Ejemplo n.º 1
0
    def testEBV(self):

        ebvObject = EBVbase()
        ra = []
        dec = []
        gLat = []
        gLon = []
        for i in range(10):
            ra.append(i * 2.0 * np.pi / 10.0)
            dec.append(i * np.pi / 10.0)

            gLat.append(-0.5 * np.pi + i * np.pi / 10.0)
            gLon.append(i * 2.0 * np.pi / 10.0)

            equatorialCoordinates = np.array([ra, dec])
            galacticCoordinates = np.array([gLon, gLat])

        ebvOutput = ebvObject.calculateEbv(
            equatorialCoordinates=equatorialCoordinates)
        self.assertEqual(len(ebvOutput), len(ra))

        ebvOutput = ebvObject.calculateEbv(
            galacticCoordinates=galacticCoordinates)
        self.assertEqual(len(ebvOutput), len(gLon))
        self.assertGreater(len(ebvOutput), 0)

        self.assertRaises(RuntimeError,
                          ebvObject.calculateEbv,
                          equatorialCoordinates=equatorialCoordinates,
                          galacticCoordinates=galacticCoordinates)
        self.assertRaises(RuntimeError,
                          ebvObject.calculateEbv,
                          equatorialCoordinates=None,
                          galacticCoordinates=None)
        self.assertRaises(RuntimeError, ebvObject.calculateEbv)
Ejemplo n.º 2
0
    def testEBV(self):

        ebvObject = EBVbase()
        ra = []
        dec = []
        gLat = []
        gLon = []
        for i in range(10):
            ra.append(i*2.0*np.pi/10.0)
            dec.append(i*np.pi/10.0)

            gLat.append(-0.5*np.pi+i*np.pi/10.0)
            gLon.append(i*2.0*np.pi/10.0)

            equatorialCoordinates = np.array([ra, dec])
            galacticCoordinates = np.array([gLon, gLat])

        ebvOutput = ebvObject.calculateEbv(equatorialCoordinates=equatorialCoordinates)
        self.assertEqual(len(ebvOutput), len(ra))

        ebvOutput = ebvObject.calculateEbv(galacticCoordinates=galacticCoordinates)
        self.assertEqual(len(ebvOutput), len(gLon))
        self.assertGreater(len(ebvOutput), 0)

        self.assertRaises(RuntimeError, ebvObject.calculateEbv, equatorialCoordinates=equatorialCoordinates,
                          galacticCoordinates=galacticCoordinates)
        self.assertRaises(RuntimeError, ebvObject.calculateEbv,
                          equatorialCoordinates=None, galacticCoordinates=None)
        self.assertRaises(RuntimeError, ebvObject.calculateEbv)
Ejemplo n.º 3
0
    def __init__(self, ra=None, dec=None, source='salt2-extended'):
        """
        Instantiate object

        Parameters
        ----------
        ra : float
            ra of the SN in degrees
        dec : float
            dec of the SN in degrees

        source : instance of `sncosmo.SALT2Source`, optional, defaults to using salt2-extended 
            source class to define the model
        """

        dust = sncosmo.CCM89Dust()
        sncosmo.Model.__init__(self, source=source, effects=[dust, dust],
                               effect_names=['host', 'mw'],
                               effect_frames=['rest', 'obs'])

        # Current implementation of Model has a default value of mwebv = 0.
        # ie. no extinction, but this is not part of the API, so should not
        # depend on it, set explicitly in order to unextincted SED from
        # SNCosmo. We will use catsim extinction from `lsst.sims.photUtils`.

        self.ModelSource = source
        self.set(mwebv=0.)

        # self._ra, self._dec is initialized as None for cases where ra, dec
        # is not provided
        self._ra = None
        self._dec = None

        # ra, dec is input in degrees
        # If provided, set _ra, _dec in radians
        self._hascoords = True
        if dec is None:
            self._hascoords = False
        if ra is None:
            self._hascoords = False

        # Satisfied that coordinates provided are floats
        if self._hascoords:
            self.setCoords(ra, dec)

        # For values of ra, dec, the E(B-V) is calculated directly
        # from DustMaps
        self.lsstmwebv = EBVbase()
        self.ebvofMW = None
        if self._hascoords:
            self.mwEBVfromMaps()


        # Behavior of model outside temporal range :
        # if 'zero' then all fluxes outside the temporal range of the model
        # are set to 0.
        self._modelOutSideTemporalRange = 'zero'
        
        # SED will be rectified to 0. for negative values of SED if this
        # attribute is set to True
        self.rectifySED = True
        return
Ejemplo n.º 4
0
class SNObject(sncosmo.Model):

    """
    Extension of the SNCosmo `TimeSeriesModel` to include more parameters and
    use methods in the catsim stack. We constrain ourselves to the use of a
    specific SALT model for the Supernova (Salt2-Extended), and set its MW
    extinction to be 0, since we will use the LSST software to calculate
    extinction.

    Parameters
    ----------
    ra : float
         ra of the SN in degrees
    dec : float
        dec of the SN in degrees


    Attributes
    ----------
    _ra : float or None
        ra of the SN in radians

    _dec : float or None
        dec of the SN in radians

    skycoord : `np.ndarray' of size 2 or None
        np.array([[ra], [dec]]), which are in radians

    ebvofMW : float or None
        mwebv value calculated from the self.skycoord if not None, or set to
        a value using self.set_MWebv. If neither of these are done, this value
        will be None, leading to exceptions in extinction calculation.
        Therefore, the value must be set explicitly to 0. to get unextincted
        quantities.
    rectifySED : Bool, True by Default
        if the SED is negative at the requested time and wavelength, return 0.
        instead of the negative value.


    Methods
    -------

    Examples
    --------
    >>> SNObject  = SNObject(ra=30., dec=60.)
    >>> SNObject._ra
    >>> 0.5235987755982988
    >>> SNObject._dec
    >>> 1.0471975511965976
    """

    def __init__(self, ra=None, dec=None, source='salt2-extended'):
        """
        Instantiate object

        Parameters
        ----------
        ra : float
            ra of the SN in degrees
        dec : float
            dec of the SN in degrees

        source : instance of `sncosmo.SALT2Source`, optional, defaults to using salt2-extended 
            source class to define the model
        """

        dust = sncosmo.CCM89Dust()
        sncosmo.Model.__init__(self, source=source, effects=[dust, dust],
                               effect_names=['host', 'mw'],
                               effect_frames=['rest', 'obs'])

        # Current implementation of Model has a default value of mwebv = 0.
        # ie. no extinction, but this is not part of the API, so should not
        # depend on it, set explicitly in order to unextincted SED from
        # SNCosmo. We will use catsim extinction from `lsst.sims.photUtils`.

        self.ModelSource = source
        self.set(mwebv=0.)

        # self._ra, self._dec is initialized as None for cases where ra, dec
        # is not provided
        self._ra = None
        self._dec = None

        # ra, dec is input in degrees
        # If provided, set _ra, _dec in radians
        self._hascoords = True
        if dec is None:
            self._hascoords = False
        if ra is None:
            self._hascoords = False

        # Satisfied that coordinates provided are floats
        if self._hascoords:
            self.setCoords(ra, dec)

        # For values of ra, dec, the E(B-V) is calculated directly
        # from DustMaps
        self.lsstmwebv = EBVbase()
        self.ebvofMW = None
        if self._hascoords:
            self.mwEBVfromMaps()


        # Behavior of model outside temporal range :
        # if 'zero' then all fluxes outside the temporal range of the model
        # are set to 0.
        self._modelOutSideTemporalRange = 'zero'
        
        # SED will be rectified to 0. for negative values of SED if this
        # attribute is set to True
        self.rectifySED = True
        return

    @property
    def SNstate(self):
        """
        Dictionary summarizing the state of SNObject. Can be used to
        serialize to disk, and create SNObject from SNstate

        Returns : Dictionary with values of parameters of the model.
        """
        statedict = dict()

        # SNCosmo Parameters
        statedict['ModelSource'] = self.source.name
        for param_name in self.param_names:
            statedict[param_name] = self.get(param_name)

        # New Attributes
        # statedict['lsstmwebv'] = self.lsstmwebv
        statedict['_ra'] = self._ra
        statedict['_dec'] = self._dec
        statedict['MWE(B-V)'] = self.ebvofMW

        return statedict

    @classmethod
    def fromSNState(cls, snState):
        """
        creates an instance of SNObject with a state described by snstate.

