Ejemplo n.º 1
0
    def testDustMap(self):

        mapPath = os.environ['SIMS_MAPS_DIR']

        if os.path.isfile(os.path.join(mapPath,
                                       'DustMaps/dust_nside_128.npz')):

            data = makeDataValues()
            dustmap = maps.DustMap()

            slicer1 = slicers.HealpixSlicer()
            slicer1.setupSlicer(data)
            result1 = dustmap.run(slicer1.slicePoints)
            assert ('ebv' in list(result1.keys()))

            fieldData = makeFieldData()

            slicer2 = slicers.OpsimFieldSlicer()
            slicer2.setupSlicer(data, fieldData)
            result2 = dustmap.run(slicer2.slicePoints)
            assert ('ebv' in list(result2.keys()))

            # Check interpolation works
            dustmap = maps.DustMap(interp=True)
            result3 = dustmap.run(slicer2.slicePoints)
            assert ('ebv' in list(result3.keys()))

            # Check warning gets raised
            dustmap = maps.DustMap(nside=4)
            with warnings.catch_warnings(record=True) as w:
                warnings.simplefilter("always")
                dustmap.run(slicer1.slicePoints)
                self.assertTrue("nside" in str(w[-1].message))
        else:
            warnings.warn('Did not find dustmaps, not running testMaps.py')
Ejemplo n.º 2
0
def tdcBatch(colmap=None,
             runName='opsim',
             nside=64,
             extraSql=None,
             extraMetadata=None):
    # The options to add additional sql constraints are removed for now.
    if colmap is None:
        colmap = ColMapDict('fbs')

    # Calculate a subset of DESC WFD-related metrics.
    displayDict = {'group': 'Strong Lensing'}
    displayDict['subgroup'] = 'Lens Time Delay'

    subsetPlots = [plots.HealpixSkyMap(), plots.HealpixHistogram()]

    summaryMetrics = [
        metrics.MeanMetric(),
        metrics.MedianMetric(),
        metrics.RmsMetric()
    ]
    # Ideally need a way to do better on calculating the summary metrics for the high accuracy area.

    slicer = slicers.HealpixSlicer(nside=nside, useCache=False)
    tdcMetric = metrics.TdcMetric(metricName='TDC',
                                  mjdCol=colmap['mjd'],
                                  nightCol=colmap['night'],
                                  filterCol=colmap['filter'],
                                  m5Col=colmap['fiveSigmaDepth'])
    dustmap = maps.DustMap(nside=nside, interp=False)
    bundle = mb.MetricBundle(tdcMetric,
                             slicer,
                             constraint=extraSql,
                             metadata=extraMetadata,
                             displayDict=displayDict,
                             plotFuncs=subsetPlots,
                             mapsList=[dustmap],
                             summaryMetrics=summaryMetrics)

    bundleList = [bundle]

    # Set the runName for all bundles and return the bundleDict.
    for b in bundleList:
        b.setRunName(runName)
    return mb.makeBundlesDictFromList(bundleList)
Ejemplo n.º 3
0
def coaddM5Analysis(path,
                    dbfile,
                    runName,
                    slair=False,
                    WFDandDDFs=False,
                    noDithOnly=False,
                    bestDithOnly=False,
                    someDithOnly=False,
                    specifiedDith=None,
                    nside=128,
                    filterBand='r',
                    includeDustExtinction=False,
                    saveunMaskedCoaddData=False,
                    pixelRadiusForMasking=5,
                    cutOffYear=None,
                    plotSkymap=True,
                    plotCartview=True,
                    unmaskedColorMin=None,
                    unmaskedColorMax=None,
                    maskedColorMin=None,
                    maskedColorMax=None,
                    nTicks=5,
                    plotPowerSpectrum=True,
                    showPlots=True,
                    saveFigs=True,
                    almAnalysis=True,
                    raRange=[-50, 50],
                    decRange=[-65, 5],
                    saveMaskedCoaddData=True):
    """

    Analyze the artifacts induced in the coadded 5sigma depth due to imperfect observing strategy.
      - Creates an output directory for subdirectories containing the specified things to save.
      - Creates, shows, and saves comparison plots.
      - Returns the metricBundle object containing the calculated coadded depth, and the output directory name.

