS ONE TERM OFF!?!?
                    if b != 4 and s != 0:
                        self.assertAlmostEqual(
                            fitCoeffs[b][s] / fakeCoeffs[b][s], 1.0, 1)
    def setUp(self):
        self.config = ipDiffim.ImagePsfMatchTask.ConfigClass()
        self.config.kernel.name = "AL"
        self.subconfig = self.config.kernel.active

        # Test was put together before the min size went to 21
        self.subconfig.kernelSize = 19

        self.subconfig.scaleByFwhm = False
        self.subconfig.fitForBackground = True
        self.subconfig.spatialModelType = "polynomial"
        self.policy = pexConfig.makePolicy(self.subconfig)

        self.smi = afwImage.MaskedImageF('tests/compareToHotpants/scienceMI.fits')
        self.tmi = afwImage.MaskedImageF('tests/compareToHotpants/templateMI.fits')
        self.smi.setXY0(0, 0)
        self.tmi.setXY0(0, 0)

        # Run detection
        # detConfig = self.subconfig.detectionConfig
        # Note here regarding detConfig:
        #
        # If I set detThresholdType = "pixel_stdev", I get slightly
        # different centroids than if I use "stdev".  These different
        # centroids screw up the testing since hotpants was hardcoded to
        # use the "stdev" centroids.  For completeness these are:
        #
        # 32 32
        # 96 32
        # 160 32
        # 96 95
        # 31 96
        # 160 96
        # 96 160
        # 160 160
        # 32 160

        # As of Winter2013, KernelCandidateDetectionF does not return
        # these exact centroids anymore, so I need to hardcode them
        # in.
        self.footprints = []
        for xc, yc in [(32, 32), (96, 32), (160, 32),
                       (96, 95), (31, 96), (160, 96),
                       (96, 160), (160, 160), (32, 160)]:
            self.footprints.append(afwDet.Footprint(afwGeom.SpanSet(
                afwGeom.Box2I(afwGeom.Point2I(xc, yc),
                              afwGeom.Extent2I(1, 1)))))

        # Make a basis list that hotpants has been run with
        nGauss = 1
        sGauss = [3.]
        dGauss = [3]
        self.subconfig.alardNGauss = nGauss
        self.subconfig.alardSigGauss = sGauss
        self.subconfig.alardDegGauss = dGauss
        basisList0 = ipDiffim.makeKernelBasisList(self.subconfig)

        # HP does things in a different order, and with different normalization, so reorder list
        order = [0, 2, 5, 9, 1, 4, 8, 3, 7, 6]
        scaling = [1.000000e+00,
                   8.866037e-02,
                   1.218095e+01,
                   5.099318e-03,
                   8.866037e-02,
                   4.179772e-02,
                   1.138120e-02,
                   1.218095e+01,
                   1.138120e-02,
                   5.099318e-03]

        self.basisList = []
        for i in range(len(order)):
            im = afwImage.ImageD(basisList0[order[i]].getDimensions())
            basisList0[order[i]].computeImage(im, False)
            im /= scaling[i]
            # im.writeFits('k%d.fits' % (i))
            k = afwMath.FixedKernel(im)
            self.basisList.append(k)

        # And a place to put candidates
        self.kernelCellSet = afwMath.SpatialCellSet(afwGeom.Box2I(afwGeom.Point2I(0, 0),
                                                                  afwGeom.Extent2I(self.smi.getWidth(),
                                                                                   self.smi.getHeight())),
                                                    self.policy.getInt("sizeCellX"),
                                                    self.policy.getInt("sizeCellY"))

        # There are some -1 factors that come from differences in how
        # convolution is done.  Some resulting convovled images end up
        # being a factor of -1 different, therefore the coefficients
        # need to be a factor of -1 different as well.
        self.parity = [1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1]
    def setUp(self):
        self.configAL = ipDiffim.ImagePsfMatchTask.ConfigClass()
        self.configAL.kernel.name = "AL"
        self.subconfigAL = self.configAL.kernel.active

        self.configDF = ipDiffim.ImagePsfMatchTask.ConfigClass()
        self.configDF.kernel.name = "DF"
        self.subconfigDF = self.configDF.kernel.active

        self.configDFr = ipDiffim.ImagePsfMatchTask.ConfigClass()
        self.configDFr.kernel.name = "DF"
        self.subconfigDFr = self.configDFr.kernel.active

        self.subconfigDF.useRegularization = False
        self.subconfigDFr.useRegularization = True
        self.subconfigDFr.lambdaValue = 1000.0

        self.subconfigAL.fitForBackground = fitForBackground
        self.subconfigDF.fitForBackground = fitForBackground
        self.subconfigDFr.fitForBackground = fitForBackground

        self.subconfigAL.constantVarianceWeighting = constantVarianceWeighting
        self.subconfigDF.constantVarianceWeighting = constantVarianceWeighting
        self.subconfigDFr.constantVarianceWeighting = constantVarianceWeighting

        self.kListAL = ipDiffim.makeKernelBasisList(self.subconfigAL)
        self.kListDF = ipDiffim.makeKernelBasisList(self.subconfigDF)
        self.kListDFr = ipDiffim.makeKernelBasisList(self.subconfigDFr)
        self.hMatDFr = ipDiffim.makeRegularizationMatrix(pexConfig.makePolicy(self.subconfigDFr))

        self.bskvAL = ipDiffim.BuildSingleKernelVisitorF(self.kListAL, pexConfig.makePolicy(self.subconfigAL))
        self.bskvDF = ipDiffim.BuildSingleKernelVisitorF(self.kListDF, pexConfig.makePolicy(self.subconfigDF))
        self.bskvDFr = ipDiffim.BuildSingleKernelVisitorF(self.kListDFr,
                                                          pexConfig.makePolicy(self.subconfigDF),
                                                          self.hMatDFr)

        defSciencePath = globals()['defSciencePath']
        defTemplatePath = globals()['defTemplatePath']
        if defSciencePath and defTemplatePath:
            self.scienceExposure = afwImage.ExposureF(defSciencePath)
            self.templateExposure = afwImage.ExposureF(defTemplatePath)
        else:
            defDataDir = lsst.utils.getPackageDir('afwdata')
            defSciencePath = os.path.join(defDataDir, "DC3a-Sim", "sci", "v26-e0",
                                          "v26-e0-c011-a00.sci.fits")
            defTemplatePath = os.path.join(defDataDir, "DC3a-Sim", "sci", "v5-e0",
                                           "v5-e0-c011-a00.sci.fits")

            self.scienceExposure = afwImage.ExposureF(defSciencePath)
            self.templateExposure = afwImage.ExposureF(defTemplatePath)
            warper = afwMath.Warper.fromConfig(self.subconfigAL.warpingConfig)
            self.templateExposure = warper.warpExposure(self.scienceExposure.getWcs(), self.templateExposure,
                                                        destBBox=self.scienceExposure.getBBox())

        #
        tmi = self.templateExposure.getMaskedImage()
        smi = self.scienceExposure.getMaskedImage()

        # Object detection
        detConfig = self.subconfigAL.detectionConfig
        detPolicy = pexConfig.makePolicy(detConfig)
        detPolicy.set("detThreshold", 50.)
        detPolicy.set("detThresholdType", "stdev")
        detPolicy.set("detOnTemplate", False)
        kcDetect = ipDiffim.KernelCandidateDetectionF(detPolicy)
        kcDetect.apply(tmi, smi)
        self.footprints = kcDetect.getFootprints()
Ejemplo n.º 34
0
    def run(self, sensorRef, templateIdList=None):
        """Subtract an image from a template coadd and measure the result

        Steps include:
        - warp template coadd to match WCS of image
        - PSF match image to warped template
        - subtract image from PSF-matched, warped template
        - persist difference image
        - detect sources
        - measure sources

        @param sensorRef: sensor-level butler data reference, used for the following data products:
        Input only:
        - calexp
        - psf
        - ccdExposureId
        - ccdExposureId_bits
        - self.config.coaddName + "Coadd_skyMap"
        - self.config.coaddName + "Coadd"
        Input or output, depending on config:
        - self.config.coaddName + "Diff_subtractedExp"
        Output, depending on config:
        - self.config.coaddName + "Diff_matchedExp"
        - self.config.coaddName + "Diff_src"

        @return pipe_base Struct containing these fields:
        - subtractedExposure: exposure after subtracting template;
            the unpersisted version if subtraction not run but detection run
            None if neither subtraction nor detection run (i.e. nothing useful done)
        - subtractRes: results of subtraction task; None if subtraction not run
        - sources: detected and possibly measured sources; None if detection not run
        """
        self.log.info("Processing %s" % (sensorRef.dataId))

        # initialize outputs and some intermediate products
        subtractedExposure = None
        subtractRes = None
        selectSources = None
        kernelSources = None
        controlSources = None
        diaSources = None

        # We make one IdFactory that will be used by both icSrc and src datasets;
        # I don't know if this is the way we ultimately want to do things, but at least
        # this ensures the source IDs are fully unique.
        expBits = sensorRef.get("ccdExposureId_bits")
        expId = long(sensorRef.get("ccdExposureId"))
        idFactory = afwTable.IdFactory.makeSource(expId, 64 - expBits)

        # Retrieve the science image we wish to analyze
        exposure = sensorRef.get("calexp", immediate=True)
        if self.config.doAddCalexpBackground:
            mi = exposure.getMaskedImage()
            mi += sensorRef.get("calexpBackground").getImage()
        if not exposure.hasPsf():
            raise pipeBase.TaskError("Exposure has no psf")
        sciencePsf = exposure.getPsf()

        subtractedExposureName = self.config.coaddName + "Diff_differenceExp"
        templateExposure = None  # Stitched coadd exposure
        templateSources = None   # Sources on the template image
        if self.config.doSubtract:
            print templateIdList
            template = self.getTemplate.run(exposure, sensorRef, templateIdList=templateIdList)
            templateExposure = template.exposure
            templateSources = template.sources

            # compute scienceSigmaOrig: sigma of PSF of science image before pre-convolution
            ctr = afwGeom.Box2D(exposure.getBBox()).getCenter()
            psfAttr = PsfAttributes(sciencePsf, afwGeom.Point2I(ctr))
            scienceSigmaOrig = psfAttr.computeGaussianWidth(psfAttr.ADAPTIVE_MOMENT)

            # sigma of PSF of template image before warping
            ctr = afwGeom.Box2D(templateExposure.getBBox()).getCenter()
            psfAttr = PsfAttributes(templateExposure.getPsf(), afwGeom.Point2I(ctr))
            templateSigma = psfAttr.computeGaussianWidth(psfAttr.ADAPTIVE_MOMENT)

