Ejemplo n.º 1
0
    def testParallaxDcrDegenMetric(self):
        """
        Test the parallax-DCR degeneracy metric
        """
        names = [
            'observationStartMJD', 'finSeeing', 'fiveSigmaDepth', 'fieldRA',
            'fieldDec', 'filter', 'ra_pi_amp', 'dec_pi_amp', 'ra_dcr_amp',
            'dec_dcr_amp'
        ]
        types = [
            float, float, float, float, float, '<U1', float, float, float,
            float
        ]
        data = np.zeros(100, dtype=list(zip(names, types)))
        data['filter'] = 'r'
        data['fiveSigmaDepth'] = 25.

        # Set so ra is perfecly correlated
        data['ra_pi_amp'] = 1.
        data['dec_pi_amp'] = 0.01
        data['ra_dcr_amp'] = 0.2

        metric = metrics.ParallaxDcrDegenMetric(seeingCol='finSeeing')
        val = metric.run(data)
        np.testing.assert_almost_equal(np.abs(val), 1., decimal=2)

        # set so the offsets are always nearly perpendicular
        data['ra_pi_amp'] = 0.001
        data['dec_pi_amp'] = 1.
        data['ra_dcr_amp'] = 0.2

        metric = metrics.ParallaxDcrDegenMetric(seeingCol='finSeeing')
        val = metric.run(data)
        np.testing.assert_almost_equal(val, 0., decimal=2)

        # Generate a random distribution that should have little or no correlation
        rng = np.random.RandomState(42)

        data['ra_pi_amp'] = rng.rand(100) * 2 - 1.
        data['dec_pi_amp'] = rng.rand(100) * 2 - 1.
        data['ra_dcr_amp'] = rng.rand(100) * 2 - 1.
        data['dec_dcr_amp'] = rng.rand(100) * 2 - 1.

        val = metric.run(data)
        assert (np.abs(val) < 0.2)
Ejemplo n.º 2
0
def makeBundleList(dbFile, runName=None, nside=64, benchmark='design',
                   lonCol='fieldRA', latCol='fieldDec', seeingCol='seeingFwhmGeom'):
    """
    make a list of metricBundle objects to look at the scientific performance
    of an opsim run.
    """

    # List to hold everything we're going to make
    bundleList = []

    # List to hold metrics that shouldn't be saved
    noSaveBundleList = []

    # Connect to the databse
    opsimdb = db.OpsimDatabaseV4(dbFile)
    if runName is None:
        runName = os.path.basename(dbFile).replace('_sqlite.db', '')

    # Fetch the proposal ID values from the database
    propids, propTags = opsimdb.fetchPropInfo()

    # Fetch the telescope location from config
    lat, lon, height = opsimdb.fetchLatLonHeight()

    # Add metadata regarding dithering/non-dithered.
    commonname = ''.join([a for a in lonCol if a in latCol])
    if commonname == 'field':
        slicermetadata = ' (non-dithered)'
    else:
        slicermetadata = ' (%s)' % (commonname)

    # Construct a WFD SQL where clause so multiple propIDs can query by WFD:
    wfdWhere = opsimdb.createSQLWhere('WFD', propTags)
    print('#FYI: WFD "where" clause: %s' % (wfdWhere))
    ddWhere = opsimdb.createSQLWhere('DD', propTags)
    print('#FYI: DD "where" clause: %s' % (ddWhere))