        Parameters
        ----------
        snState: Dictionary summarizing the state of SNObject

        Returns
        -------
        Instance of SNObject class with attributes set by snstate

        Example
        -------

        """
        # Separate into SNCosmo parameters and SNObject parameters
        dust = sncosmo.CCM89Dust()
        sncosmoModel = sncosmo.Model(source=snState['ModelSource'],
                                     effects=[dust, dust],
                                     effect_names=['host', 'mw'],
                                     effect_frames=['rest', 'obs'])

        sncosmoParams = cls.sncosmoParamDict(snState, sncosmoModel)

        # Now create the class
        cls = SNObject(source=snState['ModelSource'])

        # Set the SNObject coordinate properties
        # Have to be careful to not convert `None` type objects to degrees
        setdec, setra = False, False
        if snState['_ra'] is not None:
            ra = np.degrees(snState['_ra'])
            setra = True
        if snState['_dec'] is not None:
            dec = np.degrees(snState['_dec'])
            setdec = True
        if setdec and setra:
            cls.setCoords(ra, dec)

        # Set the SNcosmo parameters
        cls.set(**sncosmoParams)

        # Set the ebvofMW by hand
        cls.ebvofMW = snState['MWE(B-V)']

        return cls

    @property
    def modelOutSideTemporalRange(self):
        """
        Defines the behavior of the model when sampled at times beyond the model
        definition.
        """
        return self._modelOutSideTemporalRange

    @modelOutSideTemporalRange.setter
    def modelOutSideTemporalRange(self, value):
        if value != 'zero':
            raise ValueError('Model not implemented, defaulting to zero method\n')
        return self._modelOutSideTemporalRange


    def equivalentSNCosmoModel(self):
        """
        returns an SNCosmo Model which is equivalent to SNObject
        """
        snState = self.SNstate
        dust = sncosmo.CCM89Dust()
        sncosmoModel = sncosmo.Model(source=snState['ModelSource'],
                                     effects=[dust, dust],
                                     effect_names=['host', 'mw'],
                                     effect_frames=['rest', 'obs'])

        sncosmoParams = self.sncosmoParamDict(snState, sncosmoModel)
        sncosmoParams['mwebv'] = snState['MWE(B-V)']
        sncosmoModel.set(**sncosmoParams)
        return sncosmoModel


    @staticmethod
    def equivsncosmoParamDict(SNstate, SNCosmoModel):
        """
        return a dictionary that contains the parameters of SNCosmoModel
        that are contained in SNstate

        Parameters
        ----------
        SNstate : `SNObject.SNstate`, mandatory
            Dictionary defining the state of a SNObject
        SNCosmoModel : A `sncosmo.Model` instance, mandatory

        Returns
        -------
        sncosmoParams: Dictionary of sncosmo parameters

        """
        sncosmoParams = dict()
        for param in SNstate:
            if param in SNCosmoModel.param_names:
                sncosmoParams[param] = SNstate[param]
        sncosmoParams['mwebv'] = SNstate['MWE(B-V)']
        return sncosmoParams

    @staticmethod
    def sncosmoParamDict(SNstate, SNCosmoModel):
        """
        return a dictionary that contains the parameters of SNCosmoModel
        that are contained in SNstate. Note that this does not return the
        equivalent SNCosmo  model.

        Parameters
        ----------
        SNstate : `SNObject.SNstate`, mandatory
            Dictionary defining the state of a SNObject
        SNCosmoModel : A `sncosmo.Model` instance, mandatory

        Returns
        -------
        sncosmoParams: Dictionary of sncosmo parameters

        """
        sncosmoParams = dict()
        for param in SNstate:
            if param in SNCosmoModel.param_names:
                sncosmoParams[param] = SNstate[param]
        return sncosmoParams



    def summary(self):
        '''
        summarizes the current state of the SNObject class in a returned
        string.

        Parameters
        ----------
        None

        Returns
        -------
        Summary State in string format

        Examples
        --------
        >>> t = SNObject()
        >>> print t.summary()
        '''
        state = '  SNObject Summary      \n'

        state += 'Model = ' + '\n'
        state += 'z = ' + str(self.get('z')) + '\n'
        state += 'c = ' + str(self.get('c')) + '\n'
        state += 'x1 = ' + str(self.get('x1')) + '\n'
        state += 'x0 = ' + str(self.get('x0')) + '\n'
        state += 't0 = ' + str(self.get('t0')) + '\n'
        state += 'ra = ' + str(self._ra) + ' in radians \n'
        state += 'dec = ' + str(self._dec) + ' in radians \n'
        state += 'MW E(B-V) = ' + str(self.ebvofMW) + '\n'

        return state

    def setCoords(self, ra, dec):
        """
        set the ra and dec coordinate of SNObject to values in radians
        corresponding to the given values in degrees

        Parameters
        ----------
        ra: float, mandatory
            the ra in degrees
        dec: float, mandatory
            dec in degrees

        Returns
        -------
        None

        Examples
        --------
        >>> t = SNObject()
        >>> t.setCoords(ra=30., dec=90.)
        >>> t._ra
        >>> 0.5235987755982988
        >>> t._dec
        >>> 1.0471975511965976
        """

        if ra is None or dec is None:
            raise ValueError('Why try to set coordinates without full'
                             'coordiantes?\n')
        self._ra = np.radians(ra)
        self._dec = np.radians(dec)
        self.skycoord = np.array([[self._ra], [self._dec]])

        self._hascoords = True

        return

    def set_MWebv(self, value):
        """
        if mwebv value is known, this can be used to set the attribute
        ebvofMW of the SNObject class to the value (float).

        Parameters
        ----------
        value: float, mandatory
               value of mw extinction parameter E(B-V) in mags to be used in
               applying extinction to the SNObject spectrum

        Returns
        -------
        None

        Examples
        --------
        >>> t = SNObject()
        >>> t.set_MWebv(0.)
        >>> 0.
        """
        self.ebvofMW = value
        return

    def mwEBVfromMaps(self):
        """
        set the attribute ebvofMW of the class from the ra and dec
        of the SN. If the ra or dec attribute of the class is None,
        set this attribute to None.

        Parameters
        ----------
        None

        Returns
        -------
        None

        Examples
        --------
        >>> t = SNObject()
        >>> t.setCoords(ra=30., dec=60.)
        >>> t.mwEBVfromMaps()
        >>> t.ebvofMW
        >>> 0.977767825127

        .. note:: This function must be run after the class has attributes ra
                  and dec set. In case it is run before this, the mwebv value
                  will be set to None.

        """

        if not self._hascoords:
            raise ValueError('Cannot Calculate EBV from dust maps if ra or dec'
                             'is `None`')
        self.ebvofMW = self.lsstmwebv.calculateEbv(
            equatorialCoordinates=self.skycoord)[0]
        return


    def redshift(self, z, cosmo):
        """
        Redshift the instance holding the intrinsic brightness of the object
        fixed. By intrinsic brightness here, we mean the BessellB band asbolute
        magnitude in rest frame. This requires knowing the cosmology


        Parameters
        ----------
        z : float, mandatory
            redshift at which the object must be placed.
        cosmo : instance of `astropy.cosmology` objects, mandatory
            specifies the cosmology.
        Returns
        -------
        None, but it changes the instance

        """
        import numbers

        # Check that the input redshift is a scalar
        try:
            assert isinstance(z, numbers.Number)
        except:
            raise TypeError('The argument z in method redshift should be'
                            'a scalar Numeric')

        # Ensure that the input redshift is greater than 0.
        try:
            assert z > 0.
        except:
            raise ValueError('The argument z in the method SNObject.redshift'
                             'should be greater than 0.')

        # Find the current value of the rest frame BessellB AB magnitude
        peakAbsMag = self.source_peakabsmag('BessellB', 'AB', cosmo=cosmo)
        self.set(z=z)
        self.set_source_peakabsmag(peakAbsMag, 'BessellB', 'AB', cosmo=cosmo)
        return

    def SNObjectSED(self, time, wavelen=None, bandpass=None,
                    applyExtinction=True):
        '''
        return a `lsst.sims.photUtils.sed` object from the SN model at the
        requested time and wavelengths with or without extinction from MW
        according to the SED extinction methods. The wavelengths may be
        obtained from a `lsst.sims.Bandpass` object or a `lsst.sims.BandpassDict`
        object instead. (Currently, these have the same wavelengths). See notes
        for details on handling of exceptions.

        If the sed is requested at times outside the validity range of the
        model, the flux density is returned as 0. If the time is within the
        range of validity of the model, but the wavelength range requested
        is outside the range, then the returned fluxes are np.nan outside
        the range, and the model fluxes inside

        Parameters
        ----------
        time: float
            time of observation
        wavelen: `np.ndarray` of floats, optional, defaults to None
            array containing wavelengths in nm
        bandpass: `lsst.sims.photUtils.Bandpass` object or
            `lsst.sims.photUtils.BandpassDict`, optional, defaults to `None`.
            Using the dict assumes that the wavelength sampling and range
            is the same for all elements of the dict.

            if provided, overrides wavelen input and the SED is
            obtained at the wavelength values native to bandpass
            object.


        Returns
        -------
        `sims_photutils.sed` object containing the wavelengths and SED
        values from the SN at time time in units of ergs/cm^2/sec/nm


        .. note: If both wavelen and bandpassobject are `None` then exception,
                 will be raised.
        Examples
        --------
        >>> sed = SN.SNObjectSED(time=0., wavelen=wavenm)
        '''

        if wavelen is None and bandpass is None:
            raise ValueError('A non None input to either wavelen or\
                              bandpassobject must be provided')

        # if bandpassobject present, it overrides wavelen
        if bandpass is not None:
            if isinstance(bandpass, BandpassDict):
                firstfilter = bandpass.keys()[0]
                bp = bandpass[firstfilter]
            else:
                bp = bandpass
            # remember this is in nm
            wavelen = bp.wavelen

        flambda = np.zeros(len(wavelen))


        # self.mintime() and self.maxtime() are properties describing
        # the ranges of SNCosmo.Model in time. Behavior beyond this is 
        # determined by self.modelOutSideTemporalRange
        if (time >= self.mintime()) and (time <= self.maxtime()):
            # If SNCosmo is requested a SED value beyond the wavelength range
            # of model it will crash. Try to prevent that by returning np.nan for
            # such wavelengths. This will still not help band flux calculations
            # but helps us get past this stage.

            flambda = flambda * np.nan

            # Convert to Ang
            wave = wavelen * 10.0
            mask1 = wave >= self.minwave()
            mask2 = wave <= self.maxwave()
            mask = mask1 & mask2
            wave = wave[mask]