            # if requested, convolve the science exposure with its PSF
            # (properly, this should be a cross-correlation, but our code does not yet support that)
            # compute scienceSigmaPost: sigma of science exposure with pre-convolution, if done,
            # else sigma of original science exposure
            if self.config.doPreConvolve:
                convControl = afwMath.ConvolutionControl()
                # cannot convolve in place, so make a new MI to receive convolved image
                srcMI = exposure.getMaskedImage()
                destMI = srcMI.Factory(srcMI.getDimensions())
                srcPsf = sciencePsf
                if self.config.useGaussianForPreConvolution:
                    # convolve with a simplified PSF model: a double Gaussian
                    kWidth, kHeight = sciencePsf.getLocalKernel().getDimensions()
                    preConvPsf = SingleGaussianPsf(kWidth, kHeight, scienceSigmaOrig)
                else:
                    # convolve with science exposure's PSF model
                    preConvPsf = srcPsf
                afwMath.convolve(destMI, srcMI, preConvPsf.getLocalKernel(), convControl)
                exposure.setMaskedImage(destMI)
                scienceSigmaPost = scienceSigmaOrig * math.sqrt(2)
            else:
                scienceSigmaPost = scienceSigmaOrig

            # If requested, find sources in the image
            if self.config.doSelectSources:
                if not sensorRef.datasetExists("src"):
                    self.log.warn("Src product does not exist; running detection, measurement, selection")
                    # Run own detection and measurement; necessary in nightly processing
                    selectSources = self.subtract.getSelectSources(
                        exposure,
                        sigma = scienceSigmaPost,
                        doSmooth = not self.doPreConvolve,
                        idFactory = idFactory,
                    )
                else:
                    self.log.info("Source selection via src product")
                    # Sources already exist; for data release processing
                    selectSources = sensorRef.get("src")

                # Number of basis functions
                nparam = len(makeKernelBasisList(self.subtract.config.kernel.active,
                                                 referenceFwhmPix=scienceSigmaPost * FwhmPerSigma,
                                                 targetFwhmPix=templateSigma * FwhmPerSigma))

                if self.config.doAddMetrics:
                    # Modify the schema of all Sources
                    kcQa = KernelCandidateQa(nparam)
                    selectSources = kcQa.addToSchema(selectSources)

                if self.config.kernelSourcesFromRef:
                    # match exposure sources to reference catalog
                    astromRet = self.astrometer.loadAndMatch(exposure=exposure, sourceCat=selectSources)
                    matches = astromRet.matches
                elif templateSources:
                    # match exposure sources to template sources
                    matches = afwTable.matchRaDec(templateSources, selectSources, 1.0*afwGeom.arcseconds,
                                                  False)
                else:
                    raise RuntimeError("doSelectSources=True and kernelSourcesFromRef=False," +
                                       "but template sources not available. Cannot match science " +
                                       "sources with template sources. Run process* on data from " +
                                       "which templates are built.")

                kernelSources = self.sourceSelector.selectStars(exposure, selectSources,
                    matches=matches).starCat

                random.shuffle(kernelSources, random.random)
                controlSources = kernelSources[::self.config.controlStepSize]
                kernelSources = [k for i,k in enumerate(kernelSources) if i % self.config.controlStepSize]

                if self.config.doSelectDcrCatalog:
                    redSelector  = DiaCatalogSourceSelectorTask(
                        DiaCatalogSourceSelectorConfig(grMin=self.sourceSelector.config.grMax, grMax=99.999))
                    redSources   = redSelector.selectStars(exposure, selectSources, matches=matches).starCat
                    controlSources.extend(redSources)

                    blueSelector = DiaCatalogSourceSelectorTask(
                        DiaCatalogSourceSelectorConfig(grMin=-99.999, grMax=self.sourceSelector.config.grMin))
                    blueSources  = blueSelector.selectStars(exposure, selectSources, matches=matches).starCat
                    controlSources.extend(blueSources)

                if self.config.doSelectVariableCatalog:
                    varSelector = DiaCatalogSourceSelectorTask(
                        DiaCatalogSourceSelectorConfig(includeVariable=True))
                    varSources  = varSelector.selectStars(exposure, selectSources, matches=matches).starCat
                    controlSources.extend(varSources)

                self.log.info("Selected %d / %d sources for Psf matching (%d for control sample)" 
                              % (len(kernelSources), len(selectSources), len(controlSources)))
            allresids = {}
            if self.config.doUseRegister:
                self.log.info("Registering images")

                if templateSources is None:
                    # Run detection on the template, which is
                    # temporarily background-subtracted
                    templateSources = self.subtract.getSelectSources(
                        templateExposure,
                        sigma=templateSigma,
                        doSmooth=True,
                        idFactory=idFactory
                    )

                # Third step: we need to fit the relative astrometry.
                #
                wcsResults = self.fitAstrometry(templateSources, templateExposure, selectSources)
                warpedExp = self.register.warpExposure(templateExposure, wcsResults.wcs,
                                            exposure.getWcs(), exposure.getBBox())
                templateExposure = warpedExp

                # Create debugging outputs on the astrometric
                # residuals as a function of position.  Persistence
                # not yet implemented; expected on (I believe) #2636.
                if self.config.doDebugRegister:
                    # Grab matches to reference catalog
                    srcToMatch = {x.second.getId() : x.first for x in matches}

                    refCoordKey = wcsResults.matches[0].first.getTable().getCoordKey()
                    inCentroidKey = wcsResults.matches[0].second.getTable().getCentroidKey()
                    sids      = [m.first.getId() for m in wcsResults.matches]
                    positions = [m.first.get(refCoordKey) for m in wcsResults.matches]
                    residuals = [m.first.get(refCoordKey).getOffsetFrom(wcsResults.wcs.pixelToSky(
                                m.second.get(inCentroidKey))) for m in wcsResults.matches]
                    allresids = dict(zip(sids, zip(positions, residuals)))

                    cresiduals = [m.first.get(refCoordKey).getTangentPlaneOffset(
                            wcsResults.wcs.pixelToSky(
                                m.second.get(inCentroidKey))) for m in wcsResults.matches]
                    colors    = numpy.array([-2.5*numpy.log10(srcToMatch[x].get("g"))
                                              + 2.5*numpy.log10(srcToMatch[x].get("r")) 
                                              for x in sids if x in srcToMatch.keys()])
                    dlong     = numpy.array([r[0].asArcseconds() for s,r in zip(sids, cresiduals) 
                                             if s in srcToMatch.keys()])
                    dlat      = numpy.array([r[1].asArcseconds() for s,r in zip(sids, cresiduals) 
                                             if s in srcToMatch.keys()])
                    idx1      = numpy.where(colors<self.sourceSelector.config.grMin)
                    idx2      = numpy.where((colors>=self.sourceSelector.config.grMin)&
                                            (colors<=self.sourceSelector.config.grMax))
                    idx3      = numpy.where(colors>self.sourceSelector.config.grMax)
                    rms1Long  = IqrToSigma*(numpy.percentile(dlong[idx1],75)-numpy.percentile(dlong[idx1],25))
                    rms1Lat   = IqrToSigma*(numpy.percentile(dlat[idx1],75)-numpy.percentile(dlat[idx1],25))
                    rms2Long  = IqrToSigma*(numpy.percentile(dlong[idx2],75)-numpy.percentile(dlong[idx2],25))
                    rms2Lat   = IqrToSigma*(numpy.percentile(dlat[idx2],75)-numpy.percentile(dlat[idx2],25))
                    rms3Long  = IqrToSigma*(numpy.percentile(dlong[idx3],75)-numpy.percentile(dlong[idx3],25))
                    rms3Lat   = IqrToSigma*(numpy.percentile(dlat[idx3],75)-numpy.percentile(dlat[idx3],25))
                    self.log.info("Blue star offsets'': %.3f %.3f, %.3f %.3f"  % (numpy.median(dlong[idx1]), 
                                                                                  rms1Long,
                                                                                  numpy.median(dlat[idx1]), 
                                                                                  rms1Lat))
                    self.log.info("Green star offsets'': %.3f %.3f, %.3f %.3f"  % (numpy.median(dlong[idx2]), 
                                                                                   rms2Long,
                                                                                   numpy.median(dlat[idx2]), 
                                                                                   rms2Lat))
                    self.log.info("Red star offsets'': %.3f %.3f, %.3f %.3f"  % (numpy.median(dlong[idx3]), 
                                                                                 rms3Long,
                                                                                 numpy.median(dlat[idx3]), 
                                                                                 rms3Lat))

                    self.metadata.add("RegisterBlueLongOffsetMedian", numpy.median(dlong[idx1]))
                    self.metadata.add("RegisterGreenLongOffsetMedian", numpy.median(dlong[idx2]))
                    self.metadata.add("RegisterRedLongOffsetMedian", numpy.median(dlong[idx3]))
                    self.metadata.add("RegisterBlueLongOffsetStd", rms1Long)
                    self.metadata.add("RegisterGreenLongOffsetStd", rms2Long)
                    self.metadata.add("RegisterRedLongOffsetStd", rms3Long)

                    self.metadata.add("RegisterBlueLatOffsetMedian", numpy.median(dlat[idx1]))
                    self.metadata.add("RegisterGreenLatOffsetMedian", numpy.median(dlat[idx2]))
                    self.metadata.add("RegisterRedLatOffsetMedian", numpy.median(dlat[idx3]))
                    self.metadata.add("RegisterBlueLatOffsetStd", rms1Lat)
                    self.metadata.add("RegisterGreenLatOffsetStd", rms2Lat)
                    self.metadata.add("RegisterRedLatOffsetStd", rms3Lat)

            # warp template exposure to match exposure,
            # PSF match template exposure to exposure,
            # then return the difference

            #Return warped template...  Construct sourceKernelCand list after subtract
            self.log.info("Subtracting images")
            subtractRes = self.subtract.subtractExposures(
                templateExposure=templateExposure,
                scienceExposure=exposure,
                candidateList=kernelSources,
                convolveTemplate=self.config.convolveTemplate,
                doWarping=not self.config.doUseRegister
            )
            subtractedExposure = subtractRes.subtractedExposure

            if self.config.doWriteMatchedExp:
                sensorRef.put(subtractRes.matchedExposure, self.config.coaddName + "Diff_matchedExp")

        if self.config.doDetection:
            self.log.info("Running diaSource detection")
            if subtractedExposure is None:
                subtractedExposure = sensorRef.get(subtractedExposureName)

            # Get Psf from the appropriate input image if it doesn't exist
            if not subtractedExposure.hasPsf():
                if self.config.convolveTemplate:
                    subtractedExposure.setPsf(exposure.getPsf())
                else:
                    if templateExposure is None:
                        template = self.getTemplate.run(exposure, sensorRef, templateIdList=templateIdList)
                    subtractedExposure.setPsf(template.exposure.getPsf())

            # Erase existing detection mask planes
            mask  = subtractedExposure.getMaskedImage().getMask()
            mask &= ~(mask.getPlaneBitMask("DETECTED") | mask.getPlaneBitMask("DETECTED_NEGATIVE"))

            table = afwTable.SourceTable.make(self.schema, idFactory)
            table.setMetadata(self.algMetadata)
            results = self.detection.makeSourceCatalog(
                table=table,
                exposure=subtractedExposure,
                doSmooth=not self.config.doPreConvolve
                )

            if self.config.doMerge:
                fpSet = results.fpSets.positive
                fpSet.merge(results.fpSets.negative, self.config.growFootprint,
                            self.config.growFootprint, False)
                diaSources = afwTable.SourceCatalog(table)
                fpSet.makeSources(diaSources)
                self.log.info("Merging detections into %d sources" % (len(diaSources)))
            else:
                diaSources = results.sources

            if self.config.doMeasurement:
                self.log.info("Running diaSource measurement")
                self.measurement.run(diaSources, subtractedExposure)