    # Set up benchmark values, scaled to length of opsim run.
    runLength = opsimdb.fetchRunLength()
    if benchmark == 'requested':
        # Fetch design values for seeing/skybrightness/single visit depth.
        benchmarkVals = utils.scaleBenchmarks(runLength, benchmark='design')
        # Update nvisits with requested visits from config files.
        benchmarkVals['nvisits'] = opsimdb.fetchRequestedNvisits(propId=propTags['WFD'])
        # Calculate expected coadded depth.
        benchmarkVals['coaddedDepth'] = utils.calcCoaddedDepth(benchmarkVals['nvisits'],
                                                               benchmarkVals['singleVisitDepth'])
    elif (benchmark == 'stretch') or (benchmark == 'design'):
        # Calculate benchmarks for stretch or design.
        benchmarkVals = utils.scaleBenchmarks(runLength, benchmark=benchmark)
        benchmarkVals['coaddedDepth'] = utils.calcCoaddedDepth(benchmarkVals['nvisits'],
                                                               benchmarkVals['singleVisitDepth'])
    else:
        raise ValueError('Could not recognize benchmark value %s, use design, stretch or requested.'
                         % (benchmark))
    # Check that nvisits is not set to zero (for very short run length).
    for f in benchmarkVals['nvisits']:
        if benchmarkVals['nvisits'][f] == 0:
            print('Updating benchmark nvisits value in %s to be nonzero' % (f))
            benchmarkVals['nvisits'][f] = 1

    # Set values for min/max range of nvisits for All/WFD and DD plots. These are somewhat arbitrary.
    nvisitsRange = {}
    nvisitsRange['all'] = {'u': [20, 80], 'g': [50, 150], 'r': [100, 250],
                           'i': [100, 250], 'z': [100, 300], 'y': [100, 300]}
    nvisitsRange['DD'] = {'u': [6000, 10000], 'g': [2500, 5000], 'r': [5000, 8000],
                          'i': [5000, 8000], 'z': [7000, 10000], 'y': [5000, 8000]}
    # Scale these ranges for the runLength.
    scale = runLength / 10.0
    for prop in nvisitsRange:
        for f in nvisitsRange[prop]:
            for i in [0, 1]:
                nvisitsRange[prop][f][i] = int(np.floor(nvisitsRange[prop][f][i] * scale))

    # Filter list, and map of colors (for plots) to filters.
    filters = ['u', 'g', 'r', 'i', 'z', 'y']
    colors = {'u': 'cyan', 'g': 'g', 'r': 'y', 'i': 'r', 'z': 'm', 'y': 'k'}
    filtorder = {'u': 1, 'g': 2, 'r': 3, 'i': 4, 'z': 5, 'y': 6}

    # Easy way to run through all fi

    # Set up a list of common summary stats
    commonSummary = [metrics.MeanMetric(), metrics.RobustRmsMetric(), metrics.MedianMetric(),
                     metrics.PercentileMetric(metricName='25th%ile', percentile=25),
                     metrics.PercentileMetric(metricName='75th%ile', percentile=75),
                     metrics.MinMetric(), metrics.MaxMetric()]
    allStats = commonSummary

    # Set up some 'group' labels
    reqgroup = 'A: Required SRD metrics'
    depthgroup = 'B: Depth per filter'
    uniformitygroup = 'C: Uniformity'
    airmassgroup = 'D: Airmass distribution'
    seeinggroup = 'E: Seeing distribution'
    transgroup = 'F: Transients'
    sngroup = 'G: SN Ia'
    altAzGroup = 'H: Alt Az'
    rangeGroup = 'I: Range of Dates'
    intergroup = 'J: Inter-Night'
    phaseGroup = 'K: Max Phase Gap'
    NEOGroup = 'L: NEO Detection'

    # Set up an object to track the metricBundles that we want to combine into merged plots.
    mergedHistDict = {}

    # Set the histogram merge function.
    mergeFunc = plots.HealpixHistogram()

    keys = ['NVisits', 'coaddm5', 'NormEffTime', 'Minseeing', 'seeingAboveLimit', 'minAirmass',
            'fracAboveAirmass']

    for key in keys:
        mergedHistDict[key] = plots.PlotBundle(plotFunc=mergeFunc)