            # flux density dE/dlambda returned from SNCosmo in
            # ergs/cm^2/sec/Ang, convert to ergs/cm^2/sec/nm

            flambda[mask] = self.flux(time=time, wave=wave)
            flambda[mask] = flambda[mask] * 10.0
        else:
            # use prescription for modelOutSideTemporalRange
            if self.modelOutSideTemporalRange != 'zero':
                raise NotImplementedError('Model not implemented, change to zero\n')
                # Else Do nothing as flambda is already 0.
                # This takes precedence over being outside wavelength range
                
        if self.rectifySED:
            # Note that this converts nans into 0.
            flambda = np.where(flambda > 0., flambda, 0.)
        SEDfromSNcosmo = Sed(wavelen=wavelen, flambda=flambda)

        if not applyExtinction:
            return SEDfromSNcosmo

        # Apply LSST extinction
        global _sn_ax_cache
        global _sn_bx_cache
        global _sn_ax_bx_wavelen
        if _sn_ax_bx_wavelen is None \
        or len(wavelen)!=len(_sn_ax_bx_wavelen) \
        or (wavelen!=_sn_ax_bx_wavelen).any():

            ax, bx = SEDfromSNcosmo.setupCCM_ab()
            _sn_ax_cache = ax
            _sn_bx_cache = bx
            _sn_ax_bx_wavelen = np.copy(wavelen)
        else:
            ax = _sn_ax_cache
            bx = _sn_bx_cache

        if self.ebvofMW is None:
            raise ValueError('ebvofMW attribute cannot be None Type and must'
                             ' be set by hand using set_MWebv before this'
                             'stage, or by using setcoords followed by'
                             'mwEBVfromMaps\n')

        SEDfromSNcosmo.addDust(a_x=ax, b_x=bx, ebv=self.ebvofMW)
        return SEDfromSNcosmo

    def SNObjectSourceSED(self, time, wavelen=None):
        """
        Return the rest Frame SED of SNObject at the phase corresponding to
        time, at rest frame wavelengths wavelen. If wavelen is None,
        then the SED is sampled at the rest frame wavelengths native to the
        SALT model being used.

        Parameters
        ----------
        time : float, mandatory,
            observer frame time at which the SED has been requested in units
            of days.
        wavelen : `np.ndarray`, optional, defaults to native SALT wavelengths
            array of wavelengths in the rest frame of the supernova in units
            of nm. If None, this defaults to the wavelengths at which the
            SALT model is sampled natively.
        Returns
        -------
        `numpy.ndarray` of dtype float.

        .. note: The result should usually match the SALT source spectrum.
        However, it may be different for the following reasons:
        1. If the time of observation is outside the model range, the values
            have to be inserted using additional models. Here only one model
            is currently implemented, where outside the model range the value
            is set to 0.
        2. If the wavelengths are beyond the range of the SALT model, the SED
            flambda values are set to `np.nan` and these are actually set to 0.
            if `self.rectifySED = True`
        3. If the `flambda` values of the SALT model are negative which happens
            in the less sampled phases of the model, these values are set to 0,
            if `self.rectifySED` = True.  (Note: if `self.rectifySED` = True, then
            care will be taken to make sure that the flux at 500nm is not exactly
            zero, since that will cause PhoSim normalization of the SED to be
            NaN).
        """
        phase = (time - self.get('t0')) / (1. + self.get('z'))
        source = self.source

        # Set the default value of wavelength  input
        if wavelen is None:
            # use native SALT grid in Ang
            wavelen = source._wave
        else:
            #input wavelen in nm, convert to Ang
            wavelen = wavelen.copy()
            wavelen *= 10.0

        flambda = np.zeros(len(wavelen))
        # self.mintime() and self.maxtime() are properties describing
        # the ranges of SNCosmo.Model in time. Behavior beyond this is 
        # determined by self.modelOutSideTemporalRange
        insidephaseRange = (phase <= source.maxphase())and(phase >= source.minphase())
        if insidephaseRange:
            # If SNCosmo is requested a SED value beyond the wavelength range
            # of model it will crash. Try to prevent that by returning np.nan for
            # such wavelengths. This will still not help band flux calculations
            # but helps us get past this stage.

            flambda = flambda * np.nan

            mask1 = wavelen >= source.minwave()
            mask2 = wavelen <= source.maxwave()
            mask = mask1 & mask2
            # Where we have to calculate fluxes because it is not `np.nan`
            wave = wavelen[mask]
            flambda[mask] = source.flux(phase, wave)
        else:
            if self.modelOutSideTemporalRange == 'zero':
                # flambda was initialized as np.zeros before start of
                # conditional
                pass
            else:
                raise NotImplementedError('Only modelOutSideTemporalRange=="zero" implemented')


        # rectify the flux
        if self.rectifySED:
            flux = np.where(flambda>0., flambda, 0.)
        else:
            flux = flambda


        # convert per Ang to per nm
        flux *= 10.0
        # convert ang to nm
        wavelen = wavelen / 10.

        # If there is zero flux at 500nm, set
        # the flux in the slot closest to 500nm
        # equal to 0.01*minimum_non_zero_flux
        # (this is so SEDs used in PhoSim can have
        # finite normalization)
        if self.rectifySED:
            closest_to_500nm = np.argmin(np.abs(wavelen-500.0))
            if flux[closest_to_500nm] == 0.0:
                non_zero_flux = np.where(flux>0.0)
                if len(non_zero_flux[0])>0:
                    min_non_zero = np.min(flux[non_zero_flux])
                    flux[closest_to_500nm] = 0.01*min_non_zero

        sed = Sed(wavelen=wavelen, flambda=flux)
        # This has the cosmology built in.
        return sed

    def catsimBandFlux(self, time, bandpassobject):
        """
        return the flux in the bandpass in units of maggies which is the flux
        the AB magnitude reference spectrum would have in the same band.

        Parameters
        ----------
        time: mandatory, float
            MJD at which band fluxes are evaluated
        bandpassobject: mandatory, `lsst.sims.photUtils.BandPass` object
            A particular bandpass which is an instantiation of one of
            (u, g, r, i, z, y)
        Returns
        -------
        float value for flux in band in units of maggies

        Examples
        --------
        >>> bandpassnames = ['u', 'g', 'r', 'i', 'z', 'y']
        >>> LSST_BandPass = BandpassDict.loadTotalBandpassesFromFiles()
        >>> SN = SNObject(ra=30., dec=-60.)
        >>> SN.set(z=0.96, t0=571181, x1=2.66, c=0.353, x0=1.796112e-06)
        >>> SN.catsimBandFlux(bandpassobject=LSST_BandPass['r'], time=571190.)
        >>> 1.9856857972304903e-11

        .. note: If there is an unphysical value of sed in
        the wavelength range, it produces a flux of  `np.nan`
        """
        # Speedup for cases outside temporal range of model
        if time <= self.mintime() or time >= self.maxtime() :
            return 0.
        SEDfromSNcosmo = self.SNObjectSED(time=time,
                                          bandpass=bandpassobject)
        return SEDfromSNcosmo.calcFlux(bandpass=bandpassobject) / 3631.0
 
    def catsimBandMag(self, bandpassobject, time, fluxinMaggies=None,
                      noNan=False):
        """
        return the magnitude in the bandpass in the AB magnitude system

        Parameters
        ----------
        bandpassobject : mandatory,`sims.photUtils.BandPass` instances
            LSST Catsim bandpass instance for a particular bandpass
        time : mandatory, float
            MJD at which this is evaluated
        fluxinMaggies: float, defaults to None
            provide the flux in maggies, if not provided, this will be evaluated
        noNan : Bool, defaults to False
            If True, an AB magnitude of 200.0 rather than nan values is
            associated with a flux of 0.
        Returns
        -------
        float value of band magnitude in AB system

        Examples
        --------
        """
        if fluxinMaggies is None:
            fluxinMaggies = self.catsimBandFlux(bandpassobject=bandpassobject,
                                                time=time)
        if noNan:
            if fluxinMaggies <= 0.:
                return 200.0
        with np.errstate(divide='ignore', invalid='ignore'):
            return -2.5 * np.log10(fluxinMaggies)

    def catsimBandFluxError(self, time, bandpassobject, m5,
                            fluxinMaggies=None,
                            magnitude=None,
                            photParams=None):
        """
        return the flux uncertainty in the bandpass in units 'maggies'
        (the flux the AB magnitude reference spectrum would have in the
        same band.) for a source of given brightness. The source brightness
        may be calculated, but the need for calculation is overridden by a
        provided flux in bandpass (in units of maggies) which itself may be
        overridden by a provided magnitude. If the provided/calculated flux
        is 0. or negative the magnitude calculated is taken to be 200.0 rather
        than a np.nan.