            # Match with the calexp sources if possible
            if self.config.doMatchSources:
                if sensorRef.datasetExists("src"):
                    # Create key,val pair where key=diaSourceId and val=sourceId
                    matchRadAsec = self.config.diaSourceMatchRadius
                    matchRadPixel = matchRadAsec / exposure.getWcs().pixelScale().asArcseconds()

                    srcMatches = afwTable.matchXy(sensorRef.get("src"), diaSources, matchRadPixel, True)
                    srcMatchDict = dict([(srcMatch.second.getId(), srcMatch.first.getId()) for 
                                         srcMatch in srcMatches])
                    self.log.info("Matched %d / %d diaSources to sources" % (len(srcMatchDict),
                                                                             len(diaSources)))
                else:
                    self.log.warn("Src product does not exist; cannot match with diaSources")
                    srcMatchDict = {}

                # Create key,val pair where key=diaSourceId and val=refId
                refAstromConfig = measAstrom.AstrometryConfig()
                refAstromConfig.matcher.maxMatchDistArcSec = matchRadAsec
                refAstrometer = measAstrom.AstrometryTask(refAstromConfig)
                astromRet = refAstrometer.run(exposure=exposure, sourceCat=diaSources)
                refMatches = astromRet.matches
                if refMatches is None:
                    self.log.warn("No diaSource matches with reference catalog")
                    refMatchDict = {}
                else:
                    self.log.info("Matched %d / %d diaSources to reference catalog" % (len(refMatches),
                                                                                       len(diaSources)))
                    refMatchDict = dict([(refMatch.second.getId(), refMatch.first.getId()) for \
                                             refMatch in refMatches])

                # Assign source Ids
                for diaSource in diaSources:
                    sid = diaSource.getId()
                    if srcMatchDict.has_key(sid):
                        diaSource.set("srcMatchId", srcMatchDict[sid])
                    if refMatchDict.has_key(sid):
                        diaSource.set("refMatchId", refMatchDict[sid])

            if diaSources is not None and self.config.doWriteSources:
                sensorRef.put(diaSources, self.config.coaddName + "Diff_diaSrc")

            if self.config.doAddMetrics and self.config.doSelectSources:
                self.log.info("Evaluating metrics and control sample")

                kernelCandList = []
                for cell in subtractRes.kernelCellSet.getCellList():
                    for cand in cell.begin(False): # include bad candidates
                        kernelCandList.append(cast_KernelCandidateF(cand))

                # Get basis list to build control sample kernels
                basisList = afwMath.cast_LinearCombinationKernel(
                    kernelCandList[0].getKernel(KernelCandidateF.ORIG)).getKernelList()

                controlCandList = \
                    diffimTools.sourceTableToCandidateList(controlSources, 
                                                           subtractRes.warpedExposure, exposure,
                                                           self.config.subtract.kernel.active,
                                                           self.config.subtract.kernel.active.detectionConfig,
                                                           self.log, doBuild=True, basisList=basisList)

                kcQa.apply(kernelCandList, subtractRes.psfMatchingKernel, subtractRes.backgroundModel,
                                dof=nparam)
                kcQa.apply(controlCandList, subtractRes.psfMatchingKernel, subtractRes.backgroundModel)

                if self.config.doDetection:
                    kcQa.aggregate(selectSources, self.metadata, allresids, diaSources)
                else:
                    kcQa.aggregate(selectSources, self.metadata, allresids)

                sensorRef.put(selectSources, self.config.coaddName + "Diff_kernelSrc")

        if self.config.doWriteSubtractedExp:
            sensorRef.put(subtractedExposure, subtractedExposureName)

        self.runDebug(exposure, subtractRes, selectSources, kernelSources, diaSources)
        return pipeBase.Struct(
            subtractedExposure=subtractedExposure,
            subtractRes=subtractRes,
            sources=diaSources,
        )
Ejemplo n.º 35
0
    def run(self, sensorRef):
        """Subtract an image from a template coadd and measure the result
    
        Steps include:
        - warp template coadd to match WCS of image
        - PSF match image to warped template
        - subtract image from PSF-matched, warped template
        - persist difference image
        - detect sources
        - measure sources
        
        @param sensorRef: sensor-level butler data reference, used for the following data products:
        Input only:
        - calexp
        - psf
        - ccdExposureId
        - ccdExposureId_bits
        - self.config.coaddName + "Coadd_skyMap"
        - self.config.coaddName + "Coadd"
        Input or output, depending on config:
        - self.config.coaddName + "Diff_subtractedExp"
        Output, depending on config:
        - self.config.coaddName + "Diff_matchedExp"
        - self.config.coaddName + "Diff_src"
            
        @return pipe_base Struct containing these fields:
        - subtractedExposure: exposure after subtracting template;
            the unpersisted version if subtraction not run but detection run
            None if neither subtraction nor detection run (i.e. nothing useful done)
        - subtractRes: results of subtraction task; None if subtraction not run
        - sources: detected and possibly measured sources; None if detection not run
        """
        self.log.info("Processing %s" % (sensorRef.dataId))

        # initialize outputs and some intermediate products
        subtractedExposure = None
        subtractRes = None
        selectSources = None
        kernelSources = None
        controlSources = None
        diaSources = None

        # We make one IdFactory that will be used by both icSrc and src datasets;
        # I don't know if this is the way we ultimately want to do things, but at least
        # this ensures the source IDs are fully unique.
        expBits = sensorRef.get("ccdExposureId_bits")
        expId = long(sensorRef.get("ccdExposureId"))
        idFactory = afwTable.IdFactory.makeSource(expId, 64 - expBits)
        
        # Retrieve the science image we wish to analyze
        exposure = sensorRef.get("calexp", immediate=True)
        if self.config.doAddCalexpBackground:
            mi = exposure.getMaskedImage()
            mi += sensorRef.get("calexpBackground").getImage()
        if not exposure.hasPsf():
            raise pipeBase.TaskError("Exposure has no psf")
        sciencePsf = exposure.getPsf()

        if self.config.useWinter2013Hacks and self.config.winter2013borderMask > 0:
            self.log.warn("USING WINTER2013 HACK: MASKING BORDER PIXELS")
            bbox = exposure.getBBox(afwImage.PARENT)
            bbox.grow(-self.config.winter2013borderMask)
            self.setEdgeBits(exposure.getMaskedImage(), bbox, 
                             exposure.getMaskedImage().getMask().getPlaneBitMask("NO_DATA"))
            
        # compute scienceSigmaOrig: sigma of PSF of science image before pre-convolution
        ctr = afwGeom.Box2D(exposure.getBBox(afwImage.PARENT)).getCenter()
        psfAttr = PsfAttributes(sciencePsf, afwGeom.Point2I(ctr))
        scienceSigmaOrig = psfAttr.computeGaussianWidth(psfAttr.ADAPTIVE_MOMENT)
        
        subtractedExposureName = self.config.coaddName + "Diff_differenceExp"
        templateExposure = None  # Stitched coadd exposure
        templateSources = None   # Sources on the template image
        if self.config.doSubtract:
            templateExposure, templateSources = self.getTemplate(exposure, sensorRef)

            # sigma of PSF of template image before warping
            ctr = afwGeom.Box2D(templateExposure.getBBox(afwImage.PARENT)).getCenter()
            psfAttr = PsfAttributes(templateExposure.getPsf(), afwGeom.Point2I(ctr))
            templateSigma = psfAttr.computeGaussianWidth(psfAttr.ADAPTIVE_MOMENT)

            # if requested, convolve the science exposure with its PSF
            # (properly, this should be a cross-correlation, but our code does not yet support that)
            # compute scienceSigmaPost: sigma of science exposure with pre-convolution, if done,
            # else sigma of original science exposure
            if self.config.doPreConvolve:
                convControl = afwMath.ConvolutionControl()
                # cannot convolve in place, so make a new MI to receive convolved image
                srcMI = exposure.getMaskedImage()
                destMI = srcMI.Factory(srcMI.getDimensions())
                srcPsf = sciencePsf
                if self.config.useGaussianForPreConvolution:
                    # convolve with a simplified PSF model: a double Gaussian
                    kWidth, kHeight = sciencePsf.getKernel().getDimensions()
                    preConvPsf = SingleGaussianPsf(kWidth, kHeight, scienceSigmaOrig)
                else:
                    # convolve with science exposure's PSF model
                    preConvPsf = psf
                afwMath.convolve(destMI, srcMI, preConvPsf.getKernel(), convControl)
                exposure.setMaskedImage(destMI)
                scienceSigmaPost = scienceSigmaOrig * math.sqrt(2)
            else:
                scienceSigmaPost = scienceSigmaOrig

            # If requested, find sources in the image
            if self.config.doSelectSources:
                if not sensorRef.datasetExists("src"):
                    self.log.warn("Src product does not exist; running detection, measurement, selection")
                    # Run own detection and measurement; necessary in nightly processing
                    selectSources = self.subtract.getSelectSources(
                        exposure, 
                        sigma = scienceSigmaPost, 
                        doSmooth = not self.doPreConvolve,
                        idFactory = idFactory,
                    )
                else:
                    self.log.info("Source selection via src product")
                    # Sources already exist; for data release processing
                    selectSources = sensorRef.get("src")

                # Number of basis functions
                nparam = len(makeKernelBasisList(self.subtract.config.kernel.active,
                                                 referenceFwhmPix = scienceSigmaPost * FwhmPerSigma,
                                                 targetFwhmPix = templateSigma * FwhmPerSigma))

                if self.config.doAddMetrics:
                    # Modify the schema of all Sources
                    self.kcQa = diUtils.KernelCandidateQa(nparam, self.log)
                    selectSources = self.kcQa.addToSchema(selectSources)

                astrometer = measAstrom.Astrometry(measAstrom.MeasAstromConfig())
                astromRet = astrometer.useKnownWcs(selectSources, exposure=exposure)
                matches = astromRet.matches
                kernelSources = self.sourceSelector.selectSources(exposure, selectSources, matches=matches)
                random.shuffle(kernelSources, random.random)
                controlSources = kernelSources[::self.config.controlStepSize]
                [kernelSources.remove(x) for x in controlSources]

                self.log.info("Selected %d / %d sources for Psf matching (%d for control sample)" \
                                  % (len(kernelSources), len(selectSources), len(controlSources)))
            allresids = {}
            if self.config.doUseRegister:
                self.log.info("Registering images")
                
                if templateSources is None:
                    # First step: we need to subtract the background out
                    # for detection and measurement.  Use large binsize
                    # for the background estimation.
                    binsize = self.config.templateBgBinSize
    