    ##
    # Calculate the fO metrics for all proposals and WFD only.
    order = 0
    for prop in ('All prop', 'WFD only'):
        if prop == 'All prop':
            metadata = 'All Visits' + slicermetadata
            sqlconstraint = ''
        if prop == 'WFD only':
            metadata = 'WFD only' + slicermetadata
            sqlconstraint = '%s' % (wfdWhere)
        # Configure the count metric which is what is used for f0 slicer.
        m1 = metrics.CountMetric(col='observationStartMJD', metricName='fO')
        plotDict = {'xlabel': 'Number of Visits', 'Asky': benchmarkVals['Area'],
                    'Nvisit': benchmarkVals['nvisitsTotal'], 'xMin': 0, 'xMax': 1500}
        summaryMetrics = [metrics.fOArea(nside=nside, norm=False, metricName='fOArea: Nvisits (#)',
                                         Asky=benchmarkVals['Area'], Nvisit=benchmarkVals['nvisitsTotal']),
                          metrics.fOArea(nside=nside, norm=True, metricName='fOArea: Nvisits/benchmark',
                                         Asky=benchmarkVals['Area'], Nvisit=benchmarkVals['nvisitsTotal']),
                          metrics.fONv(nside=nside, norm=False, metricName='fONv: Area (sqdeg)',
                                       Asky=benchmarkVals['Area'], Nvisit=benchmarkVals['nvisitsTotal']),
                          metrics.fONv(nside=nside, norm=True, metricName='fONv: Area/benchmark',
                                       Asky=benchmarkVals['Area'], Nvisit=benchmarkVals['nvisitsTotal'])]
        caption = 'The FO metric evaluates the overall efficiency of observing. '
        caption += ('fOArea: Nvisits = %.1f sq degrees receive at least this many visits out of %d. '
                    % (benchmarkVals['Area'], benchmarkVals['nvisitsTotal']))
        caption += ('fONv: Area = this many square degrees out of %.1f receive at least %d visits.'
                    % (benchmarkVals['Area'], benchmarkVals['nvisitsTotal']))
        displayDict = {'group': reqgroup, 'subgroup': 'F0', 'displayOrder': order, 'caption': caption}
        order += 1
        slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)

        bundle = metricBundles.MetricBundle(m1, slicer, sqlconstraint, plotDict=plotDict,
                                            displayDict=displayDict, summaryMetrics=summaryMetrics,
                                            plotFuncs=[plots.FOPlot()],
                                            runName=runName, metadata=metadata)
        bundleList.append(bundle)

    ###
    # Calculate the Rapid Revisit Metrics.
    order = 0
    metadata = 'All Visits' + slicermetadata
    sqlconstraint = ''
    dTmin = 40.0  # seconds
    dTmax = 30.0*60. # seconds
    minNvisit = 100
    pixArea = float(hp.nside2pixarea(nside, degrees=True))
    scale = pixArea * hp.nside2npix(nside)
    cutoff1 = 0.15
    extraStats1 = [metrics.FracBelowMetric(cutoff=cutoff1, scale=scale, metricName='Area (sq deg)')]
    extraStats1.extend(commonSummary)
    slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)
    m1 = metrics.RapidRevisitMetric(metricName='RapidRevisitUniformity',
                                    dTmin=dTmin / 60.0 / 60.0 / 24.0, dTmax=dTmax / 60.0 / 60.0 / 24.0,
                                    minNvisits=minNvisit)

    plotDict = {'xMin': 0, 'xMax': 1}
    summaryStats = extraStats1
    caption = 'Deviation from uniformity for short revisit timescales, between %s and %s seconds, ' % (
        dTmin, dTmax)
    caption += 'for pointings with at least %d visits in this time range. ' % (minNvisit)
    caption += 'Summary statistic "Area" below indicates the area on the sky which has a '
    caption += 'deviation from uniformity of < %.2f.' % (cutoff1)
    displayDict = {'group': reqgroup, 'subgroup': 'Rapid Revisit', 'displayOrder': order,
                   'caption': caption}
    bundle = metricBundles.MetricBundle(m1, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1