    Required Parameters
    -------------------
      * path: str: path to the main directory where output directory is to be saved.
      * dbfile: str: path to the OpSim output file, e.g. to a copy of enigma_1189
      * runName: str: run name tag to identify the output of specified OpSim output, e.g. 'enigma1189' 

    Optional Parameters
    -------------------
      * slair: boolean: set to True if analysis on a SLAIR output.
                        Default: False
      * WFDandDDFs: boolean: set to True if want to consider both WFD survet and DDFs. Otherwise will only work
                             with WFD. Default: False
      * noDithOnly: boolean: set to True if only want to consider the undithered survey. Default: False
      * bestDithOnly: boolean: set to True if only want to consider RandomDitherFieldPerVisit.
                               Default: False
      * someDithOnly: boolean: set to True if only want to consider undithered and a few dithered surveys. 
                               Default: False
      * specifiedDith: str: specific dither strategy to run.
                            Default: None
      * nside: int: HEALpix resolution parameter. Default: 128
      * filterBand: str: any one of 'u', 'g', 'r', 'i', 'z', 'y'. Default: 'r'
      * includeDustExtinction: boolean: set to include dust extinction. Default: False
      * saveunMaskedCoaddData: boolean: set to True to save data before border masking. Default: False
      * pixelRadiusForMasking: int: number of pixels to mask along the shallow border. Default: 5

      * cutOffYear: int: year cut to restrict analysis to only a subset of the survey. 
                         Must range from 1 to 9, or None for the full survey analysis (10 yrs).
                         Default: None
      * plotSkymap: boolean: set to True if want to plot skymaps. Default: True
      * plotCartview: boolean: set to True if want to plot cartview plots. Default: False
      * unmaskedColorMin: float: lower limit on the colorscale for unmasked skymaps. Default: None
      * unmaskedColorMax: float: upper limit on the colorscale for unmasked skymaps. Default: None

      * maskedColorMin: float: lower limit on the colorscale for border-masked skymaps. Default: None
      * maskedColorMax: float: upper limit on the colorscale for border-masked skymaps. Default: None
      * nTicks: int: (number of ticks - 1) on the skymap colorbar. Default: 5
      * plotPowerSpectrum: boolean: set to True if want to plot powerspectra. Default: True

      * showPlots: boolean: set to True if want to show figures. Default: True
      * saveFigs: boolean: set to True if want to save figures. Default: True
      
      * almAnalysis: boolean: set to True to perform the alm analysis. Default: True
      * raRange: float array: range of right ascention (in degrees) to consider in alm  cartview plot;
                              applicable when almAnalysis=True. Default: [-50,50]
      * decRange: float array: range of declination (in degrees) to consider in alm cartview plot; 
                               applicable when almAnalysis=True. Default: [-65,5]
      * saveMaskedCoaddData: boolean: set to True to save the coadded depth data after the border
                                      masking. Default: True

    """
    # ------------------------------------------------------------------------
    # read in the database
    if slair:
        # slair database
        opsdb = db.Database(dbfile, defaultTable='observations')
    else:
        # OpSim database
        opsdb = db.OpsimDatabase(dbfile)

    # ------------------------------------------------------------------------
    # set up the outDir
    zeropt_tag = ''
    if cutOffYear is not None: zeropt_tag = '%syearCut' % cutOffYear
    else: zeropt_tag = 'fullSurveyPeriod'

    if includeDustExtinction: dust_tag = 'withDustExtinction'
    else: dust_tag = 'noDustExtinction'

    regionType = ''
    if WFDandDDFs: regionType = 'WFDandDDFs_'

    outDir = 'coaddM5Analysis_%snside%s_%s_%spixelRadiusForMasking_%sBand_%s_%s_directory' % (
        regionType, nside, dust_tag, pixelRadiusForMasking, filterBand,
        runName, zeropt_tag)
    print('# outDir: %s' % outDir)
    resultsDb = db.ResultsDb(outDir=outDir)

    # ------------------------------------------------------------------------
    # set up the sql constraint
    if WFDandDDFs:
        if cutOffYear is not None:
            nightCutOff = (cutOffYear) * 365.25
            sqlconstraint = 'night<=%s and filter=="%s"' % (nightCutOff,
                                                            filterBand)
        else:
            sqlconstraint = 'filter=="%s"' % filterBand
    else:
        # set up the propID and units on the ra, dec
        if slair:  # no prop ID; only WFD is simulated.
            wfdWhere = ''
            raDecInDeg = True
        else:
            propIds, propTags = opsdb.fetchPropInfo()
            wfdWhere = '%s and ' % opsdb.createSQLWhere('WFD', propTags)
            raDecInDeg = opsdb.raDecInDeg
        # set up the year cutoff
        if cutOffYear is not None:
            nightCutOff = (cutOffYear) * 365.25
            sqlconstraint = '%snight<=%s and filter=="%s"' % (
                wfdWhere, nightCutOff, filterBand)
        else:
            sqlconstraint = '%sfilter=="%s"' % (wfdWhere, filterBand)
    print('# sqlconstraint: %s' % sqlconstraint)