                    # Second step: we need to run detection on the
                    # background-subtracted template
                    #
                    # Estimate FWHM for detection
                    templateSources = self.subtract.getSelectSources(
                        templateExposure,
                        sigma = templateSigma,
                        doSmooth = True,
                        idFactory = idFactory,
                        binsize = binsize,
                    )

                # Third step: we need to fit the relative astrometry.
                #
                # One problem is that the SIP fits are w.r.t. CRPIX,
                # and these coadd patches have the CRPIX of the entire
                # tract, i.e. off the image.  This causes
                # register.fitWcs to fail.  A workaround for now is to
                # re-fit the Wcs which returns with a CRPIX that is on
                # the image, and *then* to fit for the relative Wcs.
                #
                # Requires low Sip order to avoid overfitting

                # useWinter2013Hacks includes us using the deep calexp
                # as the template.  In this case we don't need to
                # refit the Wcs.
                if not self.config.useWinter2013Hacks:
                    sipOrder = self.config.templateSipOrder
                    astrometer = measAstrom.Astrometry(measAstrom.MeasAstromConfig(sipOrder=sipOrder))
                    newWcs = astrometer.determineWcs(templateSources, templateExposure).getWcs()
                    results = self.register.run(templateSources, newWcs, 
                                                templateExposure.getBBox(afwImage.PARENT), selectSources)
                else:
                    if self.config.winter2013WcsShift > 0.0:
                        offset = afwGeom.Extent2D(self.config.winter2013WcsShift, 
                                                  self.config.winter2013WcsShift)
                        cKey = templateSources[0].getTable().getCentroidKey()
                        for source in templateSources:
                            centroid = source.get(cKey)
                            source.set(cKey, centroid+offset)
                    elif self.config.winter2013WcsRms > 0.0:
                        cKey = templateSources[0].getTable().getCentroidKey()
                        for source in templateSources:
                            offset = afwGeom.Extent2D(self.config.winter2013WcsRms*numpy.random.normal(), 
                                                      self.config.winter2013WcsRms*numpy.random.normal())
                            centroid = source.get(cKey)
                            source.set(cKey, centroid+offset)

                    results = self.register.run(templateSources, templateExposure.getWcs(),
                                                templateExposure.getBBox(afwImage.PARENT), selectSources)

                warpedExp = self.register.warpExposure(templateExposure, results.wcs, 
                                            exposure.getWcs(), exposure.getBBox(afwImage.PARENT))
                templateExposure = warpedExp

                # Create debugging outputs on the astrometric
                # residuals as a function of position.  Persistence
                # not yet implemented; expected on (I believe) #2636.
                if self.config.doDebugRegister:
                    refCoordKey = results.matches[0].first.getTable().getCoordKey()
                    inCentroidKey = results.matches[0].second.getTable().getCentroidKey()
                    sids      = [m.first.getId() for m in results.matches]
                    positions = [m.first.get(refCoordKey) for m in results.matches]
                    residuals = [m.first.get(refCoordKey).getOffsetFrom(
                                   results.wcs.pixelToSky(m.second.get(inCentroidKey))) for
                                 m in results.matches]
                    allresids = dict(zip(sids, zip(positions, residuals)))

            # warp template exposure to match exposure,
            # PSF match template exposure to exposure,
            # then return the difference

            #Return warped template...  Construct sourceKernelCand list after subtract
            self.log.info("Subtracting images")
            subtractRes = self.subtract.subtractExposures(
                templateExposure = templateExposure,
                scienceExposure = exposure,
                scienceFwhmPix = scienceSigmaPost * FwhmPerSigma,
                templateFwhmPix = templateSigma * FwhmPerSigma,
                candidateList = kernelSources,
                convolveTemplate = self.config.convolveTemplate,
                doWarping = not self.config.doUseRegister
            )
            subtractedExposure = subtractRes.subtractedExposure

            if self.config.doWriteMatchedExp:
                sensorRef.put(subtractRes.matchedExposure, self.config.coaddName + "Diff_matchedExp")

        if self.config.doDetection:
            self.log.info("Running diaSource detection")
            if subtractedExposure is None:
                subtractedExposure = sensorRef.get(subtractedExposureName)
            
            # Get Psf from the appropriate input image if it doesn't exist
            if not subtractedExposure.hasPsf():
                if self.config.convolveTemplate:
                    subtractedExposure.setPsf(exposure.getPsf())
                else:
                    if templateExposure is None:
                        templateExposure, templateSources = self.getTemplate(exposure, sensorRef)
                    subtractedExposure.setPsf(templateExposure.getPsf())

            # Erase existing detection mask planes
            mask  = subtractedExposure.getMaskedImage().getMask()
            mask &= ~(mask.getPlaneBitMask("DETECTED") | mask.getPlaneBitMask("DETECTED_NEGATIVE"))

            table = afwTable.SourceTable.make(self.schema, idFactory)
            table.setMetadata(self.algMetadata)
            results = self.detection.makeSourceCatalog(
                table = table,
                exposure = subtractedExposure,
                doSmooth = not self.config.doPreConvolve
                )

            if self.config.doMerge:
                fpSet = results.fpSets.positive
                fpSet.merge(results.fpSets.negative, self.config.growFootprint, 
                            self.config.growFootprint, False)
                diaSources = afwTable.SourceCatalog(table)
                fpSet.makeSources(diaSources)
                self.log.info("Merging detections into %d sources" % (len(diaSources)))
            else:
                diaSources = results.sources

            if self.config.doMeasurement:
                self.log.info("Running diaSource measurement")
                if len(diaSources) < self.config.maxDiaSourcesToMeasure:
                    self.dipolemeasurement.run(subtractedExposure, diaSources)
                else:
                    self.measurement.run(subtractedExposure, diaSources)

            # Match with the calexp sources if possible
            if self.config.doMatchSources:
                if sensorRef.datasetExists("src"):
                    # Create key,val pair where key=diaSourceId and val=sourceId
                    matchRadAsec = self.config.diaSourceMatchRadius
                    matchRadPixel = matchRadAsec / exposure.getWcs().pixelScale().asArcseconds()

                    # This does not do what I expect so I cobbled together a brute force method in python 
                    srcMatches = afwTable.matchXy(sensorRef.get("src"), diaSources, matchRadPixel, True) 
                    srcMatchDict = dict([(srcMatch.second.getId(), srcMatch.first.getId()) for \
                                             srcMatch in srcMatches])
                    self.log.info("Matched %d / %d diaSources to sources" % (len(srcMatchDict), 
                                                                             len(diaSources)))
                else:
                    self.log.warn("Src product does not exist; cannot match with diaSources")
                    srcMatchDict = {}

                # Create key,val pair where key=diaSourceId and val=refId
                astrometer = measAstrom.Astrometry(measAstrom.MeasAstromConfig(catalogMatchDist=matchRadAsec))
                astromRet = astrometer.useKnownWcs(diaSources, exposure=exposure)
                refMatches = astromRet.matches
                if refMatches is None:
                    self.log.warn("No diaSource matches with reference catalog")
                    refMatchDict = {}
                else:
                    self.log.info("Matched %d / %d diaSources to reference catalog" % (len(refMatches), 
                                                                                       len(diaSources)))
                    refMatchDict = dict([(refMatch.second.getId(), refMatch.first.getId()) for \
                                             refMatch in refMatches])

                # Assign source Ids
                for diaSource in diaSources:                    
                    sid = diaSource.getId()
                    if srcMatchDict.has_key(sid):
                        diaSource.set("srcMatchId", srcMatchDict[sid])
                    if refMatchDict.has_key(sid):
                        diaSource.set("refMatchId", refMatchDict[sid])
                        
            if diaSources is not None and self.config.doWriteSources:
                sourceWriteFlags = (0 if self.config.doWriteHeavyFootprintsInSources
                                    else afwTable.SOURCE_IO_NO_HEAVY_FOOTPRINTS)
                sensorRef.put(diaSources, self.config.coaddName + "Diff_diaSrc", flags=sourceWriteFlags)

            if self.config.doAddMetrics and self.config.doSelectSources:
                self.log.info("Evaluating metrics and control sample")

                kernelCandList = []
                for cell in subtractRes.kernelCellSet.getCellList():
                    for cand in cell.begin(False): # include bad candidates
                        kernelCandList.append(cast_KernelCandidateF(cand))

                # Get basis list to build control sample kernels
                basisList = afwMath.cast_LinearCombinationKernel(
                    kernelCandList[0].getKernel(KernelCandidateF.ORIG)).getKernelList()

                controlCandList = \
                    diffimTools.sourceTableToCandList(controlSources, subtractRes.warpedExposure, exposure, 
                                                      self.config.subtract.kernel.active, 
                                                      self.config.subtract.kernel.active.detectionConfig, 
                                                      self.log, dobuild=True, basisList=basisList)

                self.kcQa.apply(kernelCandList, subtractRes.psfMatchingKernel, subtractRes.backgroundModel, 
                                dof=nparam)
                self.kcQa.apply(controlCandList, subtractRes.psfMatchingKernel, subtractRes.backgroundModel)

                if self.config.doDetection:
                    self.kcQa.aggregate(selectSources, self.metadata, allresids, diaSources)
                else:
                    self.kcQa.aggregate(selectSources, self.metadata, allresids)

                #Persist using butler
                sensorRef.put(selectSources, self.config.coaddName + "Diff_kernelSrc")

        if self.config.doWriteSubtractedExp:
            sensorRef.put(subtractedExposure, subtractedExposureName)
 
        self.runDebug(exposure, subtractRes, selectSources, kernelSources, diaSources)
        return pipeBase.Struct(
            subtractedExposure = subtractedExposure,
            subtractRes = subtractRes,
            sources = diaSources,
        )
Ejemplo n.º 36
0
    def setUp(self):
        self.configAL = ipDiffim.ImagePsfMatchTask.ConfigClass()
        self.configAL.kernel.name = "AL"
        self.subconfigAL = self.configAL.kernel.active

        self.configDF = ipDiffim.ImagePsfMatchTask.ConfigClass()
        self.configDF.kernel.name = "DF"
        self.subconfigDF = self.configDF.kernel.active

        self.configDFr = ipDiffim.ImagePsfMatchTask.ConfigClass()
        self.configDFr.kernel.name = "DF"
        self.subconfigDFr = self.configDFr.kernel.active

        self.subconfigDF.useRegularization = False
        self.subconfigDFr.useRegularization = True
        self.subconfigDFr.lambdaValue = 1000.0

        self.subconfigAL.fitForBackground = fitForBackground
        self.subconfigDF.fitForBackground = fitForBackground
        self.subconfigDFr.fitForBackground = fitForBackground

        self.subconfigAL.constantVarianceWeighting = constantVarianceWeighting
        self.subconfigDF.constantVarianceWeighting = constantVarianceWeighting
        self.subconfigDFr.constantVarianceWeighting = constantVarianceWeighting