        Parameters
        ----------
        time: mandatory, float
            MJD at which band fluxes are evaluated
        bandpassobject: mandatory, `lsst.sims.photUtils.BandPass` object
            A particular bandpass which is an instantiation of one of
            (u, g, r, i, z, y)
        m5 : float, mandatory
            fiveSigma Depth for the sky observation
        photParams : instance of `sims.photUtils.PhotometricParameters`, defaults to `None` 
            describes the hardware parameters of the Observing system
        magnitude : float, defaults to None
            AB magnitude of source in bandpass.
        fluxinMaggies : float, defaults to None
            flux in Maggies for source in bandpass
        Returns
        -------
        float

        Examples
        --------
        .. note: If there is an unphysical value of sed the fluxinMaggies might
        be `np.nan`. The magnitude calculated from this is calculated using `noNan`
         and is therefore 200.0 rather than `np.nan`. 
        """
        if fluxinMaggies is None:
            fluxinMaggies = self.catsimBandFlux(time=time,
                                                bandpassobject=bandpassobject)
        if magnitude is None:
            mag = self.catsimBandMag(time=time, fluxinMaggies=fluxinMaggies,
                                     bandpassobject=bandpassobject, noNan=True)
        else:
            mag = magnitude

        # recalculate fluxinMaggies as the previous one might have been `np.nan`
        # the noise is contaminated if this is `np.nan`
        fluxinMaggies = 10.0**(-0.4 * mag)

        if photParams is None:
            photParams = PhotometricParameters()

        SNR, gamma = calcSNR_m5(magnitude=mag, bandpass=bandpassobject,
                                m5=m5, photParams=photParams)
        return fluxinMaggies / SNR

    def catsimBandMagError(self, time, bandpassobject, m5, photParams=None,
                           magnitude=None):
        """
        return the 68 percent uncertainty on the magnitude in the bandpass

        Parameters
        ----------
        time: mandatory, float
            MJD at which band fluxes are evaluated
        bandpassobject: mandatory, `lsst.sims.photUtils.BandPass` object
            A particular bandpass which is an instantiation of one of
            (u, g, r, i, z, y)
        m5 :
        photParams :
        magnitude :

        Returns
        -------
        float

        Examples
        --------
        .. note: If there is an unphysical value of sed in
        the wavelength range, it produces a flux of  `np.nan`
        """

        if magnitude is None:
            mag = self.catsimBandMag(time=time,
                                     bandpassobject=bandpassobject,
                                     noNan=True)
        else:
            mag = magnitude

        bandpass = bandpassobject

        if photParams is None:
            photParams = PhotometricParameters()

        magerr = calcMagError_m5(magnitude=mag,
                                 bandpass=bandpassobject,
                                 m5=m5,
                                 photParams=photParams)
        return magerr[0]


    def catsimManyBandFluxes(self, time, bandpassDict,
                             observedBandPassInd=None):
        """
        return the flux in the multiple bandpasses of a bandpassDict
        indicated by observedBandPassInd in units of maggies

        Parameters
        ----------
        time: mandatory, float
            MJD at which band fluxes are evaluated
        bandpassDict: mandatory, `lsst.sims.photUtils.BandpassDict` instance
        observedBandPassInd : optional, list of integers, defaults to None
            integer correspdonding to index of the bandpasses used in the
            observation in the ordered dict bandpassDict
        Returns
        -------
        `~numpy.ndarray` of length =len(observedBandPassInd)

        Examples
        --------
        .. note: If there is an unphysical value of sed in
        the wavelength range, it produces a flux of  `np.nan`
        """
        SEDfromSNcosmo = self.SNObjectSED(time=time,
                                          bandpass=bandpassDict['u'])
        wavelen_step = np.diff(SEDfromSNcosmo.wavelen)[0]
        SEDfromSNcosmo.flambdaTofnu()
        f = SEDfromSNcosmo.manyFluxCalc(bandpassDict.phiArray,
                                        wavelen_step=wavelen_step,
                                        observedBandpassInd=observedBandPassInd)
        return f / 3631.

    def catsimManyBandMags(self, time, bandpassDict,
                           observedBandPassInd=None):
        """
        return the flux in the bandpass in units of the flux
        the AB magnitude reference spectrum would have in the
        same band.

        Parameters
        ----------
        time: mandatory, float
            MJD at which band fluxes are evaluated
        bandpassDict: mandatory, `lsst.sims.photUtils.BandpassDict` instance
        observedBandPassInd : optional, list of integers, defaults to None
            integer correspdonding to index of the bandpasses used in the
            observation in the ordered dict bandpassDict
        Returns
        -------
        `~numpy.ndarray` of length =len(observedBandPassInd)

        Examples
        --------
        .. note: If there is an unphysical value of sed in
        the wavelength range, it produces a flux of  `np.nan`
        """
        f = self.catsimManyBandFluxes(time,
                                      bandpassDict,
                                      observedBandPassInd)

        with np.errstate(invalid='ignore', divide='ignore'):
            return -2.5 * np.log10(f)


    def catsimManyBandADUs(self, time, bandpassDict,
                  photParams=None,
                  observedBandPassInds=None):
        """
        time: float, mandatory
            MJD of the observation

        bandpassDict: mandatory,
            Dictionary of instances of `sims.photUtils.Bandpass` for
            filters

        photParams: Instance of `sims.photUtils.PhotometricParameters`, optional,
                    defaults to None
                    Describes the observational parameters used in specifying the
                    photometry of the ovservation
        observedBandPassInd: None
            Not used now
        """
        SEDfromSNcosmo = self.SNObjectSED(time=time,
                                          bandpass=bandpassDict)

        bandpassNames = list(bandpassDict.keys())
        adus = np.zeros(len(bandpassNames))

        for i, filt in enumerate(bandpassNames):
            bandpass = bandpassDict[filt]
            adus[i] = SEDfromSNcosmo.calcADU(bandpass, photParams=photParams)

        return adus
Ejemplo n.º 5
0
    def test_cache(self):
        """
        Test that EBVbase() only loads each dust map once
        """
        sims_clean_up()
        self.assertEqual(len(EBVbase._ebv_map_cache), 0)

        ebv1 = EBVbase()
        ebv1.load_ebvMapNorth()
        ebv1.load_ebvMapSouth()
        self.assertEqual(len(EBVbase._ebv_map_cache), 2)

        ebv2 = EBVbase()
        ebv2.load_ebvMapNorth()
        ebv2.load_ebvMapSouth()
        self.assertEqual(len(EBVbase._ebv_map_cache), 2)

        rng = np.random.RandomState(881)
        ra_list = rng.random_sample(10)*2.0*np.pi
        dec_list = rng.random_sample(10)*np.pi - 0.5*np.pi

        ebv1_vals = ebv1.calculateEbv(equatorialCoordinates=np.array([ra_list, dec_list]))
        ebv2_vals = ebv2.calculateEbv(equatorialCoordinates=np.array([ra_list, dec_list]))

        self.assertEqual(len(EBVbase._ebv_map_cache), 2)

        np.testing.assert_array_equal(ebv1_vals, ebv2_vals)
Ejemplo n.º 6
0
    galaxy_id = sed_fit_file['galaxy_id'][()][subset]

    # get the cross-match between the sed fit and cosmoDC2
    crossmatch_dex = np.searchsorted(cosmoDC2_data['galaxy_id'], galaxy_id)
    np.testing.assert_array_equal(galaxy_id,
                                  cosmoDC2_data['galaxy_id'][crossmatch_dex])

    ra = sed_fit_file['ra'][()][subset]
    dec = sed_fit_file['dec'][()][subset]
    np.testing.assert_array_equal(ra, cosmoDC2_data['ra'][crossmatch_dex])
    np.testing.assert_array_equal(dec, cosmoDC2_data['dec'][crossmatch_dex])

    # Calculate E(B-V) for dust extinction in Milky Way along relevant
    # lines of sight
    equatorial_coords = np.array([np.radians(ra), np.radians(dec)])
    ebv_model = EBVbase()
    ebv_vals = ebv_model.calculateEbv(equatorialCoordinates=equatorial_coords)

    ccm_w = None  # so that we only have to initialize internal dust once
    for i_bp, bp in enumerate('ugrizy'):
        fluxes_noMW = {}
        fluxes = {}
        for component in ['disk', 'bulge']:
            fluxes_noMW[component] = np.zeros(n_test_gals, dtype=float)
            fluxes[component] = np.zeros(n_test_gals, dtype=float)

        for component in ['disk', 'bulge']:
            sed_arr = sed_fit_file['%s_sed' % component][()][subset]
            av_arr = sed_fit_file['%s_av' % component][()][subset]
            rv_arr = sed_fit_file['%s_rv' % component][()][subset]
            mn_arr = sed_fit_file['%s_magnorm' %
Ejemplo n.º 7
0
def calculate_fluxes(in_name, out_name, healpix_id, my_lock):

    base_dir = os.path.join('/astro/store/pogo4/danielsf/desc_dc2_truth')

    t_start = time.time()
    with my_lock as context:

        redshift_file_name = os.path.join(base_dir, 'redshift',
                                          'redshift_%d.h5' % healpix_id)
        with h5py.File(redshift_file_name, 'r') as in_file:
            redshift = in_file['redshift'][()]
            galaxy_id_z = in_file['galaxy_id'][()]

        with h5py.File(in_name, 'r') as in_file:
            sed_names = in_file['sed_names'][()].astype(str)

            galaxy_id_disk = in_file['galaxy_id'][()]
            sorted_dex = np.argsort(galaxy_id_disk)
            galaxy_id_disk = galaxy_id_disk[sorted_dex]

            ra = in_file['ra'][()][sorted_dex]
            dec = in_file['dec'][()][sorted_dex]
            disk_sed = in_file['disk_sed'][()][sorted_dex]
            disk_magnorm = in_file['disk_magnorm'][()]
            for ii in range(6):
                disk_magnorm[ii] = disk_magnorm[ii][sorted_dex]
            disk_av = in_file['disk_av'][()][sorted_dex]
            disk_rv = in_file['disk_rv'][()][sorted_dex]
            #disk_fluxes_in = in_file['disk_fluxes'][()]
            #for ii in range(6):
            #    disk_fluxes_in[ii] = disk_fluxes_in[ii][sorted_dex]

        print('ra ', ra.min(), ra.max())
        print('dec ', dec.min(), dec.max())
        ebv_model = EBVbase()
        ebv_arr = ebv_model.calculateEbv(interp=True,
                                         equatorialCoordinates=np.array(
                                             [np.radians(ra),
                                              np.radians(dec)]))
        del ebv_model
        del ra
        del dec

    print('loaded disk data in %e' % (time.time() - t_start))

    sorted_dex_z = np.argsort(galaxy_id_z)
    galaxy_id_z = galaxy_id_z[sorted_dex_z]
    redshift = redshift[sorted_dex_z]