    # ------------------------------------------------------------------------
    # setup all the slicers
    slicer = {}
    stackerList = {}

    if specifiedDith is not None:  # would like to add all the stackers first and then keep only the one that is specified
        bestDithOnly, noDithOnly = False, False

    if bestDithOnly:
        stackerList['RandomDitherFieldPerVisit'] = [
            mafStackers.RandomDitherFieldPerVisitStacker(degrees=raDecInDeg,
                                                         randomSeed=1000)
        ]
        slicer['RandomDitherFieldPerVisit'] = slicers.HealpixSlicer(
            lonCol='randomDitherFieldPerVisitRa',
            latCol='randomDitherFieldPerVisitDec',
            latLonDeg=raDecInDeg,
            nside=nside,
            useCache=False)
    else:
        if slair:
            slicer['NoDither'] = slicers.HealpixSlicer(lonCol='RA',
                                                       latCol='dec',
                                                       latLonDeg=raDecInDeg,
                                                       nside=nside,
                                                       useCache=False)
        else:
            slicer['NoDither'] = slicers.HealpixSlicer(lonCol='fieldRA',
                                                       latCol='fieldDec',
                                                       latLonDeg=raDecInDeg,
                                                       nside=nside,
                                                       useCache=False)
        if someDithOnly and not noDithOnly:
            #stackerList['RepulsiveRandomDitherFieldPerVisit'] = [myStackers.RepulsiveRandomDitherFieldPerVisitStacker(degrees=raDecInDeg,
            #                                                                                                          randomSeed=1000)]
            #slicer['RepulsiveRandomDitherFieldPerVisit'] = slicers.HealpixSlicer(lonCol='repulsiveRandomDitherFieldPerVisitRa',
            #                                                                    latCol='repulsiveRandomDitherFieldPerVisitDec',
            #                                                                    latLonDeg=raDecInDeg, nside=nside,
            #                                                                    useCache=False)
            slicer['SequentialHexDitherFieldPerNight'] = slicers.HealpixSlicer(
                lonCol='hexDitherFieldPerNightRa',
                latCol='hexDitherFieldPerNightDec',
                latLonDeg=raDecInDeg,
                nside=nside,
                useCache=False)
            slicer['PentagonDitherPerSeason'] = slicers.HealpixSlicer(
                lonCol='pentagonDitherPerSeasonRa',
                latCol='pentagonDitherPerSeasonDec',
                latLonDeg=raDecInDeg,
                nside=nside,
                useCache=False)
        elif not noDithOnly:
            # random dithers on different timescales
            stackerList['RandomDitherPerNight'] = [
                mafStackers.RandomDitherPerNightStacker(degrees=raDecInDeg,
                                                        randomSeed=1000)
            ]
            stackerList['RandomDitherFieldPerNight'] = [
                mafStackers.RandomDitherFieldPerNightStacker(
                    degrees=raDecInDeg, randomSeed=1000)
            ]
            stackerList['RandomDitherFieldPerVisit'] = [
                mafStackers.RandomDitherFieldPerVisitStacker(
                    degrees=raDecInDeg, randomSeed=1000)
            ]