        self.kListAL = ipDiffim.makeKernelBasisList(self.subconfigAL)
        self.kListDF = ipDiffim.makeKernelBasisList(self.subconfigDF)
        self.kListDFr = ipDiffim.makeKernelBasisList(self.subconfigDFr)
        self.hMatDFr = ipDiffim.makeRegularizationMatrix(
            pexConfig.makePropertySet(self.subconfigDFr))

        self.bskvAL = ipDiffim.BuildSingleKernelVisitorF(
            self.kListAL, pexConfig.makePropertySet(self.subconfigAL))
        self.bskvDF = ipDiffim.BuildSingleKernelVisitorF(
            self.kListDF, pexConfig.makePropertySet(self.subconfigDF))
        self.bskvDFr = ipDiffim.BuildSingleKernelVisitorF(
            self.kListDFr, pexConfig.makePropertySet(self.subconfigDF),
            self.hMatDFr)

        defSciencePath = globals()['defSciencePath']
        defTemplatePath = globals()['defTemplatePath']
        if defSciencePath and defTemplatePath:
            self.scienceExposure = afwImage.ExposureF(defSciencePath)
            self.templateExposure = afwImage.ExposureF(defTemplatePath)
        else:
            defDataDir = lsst.utils.getPackageDir('afwdata')
            defSciencePath = os.path.join(defDataDir, "DC3a-Sim", "sci",
                                          "v26-e0", "v26-e0-c011-a00.sci.fits")
            defTemplatePath = os.path.join(defDataDir, "DC3a-Sim", "sci",
                                           "v5-e0", "v5-e0-c011-a00.sci.fits")

            self.scienceExposure = afwImage.ExposureF(defSciencePath)
            self.templateExposure = afwImage.ExposureF(defTemplatePath)
            warper = afwMath.Warper.fromConfig(self.subconfigAL.warpingConfig)
            self.templateExposure = warper.warpExposure(
                self.scienceExposure.getWcs(),
                self.templateExposure,
                destBBox=self.scienceExposure.getBBox())

        #
        tmi = self.templateExposure.getMaskedImage()
        smi = self.scienceExposure.getMaskedImage()

        # Object detection
        detConfig = self.subconfigAL.detectionConfig
        detps = pexConfig.makePropertySet(detConfig)
        detps["detThreshold"] = 50.
        detps["detThresholdType"] = "stdev"
        detps["detOnTemplate"] = False
        kcDetect = ipDiffim.KernelCandidateDetectionF(detps)
        kcDetect.apply(tmi, smi)
        self.footprints = kcDetect.getFootprints()
Ejemplo n.º 37
0
    def testMakeKernelBasisList(self):
        ks = ipDiffim.makeKernelBasisList(self.subconfigAL)
        self.alardLuptonTest(ks)

        ks = ipDiffim.makeKernelBasisList(self.subconfigDF)
        self.deltaFunctionTest(ks)
                            kc.getBackground, kc.getKsum, kc.getKernelImage,
                            kc.getDifferenceImage):
                try:
                    kMethod(kType)
                except Exception, e:
                    pass
                else:
                    self.fail()
        try:
            kc.getImage()
        except Exception:
            pass
        else:
            self.fail()

        kList = ipDiffim.makeKernelBasisList(self.subconfig)

        kc.build(kList)
        self.assertEqual(kc.isInitialized(), True)

    def testDeltaFunctionScaled(self, scaling=2.7, bg=11.3):
        if not self.defDataDir:
            print >> sys.stderr, "Warning: afwdata is not set up"
            return

        sIm = afwImage.MaskedImageF(self.templateExposure2.getMaskedImage(),
                                    True)
        sIm *= scaling
        kc = ipDiffim.KernelCandidateF(self.x02, self.y02,
                                       self.templateExposure2.getMaskedImage(),
                                       sIm, self.policy)
                            kc.getKernelImage,
                            kc.getDifferenceImage):
                try:
                    kMethod(kType)
                except Exception, e:
                    pass
                else:
                    self.fail()
        try:
            kc.getImage()
        except Exception:
            pass
        else:
            self.fail()

        kList = ipDiffim.makeKernelBasisList(self.subconfig)

        kc.build(kList)
        self.assertEqual(kc.isInitialized(), True)

    def testDeltaFunctionScaled(self, scaling = 2.7, bg = 11.3):
        if not self.defDataDir:
            print >> sys.stderr, "Warning: afwdata is not set up"
            return

        sIm  = afwImage.MaskedImageF(self.templateExposure2.getMaskedImage(), True)
        sIm *= scaling
        kc = ipDiffim.KernelCandidateF(self.x02, self.y02,
                                       self.templateExposure2.getMaskedImage(),
                                       sIm,
                                       self.policy)
    def testSourceConstructor(self):
        source = self.ss.addNew()
        source.setId(1)
        source.set(self.table.getCentroidSlot().getMeasKey().getX(), 276)
        source.set(self.table.getCentroidSlot().getMeasKey().getY(), 717)
        source.set("slot_PsfFlux_instFlux", 1.)

        kc = ipDiffim.KernelCandidateF(source,
                                       self.templateExposure2.getMaskedImage(),
                                       self.scienceImage2.getMaskedImage(),
                                       self.ps)

        # Kernel not initialized
        self.assertEqual(kc.isInitialized(), False)

        # Check that the source is set
        self.assertEqual(kc.getSource(), source)
        self.assertEqual(kc.getCandidateRating(), source.getPsfInstFlux())

        # But this should be set on construction
        try:
            kc.getCandidateRating()
        except Exception as e:
            print(e)
            self.fail()

        # And these should be filled
        try:
            kc.getTemplateMaskedImage()
            kc.getScienceMaskedImage()
        except Exception as e:
            print(e)
            self.fail()

        # And of the right type
        self.assertEqual(type(kc.getTemplateMaskedImage()),
                         afwImage.MaskedImageF)
        self.assertEqual(type(kc.getScienceMaskedImage()),
                         afwImage.MaskedImageF)

        # None of these should work
        for kType in (ipDiffim.KernelCandidateF.ORIG,
                      ipDiffim.KernelCandidateF.PCA,
                      ipDiffim.KernelCandidateF.RECENT):
            for kMethod in (kc.getKernelSolution, kc.getKernel,
                            kc.getBackground, kc.getKsum, kc.getKernelImage,
                            kc.getDifferenceImage):
                try:
                    kMethod(kType)
                except Exception:
                    pass
                else:
                    self.fail()
        try:
            kc.getImage()
        except Exception:
            pass
        else:
            self.fail()

        kList = ipDiffim.makeKernelBasisList(self.subconfig)

        kc.build(kList)
        self.assertEqual(kc.isInitialized(), True)
Ejemplo n.º 41
0
    def run(self, sensorRef, templateIdList=None):
        """Subtract an image from a template coadd and measure the result

        Steps include:
        - warp template coadd to match WCS of image
        - PSF match image to warped template
        - subtract image from PSF-matched, warped template
        - persist difference image
        - detect sources
        - measure sources

        @param sensorRef: sensor-level butler data reference, used for the following data products:
        Input only:
        - calexp
        - psf
        - ccdExposureId
        - ccdExposureId_bits
        - self.config.coaddName + "Coadd_skyMap"
        - self.config.coaddName + "Coadd"
        Input or output, depending on config:
        - self.config.coaddName + "Diff_subtractedExp"
        Output, depending on config:
        - self.config.coaddName + "Diff_matchedExp"
        - self.config.coaddName + "Diff_src"

        @return pipe_base Struct containing these fields:
        - subtractedExposure: exposure after subtracting template;
            the unpersisted version if subtraction not run but detection run
            None if neither subtraction nor detection run (i.e. nothing useful done)
        - subtractRes: results of subtraction task; None if subtraction not run
        - sources: detected and possibly measured sources; None if detection not run
        """
        self.log.info("Processing %s" % (sensorRef.dataId))

        # initialize outputs and some intermediate products
        subtractedExposure = None
        subtractRes = None
        selectSources = None
        kernelSources = None
        controlSources = None
        diaSources = None

        # We make one IdFactory that will be used by both icSrc and src datasets;
        # I don't know if this is the way we ultimately want to do things, but at least
        # this ensures the source IDs are fully unique.
        expBits = sensorRef.get("ccdExposureId_bits")
        expId = int(sensorRef.get("ccdExposureId"))
        idFactory = afwTable.IdFactory.makeSource(expId, 64 - expBits)

        # Retrieve the science image we wish to analyze
        exposure = sensorRef.get("calexp", immediate=True)
        if self.config.doAddCalexpBackground:
            mi = exposure.getMaskedImage()
            mi += sensorRef.get("calexpBackground").getImage()
        if not exposure.hasPsf():
            raise pipeBase.TaskError("Exposure has no psf")
        sciencePsf = exposure.getPsf()

        subtractedExposureName = self.config.coaddName + "Diff_differenceExp"
        templateExposure = None  # Stitched coadd exposure
        templateSources = None  # Sources on the template image
        if self.config.doSubtract:
            template = self.getTemplate.run(exposure,
                                            sensorRef,
                                            templateIdList=templateIdList)
            templateExposure = template.exposure
            templateSources = template.sources

            # compute scienceSigmaOrig: sigma of PSF of science image before pre-convolution
            scienceSigmaOrig = sciencePsf.computeShape().getDeterminantRadius()

            # sigma of PSF of template image before warping
            templateSigma = templateExposure.getPsf().computeShape(
            ).getDeterminantRadius()

            # if requested, convolve the science exposure with its PSF
            # (properly, this should be a cross-correlation, but our code does not yet support that)
            # compute scienceSigmaPost: sigma of science exposure with pre-convolution, if done,
            # else sigma of original science exposure
            if self.config.doPreConvolve:
                convControl = afwMath.ConvolutionControl()
                # cannot convolve in place, so make a new MI to receive convolved image
                srcMI = exposure.getMaskedImage()
                destMI = srcMI.Factory(srcMI.getDimensions())
                srcPsf = sciencePsf
                if self.config.useGaussianForPreConvolution:
                    # convolve with a simplified PSF model: a double Gaussian
                    kWidth, kHeight = sciencePsf.getLocalKernel(
                    ).getDimensions()
                    preConvPsf = SingleGaussianPsf(kWidth, kHeight,
                                                   scienceSigmaOrig)
                else:
                    # convolve with science exposure's PSF model
                    preConvPsf = srcPsf
                afwMath.convolve(destMI, srcMI, preConvPsf.getLocalKernel(),
                                 convControl)
                exposure.setMaskedImage(destMI)
                scienceSigmaPost = scienceSigmaOrig * math.sqrt(2)
            else:
                scienceSigmaPost = scienceSigmaOrig

            # If requested, find sources in the image
            if self.config.doSelectSources:
                if not sensorRef.datasetExists("src"):
                    self.log.warn(
                        "Src product does not exist; running detection, measurement, selection"
                    )
                    # Run own detection and measurement; necessary in nightly processing
                    selectSources = self.subtract.getSelectSources(
                        exposure,
                        sigma=scienceSigmaPost,
                        doSmooth=not self.doPreConvolve,
                        idFactory=idFactory,
                    )
                else:
                    self.log.info("Source selection via src product")
                    # Sources already exist; for data release processing
                    selectSources = sensorRef.get("src")