    if len(galaxy_id_z) != len(galaxy_id_disk):
        galaxy_id_z = galaxy_id_z[:len(galaxy_id_disk)]
        redshift = redshift[:len(galaxy_id_disk)]

    np.testing.assert_array_equal(galaxy_id_z, galaxy_id_disk)

    n_threads = 39
    d_gal = 50000
    mgr = multiprocessing.Manager()
    output_dict = mgr.dict()
    output_dict['fluxes'] = mgr.list()
    output_dict['fluxes_noMW'] = mgr.list()
    output_dict['galaxy_id'] = mgr.list()
    p_list = []
    ct_done = 0
    t_start = time.time()
    for i_start in range(0, len(disk_av), d_gal):
        s = slice(i_start, i_start + d_gal)
        p = multiprocessing.Process(target=process_component,
                                    args=(sed_names, ebv_arr[s], redshift[s],
                                          disk_sed[s], disk_av[s], disk_rv[s],
                                          disk_magnorm[:, s], my_lock,
                                          output_dict, galaxy_id_disk[s]))

        p.start()
        p_list.append(p)
        while len(p_list) >= n_threads:
            exit_state_list = []
            for p in p_list:
                exit_state_list.append(p.exitcode)
            n_processes = len(p_list)
            for ii in range(n_processes - 1, -1, -1):
                if exit_state_list[ii] is not None:
                    p_list.pop(ii)
                    with my_lock:
                        ct_done = 0
                        for chunk in output_dict['galaxy_id']:
                            ct_done += len(chunk)
                    duration = (time.time() - t_start) / 3600.0
                    per = duration / ct_done
                    prediction = per * len(redshift)
                    print('ran %e in %.2e hrs; pred %.2e hrs' %
                          (ct_done, duration, prediction))

    for p in p_list:
        p.join()

    print(output_dict['fluxes'])

    disk_fluxes = []
    disk_fluxes_noMW = []
    for i_bp in range(6):
        disk_fluxes.append(
            np.concatenate([ff[i_bp] for ff in output_dict['fluxes']]))
        disk_fluxes_noMW.append(
            np.concatenate([ff[i_bp] for ff in output_dict['fluxes_noMW']]))

    disk_fluxes = np.array(disk_fluxes)
    disk_fluxes_noMW = np.array(disk_fluxes_noMW)

    galaxy_id_disk = np.concatenate(output_dict['galaxy_id'])
    sorted_dex = np.argsort(galaxy_id_disk)
    galaxy_id_disk = galaxy_id_disk[sorted_dex]
    for i_bp in range(6):
        assert len(disk_fluxes[i_bp]) == len(galaxy_id_disk)
        assert len(disk_fluxes_noMW[i_bp]) == len(galaxy_id_disk)
        disk_fluxes[i_bp] = disk_fluxes[i_bp][sorted_dex]
        disk_fluxes_noMW[i_bp] = disk_fluxes_noMW[i_bp][sorted_dex]

    np.testing.assert_array_equal(galaxy_id_disk, galaxy_id_z)

    del output_dict

    #for i_bp, bp in enumerate('ugrizy'):
    #    d_flux_ratio = disk_fluxes_noMW[bp]/disk_fluxes_in[i_bp]
    #    print(bp,' disk flux ratio ',d_flux_ratio.max(),d_flux_ratio.min())

    del disk_sed
    del disk_av
    del disk_rv
    del disk_magnorm

    with my_lock as context:
        with h5py.File(in_name, 'r') as in_file:
            galaxy_id_bulge = in_file['galaxy_id'][()]
            sorted_dex = np.argsort(galaxy_id_bulge)
            galaxy_id_bulge = galaxy_id_bulge[sorted_dex]

            bulge_sed = in_file['bulge_sed'][()][sorted_dex]
            bulge_av = in_file['bulge_av'][()][sorted_dex]
            bulge_rv = in_file['bulge_rv'][()][sorted_dex]
            #bulge_fluxes_in = in_file['bulge_fluxes'][()]
            #for ii in range(6):
            #    bulge_fluxes_in[ii] = bulge_fluxes_in[ii][sorted_dex]
            bulge_magnorm = in_file['bulge_magnorm'][()]
            for ii in range(6):
                bulge_magnorm[ii] = bulge_magnorm[ii][sorted_dex]

    np.testing.assert_array_equal(galaxy_id_z, galaxy_id_bulge)

    output_dict = mgr.dict()
    output_dict['fluxes'] = mgr.list()
    output_dict['fluxes_noMW'] = mgr.list()
    output_dict['galaxy_id'] = mgr.list()
    ct_done = 0
    p_list = []
    t_start = time.time()
    for i_start in range(0, len(bulge_av), d_gal):
        s = slice(i_start, i_start + d_gal)
        p = multiprocessing.Process(
            target=process_component,
            args=(sed_names, ebv_arr[s], redshift[s], bulge_sed[s],
                  bulge_av[s], bulge_rv[s], bulge_magnorm[:, s], my_lock,
                  output_dict, galaxy_id_bulge[s]))

        p.start()
        p_list.append(p)
        while len(p_list) >= n_threads:
            exit_state_list = []
            for p in p_list:
                exit_state_list.append(p.exitcode)
            n_processes = len(p_list)
            for ii in range(n_processes - 1, -1, -1):
                if exit_state_list[ii] is not None:
                    p_list.pop(ii)
                    ct_done += d_gal
                    duration = (time.time() - t_start) / 3600.0
                    per = duration / ct_done
                    prediction = per * len(redshift)
                    print('ran %e in %.2e hrs; pred %.2e hrs' %
                          (ct_done, duration, prediction))

    for p in p_list:
        p.join()

    bulge_fluxes = []
    bulge_fluxes_noMW = []
    for i_bp in range(6):
        bulge_fluxes.append(
            np.concatenate([ff[i_bp] for ff in output_dict['fluxes']]))
        bulge_fluxes_noMW.append(
            np.concatenate([ff[i_bp] for ff in output_dict['fluxes_noMW']]))
    bulge_fluxes = np.array(bulge_fluxes)
    bulge_fluxes_noMW = np.array(bulge_fluxes_noMW)
    galaxy_id_bulge = np.concatenate(output_dict['galaxy_id'])

    sorted_dex = np.argsort(galaxy_id_bulge)
    galaxy_id_bulge = galaxy_id_bulge[sorted_dex]
    for i_bp in range(6):
        assert len(bulge_fluxes[i_bp]) == len(galaxy_id_bulge)
        assert len(bulge_fluxes_noMW[i_bp]) == len(galaxy_id_bulge)

        bulge_fluxes[i_bp] = bulge_fluxes[i_bp][sorted_dex]
        bulge_fluxes_noMW[i_bp] = bulge_fluxes_noMW[i_bp][sorted_dex]

    np.testing.assert_array_equal(galaxy_id_bulge, galaxy_id_z)

    del output_dict

    #for i_bp, bp in enumerate('ugrizy'):
    #    bulge_flux_ratio = bulge_fluxes_in[i_bp]/bulge_fluxes_noMW[bp]
    #    print(bp,' bulge flux ratio ',np.nanmax(bulge_flux_ratio),
    #          np.nanmin(bulge_flux_ratio))

    with my_lock as context:
        with h5py.File(out_name, 'w') as out_file:
            out_file.create_dataset('galaxy_id', data=galaxy_id_z)
            out_file.create_dataset('redshift', data=redshift)
            for i_bp, bp in enumerate('ugrizy'):
                out_file.create_dataset(
                    'flux_%s' % bp,
                    data=1.0e9 * (bulge_fluxes[i_bp] + disk_fluxes[i_bp]))
                out_file.create_dataset(
                    'flux_%s_noMW' % bp,
                    data=1.0e9 *
                    (bulge_fluxes_noMW[i_bp] + disk_fluxes_noMW[i_bp]))
Ejemplo n.º 8
0
#!/usr/bin/env python

import numpy as np
import healpy as hp
from lsst.sims.catUtils.dust import EBVbase


if __name__ == '__main__':

    # Read in the Schelgel dust maps and convert them to a healpix map
    dustmap = EBVbase()
    dustmap.load_ebvMapNorth()
    dustmap.load_ebvMapSouth()

    # Set up the Healpixel map
    nsides = [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
    for nside in nsides:
        lat, ra = hp.pix2ang(nside, np.arange(hp.nside2npix(nside)))
        # Move dec to +/- 90 degrees
        dec = np.pi/2.0 - lat
        ebvMap = dustmap.calculateEbv(equatorialCoordinates=np.array([ra, dec]), interp=False)
        np.savez('dust_nside_%s.npz'%nside, ebvMap=ebvMap)
Ejemplo n.º 9
0
class SyntheticPhotometry:
    """
    Class to provide interface to lsst.sims.photUtils code.
    """
    # The dust_models dict is a shared class-level resource among
    # SyntheticPhotometry instances to take advantage of the caching of
    # the a(x) and b(x) arrays used by the dust models.
    dust_models = dict(ccm=CCMmodel())
    lsst_bp_dict = sims_photUtils.BandpassDict.loadTotalBandpassesFromFiles()
    ebv_model = EBVbase()

    def __init__(self,
                 sed_file,
                 mag_norm,
                 redshift=0,
                 iAv=0,
                 iRv=3.1,
                 gAv=0,
                 gRv=3.1,
                 dust_model_name='ccm',
                 bp_dict=None):
        """
        Parameters
        ----------
        sed_file: str
            File containing the unnormalized SED as columns of wavelength
            in nm and flux-density as flambda.  If None, then don't create
            an Sed object.
        mag_norm: float
            Monochromatic magnitude of the object at 500nm.  This provides
            the normalization of the SED.
        redshift: float [0]
            The redshift of the object.
        iAv: float [0]
            Reference extinction parameter for internal reddening.
            iAv = 0 corresponds to no extinction.
        iRv: float [3.1]
            Extinction ratio.  iRv = 3.1 corresponds to a nominal Milky Way
            extinction law assuming the CCM model.
        gAv: float [0]
            Reference extinction parameter for Milky Way reddening.
        gRv: float [3.1]
            Galactic extinction ratio.  gRv = 3.1 corresponds to a nominal
            Milky Way extinction law assuming the CCM model.
        dust_model_name: str ['ccm']
            Name of the dust model to use in the shared dust_model dict.
            'ccm' corresponds to the model from Cardelli, Clayton, & Mathis
            1989 ApJ, 345, 245C.
        bp_dict: dict [None]
            Dictionary of bandpass objects.  If None, then the LSST total
            throughputs will be used.
        """
        self.sed_file = sed_file
        self.mag_norm = mag_norm
        self.redshift = redshift
        self.iAv = iAv
        self.iRv = iRv
        self.gAv = gAv
        self.gRv = gRv
        self.dust_model_name = dust_model_name
        if bp_dict is None:
            self.bp_dict = self.lsst_bp_dict
        if sed_file is not None:
            self._create_sed()