            # rep random dithers on different timescales
            #stackerList['RepulsiveRandomDitherPerNight'] = [myStackers.RepulsiveRandomDitherPerNightStacker(degrees=raDecInDeg,
            #                                                                                                randomSeed=1000)]
            #stackerList['RepulsiveRandomDitherFieldPerNight'] = [myStackers.RepulsiveRandomDitherFieldPerNightStacker(degrees=raDecInDeg,
            #                                                                                                          randomSeed=1000)]
            #stackerList['RepulsiveRandomDitherFieldPerVisit'] = [myStackers.RepulsiveRandomDitherFieldPerVisitStacker(degrees=raDecInDeg,
            #                                                                                                          randomSeed=1000)]
            # set up slicers for different dithers
            # random dithers on different timescales
            slicer['RandomDitherPerNight'] = slicers.HealpixSlicer(
                lonCol='randomDitherPerNightRa',
                latCol='randomDitherPerNightDec',
                latLonDeg=raDecInDeg,
                nside=nside,
                useCache=False)
            slicer['RandomDitherFieldPerNight'] = slicers.HealpixSlicer(
                lonCol='randomDitherFieldPerNightRa',
                latCol='randomDitherFieldPerNightDec',
                latLonDeg=raDecInDeg,
                nside=nside,
                useCache=False)
            slicer['RandomDitherFieldPerVisit'] = slicers.HealpixSlicer(
                lonCol='randomDitherFieldPerVisitRa',
                latCol='randomDitherFieldPerVisitDec',
                latLonDeg=raDecInDeg,
                nside=nside,
                useCache=False)
            # rep random dithers on different timescales
            #slicer['RepulsiveRandomDitherPerNight'] = slicers.HealpixSlicer(lonCol='repulsiveRandomDitherPerNightRa',
            #                                                               latCol='repulsiveRandomDitherPerNightDec',
            #                                                               latLonDeg=raDecInDeg, nside=nside, useCache=False)
            #slicer['RepulsiveRandomDitherFieldPerNight'] = slicers.HealpixSlicer(lonCol='repulsiveRandomDitherFieldPerNightRa',
            #                                                                    latCol='repulsiveRandomDitherFieldPerNightDec',
            #                                                                    latLonDeg=raDecInDeg, nside=nside,
            #                                                                    useCache=False)
            #slicer['RepulsiveRandomDitherFieldPerVisit'] = slicers.HealpixSlicer(lonCol='repulsiveRandomDitherFieldPerVisitRa',
            #                                                                    latCol='repulsiveRandomDitherFieldPerVisitDec',
            #                                                                    latLonDeg=raDecInDeg, nside=nside,
            #                                                                    useCache=False)
            # spiral dithers on different timescales
            slicer['FermatSpiralDitherPerNight'] = slicers.HealpixSlicer(
                lonCol='fermatSpiralDitherPerNightRa',
                latCol='fermatSpiralDitherPerNightDec',
                latLonDeg=raDecInDeg,
                nside=nside,
                useCache=False)
            slicer['FermatSpiralDitherFieldPerNight'] = slicers.HealpixSlicer(
                lonCol='fermatSpiralDitherFieldPerNightRa',
                latCol='fermatSpiralDitherFieldPerNightDec',
                latLonDeg=raDecInDeg,
                nside=nside,
                useCache=False)
            slicer['FermatSpiralDitherFieldPerVisit'] = slicers.HealpixSlicer(
                lonCol='fermatSpiralDitherFieldPerVisitRa',
                latCol='fermatSpiralDitherFieldPerVisitDec',
                latLonDeg=raDecInDeg,
                nside=nside,
                useCache=False)
            # hex dithers on different timescales
            slicer['SequentialHexDitherPerNight'] = slicers.HealpixSlicer(
                lonCol='hexDitherPerNightRa',
                latCol='hexDitherPerNightDec',
                latLonDeg=raDecInDeg,
                nside=nside,
                useCache=False)
            slicer['SequentialHexDitherFieldPerNight'] = slicers.HealpixSlicer(
                lonCol='hexDitherFieldPerNightRa',
                latCol='hexDitherFieldPerNightDec',
                latLonDeg=raDecInDeg,
                nside=nside,
                useCache=False)
            slicer['SequentialHexDitherFieldPerVisit'] = slicers.HealpixSlicer(
                lonCol='hexDitherFieldPerVisitRa',
                latCol='hexDitherFieldPerVisitDec',
                latLonDeg=raDecInDeg,
                nside=nside,
                useCache=False)
            # per season dithers
            slicer['PentagonDitherPerSeason'] = slicers.HealpixSlicer(
                lonCol='pentagonDitherPerSeasonRa',
                latCol='pentagonDitherPerSeasonDec',
                latLonDeg=raDecInDeg,
                nside=nside,
                useCache=False)
            slicer['PentagonDiamondDitherPerSeason'] = slicers.HealpixSlicer(
                lonCol='pentagonDiamondDitherPerSeasonRa',
                latCol='pentagonDiamondDitherPerSeasonDec',
                latLonDeg=raDecInDeg,
                nside=nside,
                useCache=False)
            slicer['SpiralDitherPerSeason'] = slicers.HealpixSlicer(
                lonCol='spiralDitherPerSeasonRa',
                latCol='spiralDitherPerSeasonDec',
                latLonDeg=raDecInDeg,
                nside=nside,
                useCache=False)
    if specifiedDith is not None:
        stackerList_, slicer_ = {}, {}
        if specifiedDith in slicer.keys():
            if specifiedDith.__contains__(
                    'Random'
            ):  # only Random dithers have a stacker object for rand seed specification
                stackerList_[specifiedDith] = stackerList[specifiedDith]
            slicer_[specifiedDith] = slicer[specifiedDith]
        else:
            raise ValueError(
                'Invalid value for specifiedDith: %s. Allowed values include one of the following:\n%s'
                % (specifiedDith, slicer.keys()))
        stackerList, slicer = stackerList_, slicer_

    # ------------------------------------------------------------------------
    if slair:
        m5Col = 'fivesigmadepth'
    else:
        m5Col = 'fiveSigmaDepth'
    # set up the metric
    if includeDustExtinction:
        # include dust extinction when calculating the co-added depth
        coaddMetric = metrics.ExgalM5(m5Col=m5Col, lsstFilter=filterBand)
    else:
        coaddMetric = metrics.Coaddm5Metric(m5col=m5col)
    dustMap = maps.DustMap(
        interp=False, nside=nside
    )  # include dustMap; actual in/exclusion of dust is handled by the galaxyCountMetric