                # Number of basis functions
                nparam = len(
                    makeKernelBasisList(
                        self.subtract.config.kernel.active,
                        referenceFwhmPix=scienceSigmaPost * FwhmPerSigma,
                        targetFwhmPix=templateSigma * FwhmPerSigma))

                if self.config.doAddMetrics:
                    # Modify the schema of all Sources
                    kcQa = KernelCandidateQa(nparam)
                    selectSources = kcQa.addToSchema(selectSources)

                if self.config.kernelSourcesFromRef:
                    # match exposure sources to reference catalog
                    astromRet = self.astrometer.loadAndMatch(
                        exposure=exposure, sourceCat=selectSources)
                    matches = astromRet.matches
                elif templateSources:
                    # match exposure sources to template sources
                    mc = afwTable.MatchControl()
                    mc.findOnlyClosest = False
                    matches = afwTable.matchRaDec(templateSources,
                                                  selectSources,
                                                  1.0 * afwGeom.arcseconds, mc)
                else:
                    raise RuntimeError(
                        "doSelectSources=True and kernelSourcesFromRef=False,"
                        +
                        "but template sources not available. Cannot match science "
                        +
                        "sources with template sources. Run process* on data from "
                        + "which templates are built.")

                kernelSources = self.sourceSelector.selectStars(
                    exposure, selectSources, matches=matches).starCat

                random.shuffle(kernelSources, random.random)
                controlSources = kernelSources[::self.config.controlStepSize]
                kernelSources = [
                    k for i, k in enumerate(kernelSources)
                    if i % self.config.controlStepSize
                ]

                if self.config.doSelectDcrCatalog:
                    redSelector = DiaCatalogSourceSelectorTask(
                        DiaCatalogSourceSelectorConfig(
                            grMin=self.sourceSelector.config.grMax,
                            grMax=99.999))
                    redSources = redSelector.selectStars(
                        exposure, selectSources, matches=matches).starCat
                    controlSources.extend(redSources)

                    blueSelector = DiaCatalogSourceSelectorTask(
                        DiaCatalogSourceSelectorConfig(
                            grMin=-99.999,
                            grMax=self.sourceSelector.config.grMin))
                    blueSources = blueSelector.selectStars(
                        exposure, selectSources, matches=matches).starCat
                    controlSources.extend(blueSources)

                if self.config.doSelectVariableCatalog:
                    varSelector = DiaCatalogSourceSelectorTask(
                        DiaCatalogSourceSelectorConfig(includeVariable=True))
                    varSources = varSelector.selectStars(
                        exposure, selectSources, matches=matches).starCat
                    controlSources.extend(varSources)

                self.log.info(
                    "Selected %d / %d sources for Psf matching (%d for control sample)"
                    % (len(kernelSources), len(selectSources),
                       len(controlSources)))
            allresids = {}
            if self.config.doUseRegister:
                self.log.info("Registering images")

                if templateSources is None:
                    # Run detection on the template, which is
                    # temporarily background-subtracted
                    templateSources = self.subtract.getSelectSources(
                        templateExposure,
                        sigma=templateSigma,
                        doSmooth=True,
                        idFactory=idFactory)

                # Third step: we need to fit the relative astrometry.
                #
                wcsResults = self.fitAstrometry(templateSources,
                                                templateExposure,
                                                selectSources)
                warpedExp = self.register.warpExposure(templateExposure,
                                                       wcsResults.wcs,
                                                       exposure.getWcs(),
                                                       exposure.getBBox())
                templateExposure = warpedExp

                # Create debugging outputs on the astrometric
                # residuals as a function of position.  Persistence
                # not yet implemented; expected on (I believe) #2636.
                if self.config.doDebugRegister:
                    # Grab matches to reference catalog
                    srcToMatch = {x.second.getId(): x.first for x in matches}

                    refCoordKey = wcsResults.matches[0].first.getTable(
                    ).getCoordKey()
                    inCentroidKey = wcsResults.matches[0].second.getTable(
                    ).getCentroidKey()
                    sids = [m.first.getId() for m in wcsResults.matches]
                    positions = [
                        m.first.get(refCoordKey) for m in wcsResults.matches
                    ]
                    residuals = [
                        m.first.get(refCoordKey).getOffsetFrom(
                            wcsResults.wcs.pixelToSky(
                                m.second.get(inCentroidKey)))
                        for m in wcsResults.matches
                    ]
                    allresids = dict(zip(sids, zip(positions, residuals)))

                    cresiduals = [
                        m.first.get(refCoordKey).getTangentPlaneOffset(
                            wcsResults.wcs.pixelToSky(
                                m.second.get(inCentroidKey)))
                        for m in wcsResults.matches
                    ]
                    colors = numpy.array([
                        -2.5 * numpy.log10(srcToMatch[x].get("g")) +
                        2.5 * numpy.log10(srcToMatch[x].get("r")) for x in sids
                        if x in srcToMatch.keys()
                    ])
                    dlong = numpy.array([
                        r[0].asArcseconds() for s, r in zip(sids, cresiduals)
                        if s in srcToMatch.keys()
                    ])
                    dlat = numpy.array([
                        r[1].asArcseconds() for s, r in zip(sids, cresiduals)
                        if s in srcToMatch.keys()
                    ])
                    idx1 = numpy.where(
                        colors < self.sourceSelector.config.grMin)
                    idx2 = numpy.where(
                        (colors >= self.sourceSelector.config.grMin)
                        & (colors <= self.sourceSelector.config.grMax))
                    idx3 = numpy.where(
                        colors > self.sourceSelector.config.grMax)
                    rms1Long = IqrToSigma * \
                        (numpy.percentile(dlong[idx1], 75)-numpy.percentile(dlong[idx1], 25))
                    rms1Lat = IqrToSigma * (numpy.percentile(dlat[idx1], 75) -
                                            numpy.percentile(dlat[idx1], 25))
                    rms2Long = IqrToSigma * \
                        (numpy.percentile(dlong[idx2], 75)-numpy.percentile(dlong[idx2], 25))
                    rms2Lat = IqrToSigma * (numpy.percentile(dlat[idx2], 75) -
                                            numpy.percentile(dlat[idx2], 25))
                    rms3Long = IqrToSigma * \
                        (numpy.percentile(dlong[idx3], 75)-numpy.percentile(dlong[idx3], 25))
                    rms3Lat = IqrToSigma * (numpy.percentile(dlat[idx3], 75) -
                                            numpy.percentile(dlat[idx3], 25))
                    self.log.info("Blue star offsets'': %.3f %.3f, %.3f %.3f" %
                                  (numpy.median(dlong[idx1]), rms1Long,
                                   numpy.median(dlat[idx1]), rms1Lat))
                    self.log.info(
                        "Green star offsets'': %.3f %.3f, %.3f %.3f" %
                        (numpy.median(dlong[idx2]), rms2Long,
                         numpy.median(dlat[idx2]), rms2Lat))
                    self.log.info("Red star offsets'': %.3f %.3f, %.3f %.3f" %
                                  (numpy.median(dlong[idx3]), rms3Long,
                                   numpy.median(dlat[idx3]), rms3Lat))

                    self.metadata.add("RegisterBlueLongOffsetMedian",
                                      numpy.median(dlong[idx1]))
                    self.metadata.add("RegisterGreenLongOffsetMedian",
                                      numpy.median(dlong[idx2]))
                    self.metadata.add("RegisterRedLongOffsetMedian",
                                      numpy.median(dlong[idx3]))
                    self.metadata.add("RegisterBlueLongOffsetStd", rms1Long)
                    self.metadata.add("RegisterGreenLongOffsetStd", rms2Long)
                    self.metadata.add("RegisterRedLongOffsetStd", rms3Long)

                    self.metadata.add("RegisterBlueLatOffsetMedian",
                                      numpy.median(dlat[idx1]))
                    self.metadata.add("RegisterGreenLatOffsetMedian",
                                      numpy.median(dlat[idx2]))
                    self.metadata.add("RegisterRedLatOffsetMedian",
                                      numpy.median(dlat[idx3]))
                    self.metadata.add("RegisterBlueLatOffsetStd", rms1Lat)
                    self.metadata.add("RegisterGreenLatOffsetStd", rms2Lat)
                    self.metadata.add("RegisterRedLatOffsetStd", rms3Lat)

            # warp template exposure to match exposure,
            # PSF match template exposure to exposure,
            # then return the difference

            # Return warped template...  Construct sourceKernelCand list after subtract
            self.log.info("Subtracting images")
            subtractRes = self.subtract.subtractExposures(
                templateExposure=templateExposure,
                scienceExposure=exposure,
                candidateList=kernelSources,
                convolveTemplate=self.config.convolveTemplate,
                doWarping=not self.config.doUseRegister)
            subtractedExposure = subtractRes.subtractedExposure

            if self.config.doWriteMatchedExp:
                sensorRef.put(subtractRes.matchedExposure,
                              self.config.coaddName + "Diff_matchedExp")

        if self.config.doDetection:
            self.log.info("Computing diffim PSF")
            if subtractedExposure is None:
                subtractedExposure = sensorRef.get(subtractedExposureName)

            # Get Psf from the appropriate input image if it doesn't exist
            if not subtractedExposure.hasPsf():
                if self.config.convolveTemplate:
                    subtractedExposure.setPsf(exposure.getPsf())
                else:
                    if templateExposure is None:
                        template = self.getTemplate.run(
                            exposure, sensorRef, templateIdList=templateIdList)
                    subtractedExposure.setPsf(template.exposure.getPsf())

        # If doSubtract is False, then subtractedExposure was fetched from disk (above), thus it may have
        # already been decorrelated. Thus, we do not do decorrelation if doSubtract is False.
        if self.config.doDecorrelation and self.config.doSubtract:
            decorrResult = self.decorrelate.run(exposure, templateExposure,
                                                subtractedExposure,
                                                subtractRes.psfMatchingKernel)
            subtractedExposure = decorrResult.correctedExposure

        if self.config.doDetection:
            self.log.info("Running diaSource detection")
            # Erase existing detection mask planes
            mask = subtractedExposure.getMaskedImage().getMask()
            mask &= ~(mask.getPlaneBitMask("DETECTED")
                      | mask.getPlaneBitMask("DETECTED_NEGATIVE"))

            table = afwTable.SourceTable.make(self.schema, idFactory)
            table.setMetadata(self.algMetadata)
            results = self.detection.makeSourceCatalog(
                table=table,
                exposure=subtractedExposure,
                doSmooth=not self.config.doPreConvolve)

            if self.config.doMerge:
                fpSet = results.fpSets.positive
                fpSet.merge(results.fpSets.negative, self.config.growFootprint,
                            self.config.growFootprint, False)
                diaSources = afwTable.SourceCatalog(table)
                fpSet.makeSources(diaSources)
                self.log.info("Merging detections into %d sources" %
                              (len(diaSources)))
            else:
                diaSources = results.sources

            if self.config.doMeasurement:
                self.log.info("Running diaSource measurement")
                if not self.config.doDipoleFitting:
                    self.measurement.run(diaSources, subtractedExposure)
                else:
                    if self.config.doSubtract:
                        self.measurement.run(diaSources, subtractedExposure,
                                             exposure,
                                             subtractRes.matchedExposure)
                    else:
                        self.measurement.run(diaSources, subtractedExposure,
                                             exposure)