    @staticmethod
    def create_from_sed(sed, redshift):
        synth_phot = SyntheticPhotometry(None, None)
        synth_phot.sed = sed
        if redshift != 0:
            synth_phot.sed.redshiftSED(redshift, dimming=True)
            synth_phot.sed.resampleSED(
                wavelen_match=synth_phot.bp_dict.wavelenMatch)
        return synth_phot

    @staticmethod
    def get_MW_AvRv(ra, dec, Rv=3.1):
        eq_coord = np.array([[np.radians(ra)], [np.radians(dec)]])
        ebv = SyntheticPhotometry.ebv_model\
                                 .calculateEbv(equatorialCoordinates=eq_coord,
                                               interp=True)
        Av = Rv * ebv
        return Av, Rv

    def add_MW_dust(self, ra, dec, Rv=3.1):
        Av, _ = self.get_MW_AvRv(ra, dec, Rv=Rv)
        self.add_dust(Av, Rv, 'Galactic')
        return Av, Rv

    def add_dust(self, Av, Rv, component):
        """
        Apply dust to the SED for the specified component.
        """
        if component not in ('intrinsic', 'Galactic'):
            raise RuntimeError(f'Unrecognized dust component: {component}')
        self.dust_models[self.dust_model_name].add_dust(
            self.sed, Av, Rv, component)

    def _create_sed(self):
        """
        Function to create the lsst.sims.photUtils Sed object.
        """
        self.sed = sims_photUtils.Sed()
        self.sed.readSED_flambda(self.sed_file)
        fnorm = sims_photUtils.getImsimFluxNorm(self.sed, self.mag_norm)
        self.sed.multiplyFluxNorm(fnorm)

        if self.iAv != 0:
            self.add_dust(self.iAv, self.iRv, 'intrinsic')
        if self.redshift != 0:
            self.sed.redshiftSED(self.redshift, dimming=True)
        self.sed.resampleSED(wavelen_match=self.bp_dict.wavelenMatch)
        if self.gAv != 0:
            self.add_dust(self.gAv, self.gRv, 'Galactic')

    def calcFlux(self, band):
        """
        Calculate the flux in the desired band.

        Parameters
        ----------
        band: str
            `ugrizy` band.

        Returns
        -------
        Flux in the band in nanojanskys.
        """
        return self.sed.calcFlux(self.bp_dict[band]) * 1e9
Ejemplo n.º 10
0
def _process_chunk(db_lock, log_lock, sema, sed_fit_name, cosmoDC2_data,
                   first_gal, self_dict, bad_gals):
    """
    Do all chunk-specific work:  compute table contents for a
    collection of galaxies and write to db

    Parameters
    ----------
    db_lock          Used to avoid conflicts writing to sqlite output
    log_lock         Used to avoid conflicts writing to per-healpixel log
    sema             A semaphore. Release when done
    sed_fit_name     File where sed fits for this healpixel are
    cosmoDC2_data    Values from cosmoDC2 for this healpixel, keyed by
                     column name
    first_gal        index of first galaxy in our chunk (in sed fit list)
    self_dict        Random useful values stored in GalaxyTruthWriter
    bad_gals         List of galaxy ids, monotone increasing, to be
                     skipped
    """

    dry = self_dict['dry']
    chunk_size = self_dict['chunk_size']
    dbfile = self_dict['dbfile']
    logfile = self_dict['logfile']

    if dry:
        _logit(
            log_lock, logfile,
            '_process_chunk invoke for first_gal {}, chunk size {}'.format(
                first_gal, chunk_size))
        if sema is None:
            return
        sema.release()

        #exit(0)
        return

    lsst_bp_dict = self_dict['lsst_bp_dict']
    galaxy_ids = []
    ra = []
    dec = []
    redshift = []
    ebv_vals = None
    ebv_vals_init = False  # does this belong somewhere else?
    ccm_w = None
    total_gals = self_dict['total_gals']

    chunk_start = first_gal
    chunk_end = min(first_gal + chunk_size, total_gals)
    with h5py.File(sed_fit_name, 'r') as sed_fit_file:

        sed_names = sed_fit_file['sed_names'][()]
        sed_names = [s.decode() for s in sed_names]  # becse stored as bytes

        gals_this_chunk = chunk_end - chunk_start
        subset = slice(chunk_start, chunk_end)
        galaxy_ids = sed_fit_file['galaxy_id'][()][subset]
        to_log = 'Start with galaxy #{}, id={}\n# galaxies for _process_chunk: {}\n'.format(
            first_gal, galaxy_ids[0], len(galaxy_ids))
        _logit(log_lock, logfile, to_log)

        # get the cross-match between the sed fit and cosmoDC2
        cosmo_len = len(cosmoDC2_data['galaxy_id'])

        crossmatch_dex = np.searchsorted(cosmoDC2_data['galaxy_id'],
                                         galaxy_ids)
        np.testing.assert_array_equal(
            galaxy_ids, cosmoDC2_data['galaxy_id'][crossmatch_dex])

        ra = sed_fit_file['ra'][()][subset]
        dec = sed_fit_file['dec'][()][subset]
        np.testing.assert_array_equal(ra, cosmoDC2_data['ra'][crossmatch_dex])
        np.testing.assert_array_equal(dec,
                                      cosmoDC2_data['dec'][crossmatch_dex])

        good_ixes = _good_indices(galaxy_ids.tolist(), bad_gals[0])
        if (len(good_ixes) == 0):
            if sema is not None:
                sema.release()
            return
        else:
            _logit(
                log_lock, logfile,
                'Found {} good indices for chunk starting with {}\n'.format(
                    len(good_ixes), chunk_start))
        flux_by_band_MW = {}
        flux_by_band_noMW = {}

        # Calculate E(B-V) for dust extinction in Milky Way along relevant
        # lines of sight
        band_print = "Processing band {}, first gal {}, time {}\n"
        if not ebv_vals_init:
            equatorial_coords = np.array([np.radians(ra), np.radians(dec)])
            ebv_model = EBVbase()
            ebv_vals = ebv_model.calculateEbv(
                equatorialCoordinates=equatorial_coords, interp=True)
            ebv_vals_init = True

        for i_bp, bp in enumerate('ugrizy'):
            if (i_bp == 0 or i_bp == 5):
                _logit(log_lock, logfile,
                       band_print.format(bp, first_gal, dt.now()))
            fluxes_noMW = {}
            fluxes = {}
            for component in ['disk', 'bulge']:
                fluxes_noMW[component] = np.zeros(gals_this_chunk, dtype=float)
                fluxes[component] = np.zeros(gals_this_chunk, dtype=float)

            for component in ['disk', 'bulge']:
                #print("   Processing component ", component)
                sed_arr = sed_fit_file['%s_sed' % component][()][subset]
                av_arr = sed_fit_file['%s_av' % component][()][subset]
                rv_arr = sed_fit_file['%s_rv' % component][()][subset]
                mn_arr = sed_fit_file['%s_magnorm' %
                                      component][()][i_bp, :][subset]
                z_arr = cosmoDC2_data['redshift'][crossmatch_dex]
                gii = 0
                done = False
                for i_gal, (s_dex, mn, av, rv, zz, ebv) in enumerate(
                        zip(sed_arr, mn_arr, av_arr, rv_arr, z_arr, ebv_vals)):
                    if done: break
                    while good_ixes[gii] < i_gal:
                        gii += 1
                        if gii == len(good_ixes):  # ran out of good ones
                            done = True
                            break
                    if done: break
                    if good_ixes[gii] > i_gal:  # skipped over it; it's bad
                        continue
                    # Leave space for it in the arrays, but values
                    # for all the fluxes will be left at 0

                    # read in the SED file from the library
                    sed_file_name = os.path.join(self_dict['sed_lib_dir'],
                                                 sed_names[s_dex])
                    sed = sims_photUtils.Sed()
                    sed.readSED_flambda(sed_file_name)

                    # find and apply normalizing flux
                    fnorm = sims_photUtils.getImsimFluxNorm(sed, mn)
                    sed.multiplyFluxNorm(fnorm)

                    # add internal dust
                    if ccm_w is None or not np.array_equal(sed.wavelen, ccm_w):
                        ccm_w = np.copy(sed.wavelen)
                        a_x, b_x = sed.setupCCM_ab()
                    sed.addDust(a_x, b_x, A_v=av, R_v=rv)