    dTmax = dTmax/60.0 # need time in minutes for Nrevisits metric
    m2 = metrics.NRevisitsMetric(dT=dTmax)
    plotDict = {'xMin': 0.1, 'xMax': 2000, 'logScale': True}
    cutoff2 = 800
    extraStats2 = [metrics.FracAboveMetric(cutoff=cutoff2, scale=scale, metricName='Area (sq deg)')]
    extraStats2.extend(commonSummary)
    caption = 'Number of consecutive visits with return times faster than %.1f minutes, ' % (dTmax)
    caption += 'in any filter, all proposals. '
    caption += 'Summary statistic "Area" below indicates the area on the sky which has more than '
    caption += '%d revisits within this time window.' % (cutoff2)
    summaryStats = extraStats2
    displayDict = {'group': reqgroup, 'subgroup': 'Rapid Revisit', 'displayOrder': order,
                   'caption': caption}
    bundle = metricBundles.MetricBundle(m2, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    m3 = metrics.NRevisitsMetric(dT=dTmax, normed=True)
    plotDict = {'xMin': 0, 'xMax': 1, 'cbarFormat': '%.1f'}
    cutoff3 = 0.6
    extraStats3 = [metrics.FracAboveMetric(cutoff=cutoff3, scale=scale, metricName='Area (sq deg)')]
    extraStats3.extend(commonSummary)
    summaryStats = extraStats3
    caption = 'Fraction of total visits where consecutive visits have return times faster '
    caption += 'than %.1f minutes, in any filter, all proposals. ' % (dTmax)
    caption += 'Summary statistic "Area" below indicates the area on the sky which has more '
    caption += 'than %d revisits within this time window.' % (cutoff3)
    displayDict = {'group': reqgroup, 'subgroup': 'Rapid Revisit', 'displayOrder': order,
                   'caption': caption}
    bundle = metricBundles.MetricBundle(m3, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1

    # And add a histogram of the time between quick revisits.
    binMin = 0
    binMax = 120.
    binsize = 3.
    bins_metric = np.arange(binMin / 60.0 / 24.0, (binMax + binsize) / 60. / 24., binsize / 60. / 24.)
    bins_plot = bins_metric * 24.0 * 60.0
    m1 = metrics.TgapsMetric(bins=bins_metric, metricName='dT visits')
    plotDict = {'bins': bins_plot, 'xlabel': 'dT (minutes)'}
    caption = ('Histogram of the time between consecutive revisits (<%.1f minutes), over entire sky.'
               % (binMax))
    displayDict = {'group': reqgroup, 'subgroup': 'Rapid Revisit', 'order': order,
                   'caption': caption}
    slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)
    plotFunc = plots.SummaryHistogram()
    bundle = metricBundles.MetricBundle(m1, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, runName=runName,
                                        metadata=metadata, plotFuncs=[plotFunc])
    bundleList.append(bundle)
    order += 1