            # Match with the calexp sources if possible
            if self.config.doMatchSources:
                if sensorRef.datasetExists("src"):
                    # Create key,val pair where key=diaSourceId and val=sourceId
                    matchRadAsec = self.config.diaSourceMatchRadius
                    matchRadPixel = matchRadAsec / exposure.getWcs(
                    ).pixelScale().asArcseconds()

                    srcMatches = afwTable.matchXy(sensorRef.get("src"),
                                                  diaSources, matchRadPixel)
                    srcMatchDict = dict([(srcMatch.second.getId(),
                                          srcMatch.first.getId())
                                         for srcMatch in srcMatches])
                    self.log.info("Matched %d / %d diaSources to sources" %
                                  (len(srcMatchDict), len(diaSources)))
                else:
                    self.log.warn(
                        "Src product does not exist; cannot match with diaSources"
                    )
                    srcMatchDict = {}

                # Create key,val pair where key=diaSourceId and val=refId
                refAstromConfig = AstrometryConfig()
                refAstromConfig.matcher.maxMatchDistArcSec = matchRadAsec
                refAstrometer = AstrometryTask(refAstromConfig)
                astromRet = refAstrometer.run(exposure=exposure,
                                              sourceCat=diaSources)
                refMatches = astromRet.matches
                if refMatches is None:
                    self.log.warn(
                        "No diaSource matches with reference catalog")
                    refMatchDict = {}
                else:
                    self.log.info(
                        "Matched %d / %d diaSources to reference catalog" %
                        (len(refMatches), len(diaSources)))
                    refMatchDict = dict([(refMatch.second.getId(),
                                          refMatch.first.getId())
                                         for refMatch in refMatches])

                # Assign source Ids
                for diaSource in diaSources:
                    sid = diaSource.getId()
                    if sid in srcMatchDict:
                        diaSource.set("srcMatchId", srcMatchDict[sid])
                    if sid in refMatchDict:
                        diaSource.set("refMatchId", refMatchDict[sid])

            if diaSources is not None and self.config.doWriteSources:
                sensorRef.put(diaSources,
                              self.config.coaddName + "Diff_diaSrc")

            if self.config.doAddMetrics and self.config.doSelectSources:
                self.log.info("Evaluating metrics and control sample")

                kernelCandList = []
                for cell in subtractRes.kernelCellSet.getCellList():
                    for cand in cell.begin(False):  # include bad candidates
                        kernelCandList.append(cand)

                # Get basis list to build control sample kernels
                basisList = kernelCandList[0].getKernel(
                    KernelCandidateF.ORIG).getKernelList()

                controlCandList = \
                    diffimTools.sourceTableToCandidateList(controlSources,
                                                           subtractRes.warpedExposure, exposure,
                                                           self.config.subtract.kernel.active,
                                                           self.config.subtract.kernel.active.detectionConfig,
                                                           self.log, doBuild=True, basisList=basisList)

                kcQa.apply(kernelCandList,
                           subtractRes.psfMatchingKernel,
                           subtractRes.backgroundModel,
                           dof=nparam)
                kcQa.apply(controlCandList, subtractRes.psfMatchingKernel,
                           subtractRes.backgroundModel)

                if self.config.doDetection:
                    kcQa.aggregate(selectSources, self.metadata, allresids,
                                   diaSources)
                else:
                    kcQa.aggregate(selectSources, self.metadata, allresids)

                sensorRef.put(selectSources,
                              self.config.coaddName + "Diff_kernelSrc")

        if self.config.doWriteSubtractedExp:
            sensorRef.put(subtractedExposure, subtractedExposureName)

        self.runDebug(exposure, subtractRes, selectSources, kernelSources,
                      diaSources)
        return pipeBase.Struct(
            subtractedExposure=subtractedExposure,
            subtractRes=subtractRes,
            sources=diaSources,
        )
Ejemplo n.º 42
0
    def setUp(self):
        self.config = ipDiffim.ImagePsfMatchTask.ConfigClass()
        self.config.kernel.name = "AL"
        self.subconfig = self.config.kernel.active

        # Test was put together before the min size went to 21
        self.subconfig.kernelSize = 19

        self.subconfig.scaleByFwhm = False
        self.subconfig.fitForBackground = True
        self.subconfig.spatialModelType = "polynomial"
        self.ps = pexConfig.makePropertySet(self.subconfig)

        self.smi = afwImage.MaskedImageF(
            'tests/compareToHotpants/scienceMI.fits')
        self.tmi = afwImage.MaskedImageF(
            'tests/compareToHotpants/templateMI.fits')
        self.smi.setXY0(0, 0)
        self.tmi.setXY0(0, 0)

        # Run detection
        # detConfig = self.subconfig.detectionConfig
        # Note here regarding detConfig:
        #
        # If I set detThresholdType = "pixel_stdev", I get slightly
        # different centroids than if I use "stdev".  These different
        # centroids screw up the testing since hotpants was hardcoded to
        # use the "stdev" centroids.  For completeness these are:
        #
        # 32 32
        # 96 32
        # 160 32
        # 96 95
        # 31 96
        # 160 96
        # 96 160
        # 160 160
        # 32 160

        # As of Winter2013, KernelCandidateDetectionF does not return
        # these exact centroids anymore, so I need to hardcode them
        # in.
        self.footprints = []
        for xc, yc in [(32, 32), (96, 32), (160, 32), (96, 95), (31, 96),
                       (160, 96), (96, 160), (160, 160), (32, 160)]:
            self.footprints.append(
                afwDet.Footprint(
                    afwGeom.SpanSet(
                        geom.Box2I(geom.Point2I(xc, yc), geom.Extent2I(1,
                                                                       1)))))

        # Make a basis list that hotpants has been run with
        nGauss = 1
        sGauss = [3.]
        dGauss = [3]
        self.subconfig.alardNGauss = nGauss
        self.subconfig.alardSigGauss = sGauss
        self.subconfig.alardDegGauss = dGauss
        basisList0 = ipDiffim.makeKernelBasisList(self.subconfig)

        # HP does things in a different order, and with different normalization, so reorder list
        order = [0, 2, 5, 9, 1, 4, 8, 3, 7, 6]
        scaling = [
            1.000000e+00, 8.866037e-02, 1.218095e+01, 5.099318e-03,
            8.866037e-02, 4.179772e-02, 1.138120e-02, 1.218095e+01,
            1.138120e-02, 5.099318e-03
        ]

        self.basisList = []
        for i in range(len(order)):
            im = afwImage.ImageD(basisList0[order[i]].getDimensions())
            basisList0[order[i]].computeImage(im, False)
            im /= scaling[i]
            # im.writeFits('k%d.fits' % (i))
            k = afwMath.FixedKernel(im)
            self.basisList.append(k)

        # And a place to put candidates
        self.kernelCellSet = afwMath.SpatialCellSet(
            geom.Box2I(
                geom.Point2I(0, 0),
                geom.Extent2I(self.smi.getWidth(), self.smi.getHeight())),
            self.ps["sizeCellX"], self.ps["sizeCellY"])

        # There are some -1 factors that come from differences in how
        # convolution is done.  Some resulting convovled images end up
        # being a factor of -1 different, therefore the coefficients
        # need to be a factor of -1 different as well.
        self.parity = [1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1]
Ejemplo n.º 43
0
    def setUp(self, CFHT=True):
        lambdaValue = 1.0

        self.config1 = ipDiffim.ImagePsfMatchTask.ConfigClass()
        self.config1.kernel.name = "DF"
        self.subconfig1 = self.config1.kernel.active

        self.config2 = ipDiffim.ImagePsfMatchTask.ConfigClass()
        self.config2.kernel.name = "DF"
        self.subconfig2 = self.config2.kernel.active

        self.config3 = ipDiffim.ImagePsfMatchTask.ConfigClass()
        self.config3.kernel.name = "DF"
        self.subconfig3 = self.config3.kernel.active

        self.config4 = ipDiffim.ImagePsfMatchTask.ConfigClass()
        self.config4.kernel.name = "DF"
        self.subconfig4 = self.config4.kernel.active

        self.subconfig1.useRegularization = False

        self.subconfig2.useRegularization = True
        self.subconfig2.lambdaType = "absolute"
        self.subconfig2.lambdaValue = lambdaValue
        self.subconfig2.regularizationType = "centralDifference"
        self.subconfig2.centralRegularizationStencil = 5

        self.subconfig3.useRegularization = True
        self.subconfig3.lambdaType = "absolute"
        self.subconfig3.lambdaValue = lambdaValue
        self.subconfig3.regularizationType = "centralDifference"
        self.subconfig3.centralRegularizationStencil = 9

        self.subconfig4.useRegularization = True
        self.subconfig4.lambdaType = "absolute"
        self.subconfig4.lambdaValue = lambdaValue
        self.subconfig4.regularizationType = "forwardDifference"
        self.subconfig4.forwardRegularizationOrders = [1, 2]

        self.kList1 = ipDiffim.makeKernelBasisList(self.subconfig1)
        self.bskv1 = ipDiffim.BuildSingleKernelVisitorF(
            self.kList1, pexConfig.makePropertySet(self.subconfig1))

        self.kList2 = ipDiffim.makeKernelBasisList(self.subconfig2)
        self.hMat2 = ipDiffim.makeRegularizationMatrix(
            pexConfig.makePropertySet(self.subconfig2))
        self.bskv2 = ipDiffim.BuildSingleKernelVisitorF(
            self.kList2, pexConfig.makePropertySet(self.subconfig2),
            self.hMat2)

        self.kList3 = ipDiffim.makeKernelBasisList(self.subconfig3)
        self.hMat3 = ipDiffim.makeRegularizationMatrix(
            pexConfig.makePropertySet(self.subconfig3))
        self.bskv3 = ipDiffim.BuildSingleKernelVisitorF(
            self.kList3, pexConfig.makePropertySet(self.subconfig3),
            self.hMat3)

        self.kList4 = ipDiffim.makeKernelBasisList(self.subconfig4)
        self.hMat4 = ipDiffim.makeRegularizationMatrix(
            pexConfig.makePropertySet(self.subconfig4))
        self.bskv4 = ipDiffim.BuildSingleKernelVisitorF(
            self.kList4, pexConfig.makePropertySet(self.subconfig4),
            self.hMat4)

        # known input images
        defDataDir = lsst.utils.getPackageDir('afwdata')
        if CFHT:
            defSciencePath = os.path.join(defDataDir, 'CFHT', 'D4',
                                          CFHTTORUN + '.fits')
            defTemplatePath = os.path.join(defDataDir, 'CFHT', 'D4',
                                           CFHTTORUN + '_tmpl.fits')