                    # apply redshift
                    sed.redshiftSED(zz, dimming=True)

                    # flux, in Janskys, without Milky Way dust extinction
                    f_noMW = sed.calcFlux(lsst_bp_dict[bp])

                    # apply Milky Way dust
                    # (cannot reuse a_x, b_x because wavelength grid changed
                    # when we called redshiftSED)
                    a_x_mw, b_x_mw = sed.setupCCM_ab()
                    sed.addDust(a_x_mw, b_x_mw, R_v=3.1, ebv=ebv)

                    f_MW = sed.calcFlux(lsst_bp_dict[bp])

                    fluxes_noMW[component][i_gal] = f_noMW
                    fluxes[component][i_gal] = f_MW
                if (component == 'disk') and (bp == 'r'):
                    redshift = z_arr

            # Sum components and convert to nanojansky
            total_fluxes = (fluxes_noMW['disk'] + fluxes_noMW['bulge']) * 10**9
            total_fluxes_MW = (fluxes['disk'] + fluxes['bulge']) * 10**9

            dummy_sed = sims_photUtils.Sed()

            # add magnification due to weak lensing
            kappa = cosmoDC2_data['convergence'][crossmatch_dex]
            gamma_sq = (cosmoDC2_data['shear_1'][crossmatch_dex]**2 +
                        cosmoDC2_data['shear_2'][crossmatch_dex]**2)
            magnification = 1.0 / ((1.0 - kappa)**2 - gamma_sq)
            magnified_fluxes = magnification * total_fluxes
            magnified_fluxes_MW = magnification * total_fluxes_MW
            flux_by_band_noMW[bp] = magnified_fluxes
            flux_by_band_MW[bp] = magnified_fluxes_MW

    #  Open connection to sqlite db and write
    #print('Time before db write is {}, first gal={}'.format(dt.now(), first_gal))
    #sys.stdout.flush()
    if not db_lock.acquire(timeout=120.0):
        _logit(log_lock, logfile, "Failed to acquire db lock, first gal=",
               first_gal)
        if sema is None:
            return
        sema.release()
        exit(1)

    try:
        _write_sqlite(dbfile, galaxy_ids, ra, dec, redshift, flux_by_band_MW,
                      flux_by_band_noMW, good_ixes)
        db_lock.release()
        if sema is not None:
            sema.release()

        _logit(
            log_lock, logfile,
            'Time after db write: {}, first_gal={}\n'.format(
                dt.now(), first_gal))
        exit(0)
    except Exception as ex:
        db_lock.release()
        if sema is not None:
            sema.release()
        raise (ex)
Ejemplo n.º 11
0
    def test_cache(self):
        """
        Test that EBVbase() only loads each dust map once
        """
        sims_clean_up()
        self.assertEqual(len(EBVbase._ebv_map_cache), 0)

        ebv1 = EBVbase()
        ebv1.load_ebvMapNorth()
        ebv1.load_ebvMapSouth()
        self.assertEqual(len(EBVbase._ebv_map_cache), 2)

        ebv2 = EBVbase()
        ebv2.load_ebvMapNorth()
        ebv2.load_ebvMapSouth()
        self.assertEqual(len(EBVbase._ebv_map_cache), 2)

        rng = np.random.RandomState(881)
        ra_list = rng.random_sample(10) * 2.0 * np.pi
        dec_list = rng.random_sample(10) * np.pi - 0.5 * np.pi

        ebv1_vals = ebv1.calculateEbv(
            equatorialCoordinates=np.array([ra_list, dec_list]))
        ebv2_vals = ebv2.calculateEbv(
            equatorialCoordinates=np.array([ra_list, dec_list]))

        self.assertEqual(len(EBVbase._ebv_map_cache), 2)

        np.testing.assert_array_equal(ebv1_vals, ebv2_vals)
Ejemplo n.º 12
0
#!/usr/bin/env python

import numpy as np
import healpy as hp
from lsst.sims.catUtils.dust import EBVbase

if __name__ == '__main__':

    # Read in the Schelgel dust maps and convert them to a healpix map
    dustmap = EBVbase()
    dustmap.load_ebvMapNorth()
    dustmap.load_ebvMapSouth()

    # Set up the Healpixel map
    nsides = [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
    for nside in nsides:
        lat, ra = hp.pix2ang(nside, np.arange(hp.nside2npix(nside)))
        # Move dec to +/- 90 degrees
        dec = np.pi / 2.0 - lat
        ebvMap = dustmap.calculateEbv(equatorialCoordinates=np.array([ra,
                                                                      dec]),
                                      interp=False)
        np.savez('dust_nside_%s.npz' % nside, ebvMap=ebvMap)
    if not os.path.exists(sed_cache_dir):
        os.mkdir(sed_cache_dir)
    photUtils.cache_LSST_seds(wavelen_min=0.0,
                              wavelen_max=1600.0,
                              cache_dir=sed_cache_dir)

    with open(out_name, 'w') as out_file:
        out_file.write(
            '# id ra dec sigma_ra sigma_dec ra_smeared dec_smeared ')
        out_file.write('u sigma_u g sigma_g r sigma_r i sigma_i z sigma_z ')
        out_file.write('y sigma_y u_smeared g_smeared r_smeared i_smeared ')
        out_file.write('z_smeared y_smeared isresolved isagn ')
        out_file.write(
            'properMotionRa properMotionDec parallax radialVelocity\n')

        ebv_gen = EBVbase()
        dust_wav = np.array([0.0])
        sed_dir = os.environ['SIMS_SED_LIBRARY_DIR']
        assert os.path.isdir(sed_dir)

        bp_dict = photUtils.BandpassDict.loadTotalBandpassesFromFiles()

        where_clause = 'WHERE ra>=47.72 AND ra<=75.98 '
        where_clause += 'AND decl>=-46.61 AND decl<=-24.594'

        with sqlite3.connect(star_db_name) as star_conn:
            t_start_stars = time.time()
            star_cursor = star_conn.cursor()

            final_ct = star_cursor.execute(
                'SELECT count(simobjid) from stars ' +
Ejemplo n.º 14
0
def process_agn_chunk(chunk, filter_obs, mjd_obs, m5_obs,
                      coadd_m5, m5_single,
                      obs_md_list, proper_chip, out_data,
                      lock):
    t_start_chunk = time.time()
    #print('processing %d' % len(chunk))
    ct_first = 0
    ct_at_all = 0
    ct_tot = 0

    n_t = len(filter_obs)
    n_obj = len(chunk)

    agn_model = ExtraGalacticVariabilityModels()
    dust_model = EBVbase()

    with h5py.File('data/ebv_grid.h5', 'r') as in_file:
       ebv_grid = in_file['ebv_grid'].value
       extinction_grid = in_file['extinction_grid'].value

    coadd_visits = {}
    coadd_visits['u'] = 6
    coadd_visits['g'] = 8
    coadd_visits['r'] = 18
    coadd_visits['i'] = 18
    coadd_visits['z'] = 16
    coadd_visits['y'] = 16

    gamma_coadd = {}
    for bp in 'ugrizy':
        gamma_coadd[bp] = None

    gamma_single = {}
    for bp in 'ugrizy':
       gamma_single[bp] = [None]*n_t

    params = {}
    params['agn_sfu'] = chunk['agn_sfu']
    params['agn_sfg'] = chunk['agn_sfg']
    params['agn_sfr'] = chunk['agn_sfr']
    params['agn_sfi'] = chunk['agn_sfi']
    params['agn_sfz'] = chunk['agn_sfz']
    params['agn_sfy'] = chunk['agn_sfy']
    params['agn_tau'] = chunk['agn_tau']
    params['seed'] = chunk['id']+1

    ebv = dust_model.calculateEbv(equatorialCoordinates=np.array([np.radians(chunk['ra']),
                                                                  np.radians(chunk['dec'])]),
                                  interp=True)

    for i_bp, bp in enumerate('ugrizy'):
        extinction_values = np.interp(ebv, ebv_grid, extinction_grid[i_bp])
        chunk['%s_ab' % bp] += extinction_values
        chunk['AGNLSST%s' % bp] += extinction_values

    dmag = agn_model.applyAgn(np.where(np.array([True]*len(chunk))),
                              params, mjd_obs,
                              redshift=chunk['redshift'])

    dmag_mean = np.mean(dmag, axis=2)
    assert dmag_mean.shape == (6,n_obj)

    dummy_sed = Sed()
    lsst_bp = BandpassDict.loadTotalBandpassesFromFiles()
    flux_gal = np.zeros((6,n_obj), dtype=float)
    flux_agn_q = np.zeros((6,n_obj), dtype=float)
    flux_coadd = np.zeros((6,n_obj), dtype=float)
    mag_coadd = np.zeros((6,n_obj), dtype=float)
    snr_coadd = np.zeros((6,n_obj), dtype=float)
    snr_single = {}
    snr_single_mag_grid = np.arange(14.0, 30.0, 0.05)

    phot_params_single = PhotometricParameters(nexp=1,
                                               exptime=30.0)

    t_start_snr = time.time()

    for i_bp, bp in enumerate('ugrizy'):
        phot_params_coadd = PhotometricParameters(nexp=1,
                                                  exptime=30.0*coadd_visits[bp])

        flux_gal[i_bp] = dummy_sed.fluxFromMag(chunk['%s_ab' % bp])
        flux_agn_q[i_bp] = dummy_sed.fluxFromMag(chunk['AGNLSST%s' % bp] +
                                                 dmag_mean[i_bp,:])
        flux_coadd[i_bp] = flux_gal[i_bp]+flux_agn_q[i_bp]
        mag_coadd[i_bp] = dummy_sed.magFromFlux(flux_coadd[i_bp])

        (snr_coadd[i_bp],
         gamma) = SNR.calcSNR_m5(mag_coadd[i_bp],
                                 lsst_bp[bp],
                                 coadd_m5[bp],
                                 phot_params_coadd)