    # ------------------------------------------------------------------------
    # set up the bundle
    coaddBundle = {}
    for dither in slicer:
        if dither in stackerList:
            coaddBundle[dither] = metricBundles.MetricBundle(
                coaddMetric,
                slicer[dither],
                sqlconstraint,
                stackerList=stackerList[dither],
                runName=runName,
                metadata=dither,
                mapsList=[dustMap])
        else:
            coaddBundle[dither] = metricBundles.MetricBundle(
                coaddMetric,
                slicer[dither],
                sqlconstraint,
                runName=runName,
                metadata=dither,
                mapsList=[dustMap])

    # ------------------------------------------------------------------------
    # run the analysis
    if includeDustExtinction:
        print('\n# Running coaddBundle with dust extinction ...')
    else:
        print('\n# Running coaddBundle without dust extinction ...')
    cGroup = metricBundles.MetricBundleGroup(coaddBundle,
                                             opsdb,
                                             outDir=outDir,
                                             resultsDb=resultsDb,
                                             saveEarly=False)
    cGroup.runAll()

    # ------------------------------------------------------------------------
    # plot and save the data
    plotBundleMaps(path,
                   outDir,
                   coaddBundle,
                   dataLabel='$%s$-band Coadded Depth' % filterBand,
                   filterBand=filterBand,
                   dataName='%s-band Coadded Depth' % filterBand,
                   skymap=plotSkymap,
                   powerSpectrum=plotPowerSpectrum,
                   cartview=plotCartview,
                   colorMin=unmaskedColorMin,
                   colorMax=unmaskedColorMax,
                   nTicks=nTicks,
                   showPlots=showPlots,
                   saveFigs=saveFigs,
                   outDirNameForSavedFigs='coaddM5Plots_unmaskedBorders')
    print('\n# Done saving plots without border masking.\n')

    # ------------------------------------------------------------------------
    plotHandler = plots.PlotHandler(outDir=outDir,
                                    resultsDb=resultsDb,
                                    thumbnail=False,
                                    savefig=False)

    print(
        '# Number of pixels in the survey region (before masking the border):')
    for dither in coaddBundle:
        print(
            '  %s: %s' %
            (dither,
             len(np.where(coaddBundle[dither].metricValues.mask == False)[0])))

    # ------------------------------------------------------------------------
    # save the unmasked data?
    if saveunMaskedCoaddData:
        outDir_new = 'unmaskedCoaddData'
        if not os.path.exists('%s%s/%s' % (path, outDir, outDir_new)):
            os.makedirs('%s%s/%s' % (path, outDir, outDir_new))
        saveBundleData_npzFormat('%s%s/%s' % (path, outDir, outDir_new),
                                 coaddBundle, 'coaddM5Data_unmasked',
                                 filterBand)

    # ------------------------------------------------------------------------
    # mask the edges
    print('\n# Masking the edges for coadd ...')
    coaddBundle = maskingAlgorithmGeneralized(
        coaddBundle,
        plotHandler,
        dataLabel='$%s$-band Coadded Depth' % filterBand,
        nside=nside,
        pixelRadius=pixelRadiusForMasking,
        plotIntermediatePlots=False,
        plotFinalPlots=False,
        printFinalInfo=True)
    if (pixelRadiusForMasking > 0):
        # plot and save the masked data
        plotBundleMaps(path,
                       outDir,
                       coaddBundle,
                       dataLabel='$%s$-band Coadded Depth' % filterBand,
                       filterBand=filterBand,
                       dataName='%s-band Coadded Depth' % filterBand,
                       skymap=plotSkymap,
                       powerSpectrum=plotPowerSpectrum,
                       cartview=plotCartview,
                       colorMin=maskedColorMin,
                       colorMax=maskedColorMax,
                       nTicks=nTicks,
                       showPlots=showPlots,
                       saveFigs=saveFigs,
                       outDirNameForSavedFigs='coaddM5Plots_maskedBorders')
        print('\n# Done saving plots with border masking. \n')

    # ------------------------------------------------------------------------
    # Calculate total power
    summarymetric = metrics.TotalPowerMetric()
    for dither in coaddBundle:
        coaddBundle[dither].setSummaryMetrics(summarymetric)
        coaddBundle[dither].computeSummaryStats()
        print('# Total power for %s case is %f.' %
              (dither, coaddBundle[dither].summaryValues['TotalPower']))
    print('')

    # ------------------------------------------------------------------------
    # run the alm analysis
    if almAnalysis:
        almPlots(path,
                 outDir,
                 copy.deepcopy(coaddBundle),
                 nside=nside,
                 filterband=filterBand,
                 raRange=raRange,
                 decRange=decRange,
                 showPlots=showPlots)
    # ------------------------------------------------------------------------
    # save the masked data?
    if saveMaskedCoaddData and (pixelRadiusForMasking > 0):
        outDir_new = 'maskedCoaddData'
        if not os.path.exists('%s%s/%s' % (path, outDir, outDir_new)):
            os.makedirs('%s%s/%s' % (path, outDir, outDir_new))
        saveBundleData_npzFormat('%s%s/%s' % (path, outDir, outDir_new),
                                 coaddBundle, 'coaddM5Data_masked', filterBand)