            # no need to remap
            self.scienceExposure = afwImage.ExposureF(defSciencePath)
            self.templateExposure = afwImage.ExposureF(defTemplatePath)
        else:
            defSciencePath = os.path.join(defDataDir, "DC3a-Sim", "sci",
                                          "v26-e0", "v26-e0-c011-a00.sci")
            defTemplatePath = os.path.join(defDataDir, "DC3a-Sim", "sci",
                                           "v5-e0", "v5-e0-c011-a00.sci")

            self.scienceExposure = afwImage.ExposureF(defSciencePath)
            self.templateExposure = afwImage.ExposureF(defTemplatePath)
            warper = afwMath.Warper.fromConfig(self.subconfig1.warpingConfig)
            self.templateExposure = warper.warpExposure(
                self.scienceExposure.getWcs(),
                self.templateExposure,
                destBBox=self.scienceExposure.getBBox())

        diffimTools.backgroundSubtract(self.subconfig1.afwBackgroundConfig, [
            self.scienceExposure.getMaskedImage(),
            self.templateExposure.getMaskedImage()
        ])

        #
        tmi = self.templateExposure.getMaskedImage()
        smi = self.scienceExposure.getMaskedImage()

        detConfig = self.subconfig1.detectionConfig
        detps = pexConfig.makePropertySet(detConfig)
        detps["detThreshold"] = 50.
        detps["detOnTemplate"] = False
        kcDetect = ipDiffim.KernelCandidateDetectionF(detps)
        kcDetect.apply(tmi, smi)
        self.footprints = kcDetect.getFootprints()
    def testSourceConstructor(self):
        source = self.ss.addNew()
        source.setId(1)
        source.set(self.table.getCentroidKey().getX(), 276)
        source.set(self.table.getCentroidKey().getY(), 717)
        source.set("slot_PsfFlux_instFlux", 1.)

        kc = ipDiffim.KernelCandidateF(source,
                                       self.templateExposure2.getMaskedImage(),
                                       self.scienceImage2.getMaskedImage(),
                                       self.policy)

        # Kernel not initialized
        self.assertEqual(kc.isInitialized(), False)

        # Check that the source is set
        self.assertEqual(kc.getSource(), source)
        self.assertEqual(kc.getCandidateRating(), source.getPsfInstFlux())

        # But this should be set on construction
        try:
            kc.getCandidateRating()
        except Exception as e:
            print(e)
            self.fail()

        # And these should be filled
        try:
            kc.getTemplateMaskedImage()
            kc.getScienceMaskedImage()
        except Exception as e:
            print(e)
            self.fail()

        # And of the right type
        self.assertEqual(type(kc.getTemplateMaskedImage()), afwImage.MaskedImageF)
        self.assertEqual(type(kc.getScienceMaskedImage()), afwImage.MaskedImageF)

        # None of these should work
        for kType in (ipDiffim.KernelCandidateF.ORIG,
                      ipDiffim.KernelCandidateF.PCA,
                      ipDiffim.KernelCandidateF.RECENT):
            for kMethod in (kc.getKernelSolution,
                            kc.getKernel,
                            kc.getBackground,
                            kc.getKsum,
                            kc.getKernelImage,
                            kc.getDifferenceImage):
                try:
                    kMethod(kType)
                except Exception:
                    pass
                else:
                    self.fail()
        try:
            kc.getImage()
        except Exception:
            pass
        else:
            self.fail()

        kList = ipDiffim.makeKernelBasisList(self.subconfig)

        kc.build(kList)
        self.assertEqual(kc.isInitialized(), True)
    fnum = 1

    for switch in ['A', 'B', 'C']:
        if switch == 'A':
            # AL
            config = subconfigAL
        elif switch == 'B':
            # AL with ~320 bases
            config = subconfigAL
            config.alardDegGauss = (15, 10, 5)
        elif switch == 'C':
            config = subconfigDF
            config.useRegularization = False

        kList = ipDiffim.makeKernelBasisList(config)

        policy = pexConfig.makePolicy(config)
        bskv = ipDiffim.BuildSingleKernelVisitorF(kList, policy)

        # TEST 1
        tmi, smi = makeTest1(doAddNoise)
        kc = ipDiffim.makeKernelCandidate(0.0, 0.0, tmi, smi, policy)
        bskv.processCandidate(kc)

        kernel = kc.getKernel(ipDiffim.KernelCandidateF.ORIG)
        kimage = afwImage.ImageD(kernel.getDimensions())
        kernel.computeImage(kimage, False)
        diffim = kc.getDifferenceImage(ipDiffim.KernelCandidateF.ORIG)

        afwDisplay.Display(frame=fnum).mtv(tmi)
    fnum = 1

    for switch in ['A', 'B', 'C']:
        if switch == 'A':
            # Default Alard Lupton
            config = subconfigAL
        elif switch == 'B':
            # Add more AL bases (typically 4 3 2)
            config = subconfigAL
            config.alardDegGauss = (8, 6, 4)
        elif switch == 'C':
            # Delta function
            config = subconfigDF
            config.useRegularization = False

        kList = ipDiffim.makeKernelBasisList(config)

        policy = pexConfig.makePolicy(config)
        bskv = ipDiffim.BuildSingleKernelVisitorF(kList, policy)

        # TEST 1
        tmi, smi = makeTest1(doAddNoise)
        kc = ipDiffim.makeKernelCandidate(0.0, 0.0, tmi, smi, policy)
        bskv.processCandidate(kc)

        kernel = kc.getKernel(ipDiffim.KernelCandidateF.ORIG)
        kimage = afwImage.ImageD(kernel.getDimensions())
        kernel.computeImage(kimage, False)
        diffim = kc.getDifferenceImage(ipDiffim.KernelCandidateF.ORIG)

        ds9.mtv(tmi, frame=fnum)
Ejemplo n.º 47
0
    def testMakeKernelBasisList(self):
        ks = ipDiffim.makeKernelBasisList(self.subconfigAL)
        self.alardLuptonTest(ks)

        ks = ipDiffim.makeKernelBasisList(self.subconfigDF)
        self.deltaFunctionTest(ks)
    def setUp(self, CFHT=True):
        lambdaValue = 1.0

        self.config1 = ipDiffim.ImagePsfMatchTask.ConfigClass()
        self.config1.kernel.name = "DF"
        self.subconfig1 = self.config1.kernel.active

        self.config2 = ipDiffim.ImagePsfMatchTask.ConfigClass()
        self.config2.kernel.name = "DF"
        self.subconfig2 = self.config2.kernel.active

        self.config3 = ipDiffim.ImagePsfMatchTask.ConfigClass()
        self.config3.kernel.name = "DF"
        self.subconfig3 = self.config3.kernel.active

        self.config4 = ipDiffim.ImagePsfMatchTask.ConfigClass()
        self.config4.kernel.name = "DF"
        self.subconfig4 = self.config4.kernel.active

        self.subconfig1.useRegularization = False

        self.subconfig2.useRegularization = True
        self.subconfig2.lambdaType = "absolute"
        self.subconfig2.lambdaValue = lambdaValue
        self.subconfig2.regularizationType = "centralDifference"
        self.subconfig2.centralRegularizationStencil = 5

        self.subconfig3.useRegularization = True
        self.subconfig3.lambdaType = "absolute"
        self.subconfig3.lambdaValue = lambdaValue
        self.subconfig3.regularizationType = "centralDifference"
        self.subconfig3.centralRegularizationStencil = 9

        self.subconfig4.useRegularization = True
        self.subconfig4.lambdaType = "absolute"
        self.subconfig4.lambdaValue = lambdaValue
        self.subconfig4.regularizationType = "forwardDifference"
        self.subconfig4.forwardRegularizationOrders = [1, 2]

        self.kList1 = ipDiffim.makeKernelBasisList(self.subconfig1)
        self.bskv1 = ipDiffim.BuildSingleKernelVisitorF(self.kList1, pexConfig.makePolicy(self.subconfig1))

        self.kList2 = ipDiffim.makeKernelBasisList(self.subconfig2)
        self.hMat2 = ipDiffim.makeRegularizationMatrix(pexConfig.makePolicy(self.subconfig2))
        self.bskv2 = ipDiffim.BuildSingleKernelVisitorF(self.kList2,
                                                        pexConfig.makePolicy(self.subconfig2), self.hMat2)

        self.kList3 = ipDiffim.makeKernelBasisList(self.subconfig3)
        self.hMat3 = ipDiffim.makeRegularizationMatrix(pexConfig.makePolicy(self.subconfig3))
        self.bskv3 = ipDiffim.BuildSingleKernelVisitorF(self.kList3,
                                                        pexConfig.makePolicy(self.subconfig3), self.hMat3)

        self.kList4 = ipDiffim.makeKernelBasisList(self.subconfig4)
        self.hMat4 = ipDiffim.makeRegularizationMatrix(pexConfig.makePolicy(self.subconfig4))
        self.bskv4 = ipDiffim.BuildSingleKernelVisitorF(self.kList4,
                                                        pexConfig.makePolicy(self.subconfig4), self.hMat4)

        # known input images
        defDataDir = lsst.utils.getPackageDir('afwdata')
        if CFHT:
            defSciencePath = os.path.join(defDataDir, 'CFHT', 'D4', CFHTTORUN+'.fits')
            defTemplatePath = os.path.join(defDataDir, 'CFHT', 'D4', CFHTTORUN+'_tmpl.fits')

            # no need to remap
            self.scienceExposure = afwImage.ExposureF(defSciencePath)
            self.templateExposure = afwImage.ExposureF(defTemplatePath)
        else:
            defSciencePath = os.path.join(defDataDir, "DC3a-Sim", "sci", "v26-e0",
                                          "v26-e0-c011-a00.sci")
            defTemplatePath = os.path.join(defDataDir, "DC3a-Sim", "sci", "v5-e0",
                                           "v5-e0-c011-a00.sci")

            self.scienceExposure = afwImage.ExposureF(defSciencePath)
            self.templateExposure = afwImage.ExposureF(defTemplatePath)
            warper = afwMath.Warper.fromConfig(self.subconfig1.warpingConfig)
            self.templateExposure = warper.warpExposure(self.scienceExposure.getWcs(), self.templateExposure,
                                                        destBBox=self.scienceExposure.getBBox())

        diffimTools.backgroundSubtract(self.subconfig1.afwBackgroundConfig,
                                       [self.scienceExposure.getMaskedImage(),
                                        self.templateExposure.getMaskedImage()])

        #
        tmi = self.templateExposure.getMaskedImage()
        smi = self.scienceExposure.getMaskedImage()

        detConfig = self.subconfig1.detectionConfig
        detPolicy = pexConfig.makePolicy(detConfig)
        detPolicy.set("detThreshold", 50.)
        detPolicy.set("detOnTemplate", False)
        kcDetect = ipDiffim.KernelCandidateDetectionF(detPolicy)
        kcDetect.apply(tmi, smi)
        self.footprints = kcDetect.getFootprints()