        (snr_single[bp],
         gamma) = SNR.calcSNR_m5(snr_single_mag_grid,
                                 lsst_bp[bp],
                                 m5_single[bp],
                                 phot_params_single)

    #print('got all snr in %e' % (time.time()-t_start_snr))


    t_start_obj = time.time()
    photometry_mask = np.zeros((n_obj, n_t), dtype=bool)
    photometry_mask_1d = np.zeros(n_obj, dtype=bool)
    snr_arr = np.zeros((n_obj, n_t), dtype=float)
    for i_bp, bp in enumerate('ugrizy'):
        valid_obs = np.where(filter_obs==i_bp)
        n_bp = len(valid_obs[0])
        if n_bp == 0:
            continue
        mag0_arr = chunk['AGNLSST%s' % bp]
        dmag_bp = dmag[i_bp][:,valid_obs[0]]
        assert dmag_bp.shape == (n_obj, n_bp)
        agn_flux_tot = dummy_sed.fluxFromMag(mag0_arr[:,None]+dmag_bp)
        q_flux = flux_agn_q[i_bp]
        agn_dflux = np.abs(agn_flux_tot-q_flux[:,None])
        flux_tot = flux_gal[i_bp][:, None] + agn_flux_tot
        assert flux_tot.shape == (n_obj, n_bp)
        mag_tot = dummy_sed.magFromFlux(flux_tot)
        snr_single_val = np.interp(mag_tot,
                                   snr_single_mag_grid,
                                   snr_single[bp])

        noise_coadd = flux_coadd[i_bp]/snr_coadd[i_bp]
        noise_single = flux_tot/snr_single_val
        noise = np.sqrt(noise_coadd[:,None]**2 + noise_single**2)
        dflux_thresh = 5.0*noise
        detected = (agn_dflux>=dflux_thresh)
        assert detected.shape == (n_obj, n_bp)
        snr_arr[:,valid_obs[0]] = agn_dflux/noise
        for i_obj in range(n_obj):
            if detected[i_obj].any():
                photometry_mask_1d[i_obj] = True
                photometry_mask[i_obj, valid_obs[0]] = detected[i_obj]

    t_before_chip = time.time()
    chip_mask = apply_focal_plane(chunk['ra'], chunk['dec'],
                                  photometry_mask_1d, obs_md_list,
                                  filter_obs, proper_chip)
    duration = (time.time()-t_before_chip)/3600.0

    unq_out = -1*np.ones(n_obj, dtype=int)
    mjd_out = -1.0*np.ones(n_obj, dtype=float)
    snr_out = -1.0*np.ones(n_obj, dtype=float)
    for i_obj in range(n_obj):
        if photometry_mask_1d[i_obj]:
            detected = photometry_mask[i_obj,:] & chip_mask[i_obj,:]

            if detected.any():
                unq_out[i_obj] = chunk['galtileid'][i_obj]
                first_dex = np.where(detected)[0].min()
                mjd_out[i_obj] = mjd_obs[first_dex]
                snr_out[i_obj] = snr_arr[i_obj, first_dex]

    valid = np.where(unq_out>=0)
    unq_out = unq_out[valid]
    mjd_out = mjd_out[valid]
    snr_out = snr_out[valid]
    with lock:
        existing_keys = list(out_data.keys())
        if len(existing_keys) == 0:
            key_val = 0
        else:
            key_val = max(existing_keys)
        while key_val in existing_keys:
            key_val += 1
        out_data[key_val] = (None, None, None)

    out_data[key_val] = (unq_out, mjd_out, snr_out)
Ejemplo n.º 15
0
def process_sne_chunk(chunk, filter_obs, mjd_obs, m5_obs, coadd_m5, m5_single,
                      obs_md_list, proper_chip, invisible_set, out_data, lock):

    sne_interp_file = 'data/sne_interp_models.h5'

    global _ct_sne

    n_t = len(filter_obs)
    n_obj = len(chunk)

    with h5py.File('data/ebv_grid.h5', 'r') as in_file:
        ebv_grid = in_file['ebv_grid'].value
        extinction_grid = in_file['extinction_grid'].value

    dust_model = EBVbase()
    ebv = dust_model.calculateEbv(equatorialCoordinates=np.array(
        [np.radians(chunk['ra']),
         np.radians(chunk['dec'])]),
                                  interp=True)
    for i_bp, bp in enumerate('ugrizy'):
        vv = np.interp(ebv, ebv_grid, extinction_grid[i_bp])
        chunk['A_%s' % bp] = vv

    #print('processing %d' % len(chunk))
    ct_first = 0
    ct_at_all = 0
    ct_tot = 0
    coadd_visits = {}
    coadd_visits['u'] = 6
    coadd_visits['g'] = 8
    coadd_visits['r'] = 18
    coadd_visits['i'] = 18
    coadd_visits['z'] = 16
    coadd_visits['y'] = 16

    gamma_coadd = {}
    for bp in 'ugrizy':
        gamma_coadd[bp] = None

    gamma_single = {}
    for bp in 'ugrizy':
        gamma_single[bp] = [None] * n_t

    n_t_per_filter = {}
    t_obs_arr = {}
    i_obs_per_filter = {}
    for i_bp, bp in enumerate('ugrizy'):
        valid = np.where(filter_obs == i_bp)
        n_t_per_filter[bp] = len(valid[0])
        i_obs_per_filter[bp] = valid[0]
        if n_t_per_filter[bp] == 0:
            continue

        t_obs_arr[bp] = mjd_obs[valid]

    # first just need to interpolate some stuff
    ct_invis = 0
    d_mag = np.zeros((n_obj, n_t), dtype=float)
    photometry_mask = np.zeros((n_obj, n_t), dtype=bool)
    photometry_mask_1d = np.zeros(n_obj, dtype=bool)
    with h5py.File(sne_interp_file, 'r') as in_file:
        param_mins = in_file['param_mins'].value
        d_params = in_file['d_params'].value
        t_grid = in_file['t_grid'].value
        abs_mag_0 = param_mins[3]
        i_x_arr = np.round(
            (chunk['x1'] - param_mins[0]) / d_params[0]).astype(int)
        i_c_arr = np.round(
            (chunk['c0'] - param_mins[1]) / d_params[1]).astype(int)
        i_z_arr = np.round(
            (chunk['redshift'] - param_mins[2]) / d_params[2]).astype(int)
        model_tag = i_x_arr + 100 * i_c_arr + 10000 * i_z_arr

        unq_tag = np.unique(model_tag)
        for i_tag in unq_tag:
            valid_obj = np.where(model_tag == i_tag)
            if i_tag in invisible_set:
                ct_invis += len(valid_obj[0])
                continue
            d_abs_mag = chunk['abs_mag'][valid_obj] - abs_mag_0

            mag_grid = in_file['%d' % i_tag].value
            for i_bp, bp in enumerate('ugrizy'):
                if n_t_per_filter[bp] == 0:
                    continue
                valid_obs = i_obs_per_filter[bp]
                assert len(valid_obs) == len(t_obs_arr[bp])

                t_matrix = t_obs_arr[bp] - chunk['t0'][valid_obj, None]
                t_arr = t_matrix.flatten()

                sne_mag = np.interp(t_arr, t_grid, mag_grid[i_bp]).reshape(
                    (len(valid_obj[0]), n_t_per_filter[bp]))

                for ii in range(len(valid_obj[0])):
                    obj_dex = valid_obj[0][ii]
                    sne_mag[ii] += d_abs_mag[ii] + chunk['A_%s' % bp][ii]
                    d_mag[obj_dex, valid_obs] = sne_mag[ii] - m5_single[bp]
                    photometry_mask[obj_dex,
                                    valid_obs] = sne_mag[ii] < m5_single[bp]

    for i_obj in range(n_obj):
        if photometry_mask[i_obj, :].any():
            photometry_mask_1d[i_obj] = True

    n_unq = len(unq_tag)
    ct_detected = 0

    t_before_chip = time.time()
    chip_mask = apply_focal_plane(chunk['ra'], chunk['dec'],
                                  photometry_mask_1d, obs_md_list, filter_obs,
                                  proper_chip)
    duration = (time.time() - t_before_chip) / 3600.0

    unq_arr = -1 * np.ones(n_obj, dtype=int)
    mjd_arr = -1.0 * np.ones(n_obj, dtype=float)
    redshift_arr = -1.0 * np.ones(n_obj, dtype=float)
    snr_arr = -1.0 * np.ones(n_obj, dtype=float)

    for i_obj in range(n_obj):
        if photometry_mask_1d[i_obj]:
            detected = photometry_mask[i_obj, :] & chip_mask[i_obj, :]
            if detected.any():
                unq_arr[i_obj] = chunk['galtileid'][i_obj]
                first_dex = np.where(detected)[0].min()
                snr_arr[i_obj] = 5.0 * 10**(-0.4 * (d_mag[i_obj, first_dex]))
                mjd_arr[i_obj] = mjd_obs[first_dex]
                redshift_arr[i_obj] = chunk['redshift'][i_obj]

    valid = np.where(unq_arr >= 0)
    unq_arr = unq_arr[valid]
    mjd_arr = mjd_arr[valid]
    snr_arr = snr_arr[valid]
    redshift_arr = redshift_arr[valid]
    with lock:
        existing_keys = list(out_data.keys())
        if len(existing_keys) == 0:
            key_val = 0
        else:
            key_val = max(existing_keys)
        while key_val in existing_keys:
            key_val += 1
        out_data[key_val] = (None, None, None, None)

    out_data[key_val] = (unq_arr, mjd_arr, snr_arr, redshift_arr)