    # ------------------------------------------------------------------------
    # plot comparison plots
    if len(coaddBundle.keys()) > 1:  # more than one key
        # set up the directory
        outDir_comp = 'coaddM5ComparisonPlots'
        if not os.path.exists('%s%s/%s' % (path, outDir, outDir_comp)):
            os.makedirs('%s%s/%s' % (path, outDir, outDir_comp))
        # ------------------------------------------------------------------------
        # plot for the power spectra
        cl = {}
        for dither in plotColor:
            if dither in coaddBundle:
                cl[dither] = hp.anafast(hp.remove_dipole(
                    coaddBundle[dither].metricValues.filled(
                        coaddBundle[dither].slicer.badval)),
                                        lmax=500)
                ell = np.arange(np.size(cl[dither]))
                plt.plot(ell, (cl[dither] * ell * (ell + 1)) / 2.0 / np.pi,
                         color=plotColor[dither],
                         linestyle='-',
                         label=dither)
        plt.xlabel(r'$\ell$')
        plt.ylabel(r'$\ell(\ell+1)C_\ell/(2\pi)$')
        plt.xlim(0, 500)
        fig = plt.gcf()
        fig.set_size_inches(12.5, 10.5)
        leg = plt.legend(labelspacing=0.001)
        for legobj in leg.legendHandles:
            legobj.set_linewidth(4.0)
        filename = 'powerspectrum_comparison_all.png'
        plt.savefig('%s%s/%s/%s' % (path, outDir, outDir_comp, filename),
                    bbox_inches='tight',
                    format='png')
        plt.show()

        # create the histogram
        scale = hp.nside2pixarea(nside, degrees=True)

        def tickFormatter(y, pos):
            return '%d' % (y * scale)  # convert pixel count to area

        binsize = 0.01
        for dither in plotColor:
            if dither in coaddBundle:
                ind = np.where(
                    coaddBundle[dither].metricValues.mask == False)[0]
                binAll = int(
                    (max(coaddBundle[dither].metricValues.data[ind]) -
                     min(coaddBundle[dither].metricValues.data[ind])) /
                    binsize)
                plt.hist(coaddBundle[dither].metricValues.data[ind],
                         bins=binAll,
                         label=dither,
                         histtype='step',
                         color=plotColor[dither])
        ax = plt.gca()
        ymin, ymax = ax.get_ylim()
        nYticks = 10.
        wantedYMax = ymax * scale
        wantedYMax = 10. * np.ceil(float(wantedYMax) / 10.)
        increment = 5. * np.ceil(float(wantedYMax / nYticks) / 5.)
        wantedArray = np.arange(0, wantedYMax, increment)
        ax.yaxis.set_ticks(wantedArray / scale)
        ax.yaxis.set_major_formatter(FuncFormatter(tickFormatter))
        plt.xlabel('$%s$-band Coadded Depth' % filterBand)
        plt.ylabel('Area (deg$^2$)')
        fig = plt.gcf()
        fig.set_size_inches(12.5, 10.5)
        leg = plt.legend(labelspacing=0.001, loc=2)
        for legobj in leg.legendHandles:
            legobj.set_linewidth(2.0)
        filename = 'histogram_comparison.png'
        plt.savefig('%s%s/%s/%s' % (path, outDir, outDir_comp, filename),
                    bbox_inches='tight',
                    format='png')
        plt.show()
        # ------------------------------------------------------------------------
        # plot power spectra for the separte panel
        totKeys = len(list(coaddBundle.keys()))
        if (totKeys > 1):
            plt.clf()
            nCols = 2
            nRows = int(np.ceil(float(totKeys) / nCols))
            fig, ax = plt.subplots(nRows, nCols)
            plotRow = 0
            plotCol = 0
            for dither in list(plotColor.keys()):
                if dither in list(coaddBundle.keys()):
                    ell = np.arange(np.size(cl[dither]))
                    ax[plotRow, plotCol].plot(ell, (cl[dither] * ell *
                                                    (ell + 1)) / 2.0 / np.pi,
                                              color=plotColor[dither],
                                              label=dither)
                    if (plotRow == nRows - 1):
                        ax[plotRow, plotCol].set_xlabel(r'$\ell$')
                    ax[plotRow,
                       plotCol].set_ylabel(r'$\ell(\ell+1)C_\ell/(2\pi)$')
                    ax[plotRow,
                       plotCol].yaxis.set_major_locator(MaxNLocator(3))
                    if (dither != 'NoDither'):
                        ax[plotRow, plotCol].set_ylim(0, 0.0035)
                    ax[plotRow, plotCol].set_xlim(0, 500)
                    plotRow += 1
                    if (plotRow > nRows - 1):
                        plotRow = 0
                        plotCol += 1
            fig.set_size_inches(20, int(nRows * 30 / 7.))
            filename = 'powerspectrum_sepPanels.png'
            plt.savefig('%s%s/%s/%s' % (path, outDir, outDir_comp, filename),
                        bbox_inches='tight',
                        format='png')
            plt.show()
    return coaddBundle, outDir
Ejemplo n.º 4
0
def descWFDBatch(colmap=None, runName='opsim', nside=64,
                 bandpass='******', nfilters_needed=6, lim_ebv=0.2,
                 mag_cuts = {1: 24.75 - 0.1, 3: 25.35 - 0.1, 6: 25.72 - 0.1, 10: 26.0 - 0.1}):

    # Hide some dependencies .. we should probably bring these into MAF
    from mafContrib.lssmetrics.depthLimitedNumGalMetric import DepthLimitedNumGalMetric
    from mafContrib import (Plasticc_metric, plasticc_slicer, load_plasticc_lc)

    # The options to add additional sql constraints are removed for now.
    if colmap is None:
        colmap = ColMapDict('fbs')

    # Calculate a subset of DESC WFD-related metrics.
    displayDict = {'group': 'Cosmology'}
    subgroupCount = 1

    standardStats = standardSummary(withCount=False)
    subsetPlots = [plots.HealpixSkyMap(), plots.HealpixHistogram()]

    if not isinstance(mag_cuts, dict):
        if isinstance(mag_cuts, float) or isinstance(mag_cuts, int):
            mag_cuts = {10: mag_cuts}
        else:
            raise TypeError()
    yrs = list(mag_cuts.keys())
    maxYr = max(yrs)

    # Load up the plastic light curves
    models = ['SNIa-normal']
    plasticc_models_dict = {}
    for model in models:
        plasticc_models_dict[model] = list(load_plasticc_lc(model=model).values())

    # One of the primary concerns for DESC WFD metrics is to add dust extinction and coadded depth limits
    # as well as to get some coverage in all 6 bandpasses.
    # These cuts figure into many of the general metrics.

    displayDict['subgroup'] = f'{subgroupCount}: Static Science'
    ## Static Science
    # Calculate the static science metrics - effective survey area, mean/median coadded depth, stdev of
    # coadded depth and the 3x2ptFoM emulator.

    dustmap = maps.DustMap(nside=nside, interp=False)
    pix_area = hp.nside2pixarea(nside, degrees=True)
    summaryMetrics = [metrics.MeanMetric(), metrics.MedianMetric(), metrics.RmsMetric(),
                      metrics.CountRatioMetric(normVal=1/pix_area, metricName='Effective Area (deg)')]
    bundleList = []
    displayDict['order'] = 0
    for yr_cut in yrs:
        ptsrc_lim_mag_i_band = mag_cuts[yr_cut]
        sqlconstraint = 'night <= %s' % (yr_cut * 365.25)
        sqlconstraint += ' and note not like "DD%"'
        metadata = f'{bandpass} band non-DD year {yr_cut}'
        ThreebyTwoSummary = metrics.StaticProbesFoMEmulatorMetricSimple(nside=nside, year=yr_cut,
                                                                        metricName='3x2ptFoM')
        print(colmap['fiveSigmaDepth'], colmap['filter'])
        m = metrics.ExgalM5_with_cuts(m5Col=colmap['fiveSigmaDepth'], filterCol=colmap['filter'],
                                      lsstFilter=bandpass, nFilters=nfilters_needed,
                                      extinction_cut=lim_ebv, depth_cut=ptsrc_lim_mag_i_band)
        s = slicers.HealpixSlicer(nside=nside, useCache=False)
        caption = f'Cosmology/Static Science metrics are based on evaluating the region of '
        caption += f'the sky that meets the requirements (in year {yr_cut} of coverage in '
        caption += f'all {nfilters_needed}, a lower E(B-V) value than {lim_ebv}, and at '
        caption += f'least a coadded depth of {ptsrc_lim_mag_i_band} in {bandpass}. '
        caption += f'From there the effective survey area, coadded depth, standard deviation of the depth, '
        caption += f'and a 3x2pt static science figure of merit emulator are calculated using the '
        caption += f'dust-extincted coadded depth map (over that reduced footprint).'
        displayDict['caption'] = caption
        bundle = mb.MetricBundle(m, s, sqlconstraint, mapsList=[dustmap], metadata=metadata,
                                 summaryMetrics=summaryMetrics + [ThreebyTwoSummary],
                                 displayDict=displayDict)
        displayDict['order'] += 1
        bundleList.append(bundle)


    ## LSS Science
    # The only metric we have from LSS is the NGals metric - which is similar to the GalaxyCountsExtended
    # metric, but evaluated only on the depth/dust cuts footprint.
    subgroupCount += 1
    displayDict['subgroup'] = f'{subgroupCount}: LSS'
    displayDict['order'] = 0
    plotDict = {'nTicks': 5}
    # Have to include all filters in query, so that we check for all-band coverage.
    # Galaxy numbers calculated using 'bandpass' images only though.
    sqlconstraint = f'note not like "DD%"'
    metadata = f'{bandpass} band galaxies non-DD'
    metric = DepthLimitedNumGalMetric(m5Col=colmap['fiveSigmaDepth'], filterCol=colmap['filter'],
                                      nside=nside, filterBand=bandpass, redshiftBin='all',
                                      nfilters_needed=nfilters_needed,
                                      lim_mag_i_ptsrc=mag_cuts[maxYr], lim_ebv=lim_ebv)
    summary = [metrics.AreaSummaryMetric(area=18000, reduce_func=np.sum, decreasing=True,
                                         metricName='N Galaxies (18k)')]
    summary.append(metrics.SumMetric(metricName='N Galaxies (all)'))
    slicer = slicers.HealpixSlicer(nside=nside, useCache=False)
    bundle = mb.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                             metadata=metadata, mapsList=[dustmap],
                             displayDict=displayDict, summaryMetrics=summary,
                             plotFuncs=subsetPlots)
    bundleList.append(bundle)


    ## WL metrics
    # Calculates the number of visits per pointing, after removing parts of the footprint due to dust/depth
    subgroupCount += 1
    displayDict['subgroup'] = f'{subgroupCount}: WL'
    displayDict['order'] = 0
    sqlconstraint = f'note not like "DD%" and filter = "{bandpass}"'
    metadata = f'{bandpass} band non-DD'
    minExpTime = 15
    m = metrics.WeakLensingNvisits(m5Col=colmap['fiveSigmaDepth'], expTimeCol=colmap['exptime'],
                                   lsstFilter=bandpass, depthlim=mag_cuts[maxYr],
                                   ebvlim=lim_ebv, min_expTime=minExpTime)
    s = slicers.HealpixSlicer(nside=nside, useCache=False)
    displayDict['caption'] = f'The number of visits per pointing, over the same reduced footprint as '
    displayDict['caption'] += f'described above. A cutoff of {minExpTime} removes very short visits.'
    displayDict['order'] = 1
    bundle = mb.MetricBundle(m, s, sqlconstraint, mapsList=[dustmap], metadata=metadata,
                             summaryMetrics=standardStats, displayDict=displayDict)
    bundleList.append(bundle)

    # This probably will get replaced by @pgris's SN metrics?
    subgroupCount += 1
    displayDict['subgroup'] = f'{subgroupCount}: SNe Ia'
    displayDict['order'] = 0
    # XXX-- use the light curves from PLASTICC here
    displayDict['caption'] = 'Fraction of normal SNe Ia (using PLaSTICCs)'
    sqlconstraint = 'note not like "DD%"'
    metadata = 'non-DD'
    slicer = plasticc_slicer(plcs=plasticc_models_dict['SNIa-normal'], seed=42, badval=0)
    metric = Plasticc_metric(metricName='SNIa')
    # Set the maskval so that we count missing objects as zero.
    summary_stats = [metrics.MeanMetric(maskVal=0)]
    plotFuncs = [plots.HealpixSkyMap()]
    bundle = mb.MetricBundle(metric, slicer, sqlconstraint,
                             metadata=metadata, summaryMetrics=summary_stats,
                             plotFuncs=plotFuncs,  displayDict=displayDict)
    bundleList.append(bundle)

    subgroupCount += 1
    displayDict['subgroup'] = f'{subgroupCount}: Camera Rotator'
    displayDict['caption'] = 'Kuiper statistic (0 is uniform, 1 is delta function) of the '
    slicer = slicers.HealpixSlicer(nside=nside)
    metric1 = metrics.KuiperMetric('rotSkyPos')
    metric2 = metrics.KuiperMetric('rotTelPos')
    filterlist, colors, filterorders, filtersqls, filtermetadata = filterList(all=False,
                                                                              extraSql=None,
                                                                              extraMetadata=None)
    for f in filterlist:
        for m in [metric1, metric2]:
            plotDict = {'color': colors[f]}
            displayDict['order'] = filterorders[f]
            displayDict['caption'] += f"{m.colname} for visits in {f} band."
            bundleList.append(mb.MetricBundle(m, slicer, filtersqls[f], plotDict=plotDict,
                                              displayDict=displayDict, summaryMetrics=standardStats,
                                              plotFuncs=subsetPlots))

    # Set the runName for all bundles and return the bundleDict.
    for b in bundleList:
        b.setRunName(runName)
    return mb.makeBundlesDictFromList(bundleList)