    ##
    # Trigonometric parallax and proper motion @ r=20 and r=24
    slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)
    sqlconstraint = ''
    order = 0
    metric = metrics.ParallaxMetric(metricName='Parallax 20', rmag=20, seeingCol=seeingCol)
    summaryStats = allStats
    plotDict = {'cbarFormat': '%.1f', 'xMin': 0, 'xMax': 3}
    displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order,
                   'caption': 'Parallax precision at r=20. (without refraction).'}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    metric = metrics.ParallaxMetric(metricName='Parallax 24', rmag=24, seeingCol=seeingCol)
    plotDict = {'cbarFormat': '%.1f', 'xMin': 0, 'xMax': 10}
    displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order,
                   'caption': 'Parallax precision at r=24. (without refraction).'}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    metric = metrics.ParallaxMetric(metricName='Parallax Normed', rmag=24, normalize=True,
                                    seeingCol=seeingCol)
    plotDict = {'xMin': 0.5, 'xMax': 1.0}
    displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order,
                   'caption':
                   'Normalized parallax (normalized to optimum observation cadence, 1=optimal).'}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    metric = metrics.ParallaxCoverageMetric(metricName='Parallax Coverage 20', rmag=20, seeingCol=seeingCol)
    plotDict = {}
    caption = "Parallax factor coverage for an r=20 star (0 is bad, 0.5-1 is good). "
    caption += "One expects the parallax factor coverage to vary because stars on the ecliptic "
    caption += "can be observed when they have no parallax offset while stars at the pole are always "
    caption += "offset by the full parallax offset."""
    displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order,
                   'caption': caption}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    metric = metrics.ParallaxCoverageMetric(metricName='Parallax Coverage 24', rmag=24, seeingCol=seeingCol)
    plotDict = {}
    caption = "Parallax factor coverage for an r=24 star (0 is bad, 0.5-1 is good). "
    caption += "One expects the parallax factor coverage to vary because stars on the ecliptic "
    caption += "can be observed when they have no parallax offset while stars at the pole are always "
    caption += "offset by the full parallax offset."""
    displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order,
                   'caption': caption}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    metric = metrics.ParallaxDcrDegenMetric(metricName='Parallax-DCR degeneracy 20', rmag=20,
                                            seeingCol=seeingCol)
    plotDict = {}
    caption = 'Correlation between parallax offset magnitude and hour angle an r=20 star.'
    caption += ' (0 is good, near -1 or 1 is bad).'
    displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order,
                   'caption': caption}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    metric = metrics.ParallaxDcrDegenMetric(metricName='Parallax-DCR degeneracy 24', rmag=24,
                                            seeingCol=seeingCol)
    plotDict = {}
    caption = 'Correlation between parallax offset magnitude and hour angle an r=24 star.'
    caption += ' (0 is good, near -1 or 1 is bad).'
    displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order,
                   'caption': caption}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1

    metric = metrics.ProperMotionMetric(metricName='Proper Motion 20', rmag=20, seeingCol=seeingCol)

    summaryStats = allStats
    plotDict = {'xMin': 0, 'xMax': 3}
    displayDict = {'group': reqgroup, 'subgroup': 'Proper Motion', 'order': order,
                   'caption': 'Proper Motion precision at r=20.'}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    metric = metrics.ProperMotionMetric(rmag=24, metricName='Proper Motion 24', seeingCol=seeingCol)
    summaryStats = allStats
    plotDict = {'xMin': 0, 'xMax': 10}
    displayDict = {'group': reqgroup, 'subgroup': 'Proper Motion', 'order': order,
                   'caption': 'Proper Motion precision at r=24.'}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    metric = metrics.ProperMotionMetric(rmag=24, normalize=True, metricName='Proper Motion Normed',
                                        seeingCol=seeingCol)
    plotDict = {'xMin': 0.2, 'xMax': 0.7}
    caption = 'Normalized proper motion at r=24. '
    caption += '(normalized to optimum observation cadence - start/end. 1=optimal).'
    displayDict = {'group': reqgroup, 'subgroup': 'Proper Motion', 'order': order,
                   'caption': caption}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1

    ##
    # Calculate the time uniformity in each filter, for each year.
    order = 0

    slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)
    plotFuncs = [plots.TwoDMap()]
    step = 0.5
    bins = np.arange(0, 365.25 * 10 + 40, 40) - step
    metric = metrics.AccumulateUniformityMetric(bins=bins)
    plotDict = {'xlabel': 'Night (days)', 'xextent': [bins.min(
    ) + step, bins.max() + step], 'cbarTitle': 'Uniformity'}
    for f in filters:
        sqlconstraint = 'filter = "%s"' % (f)
        caption = 'Deviation from uniformity in %s band. ' % f
        caption += 'Northern Healpixels are at the top of the image.'
        caption += '(0=perfectly uniform, 1=perfectly nonuniform).'
        displayDict = {'group': uniformitygroup, 'subgroup': 'per night',
                       'order': filtorder[f], 'caption': caption}
        metadata = '%s band' % (f) + slicermetadata
        bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                            displayDict=displayDict, runName=runName, metadata=metadata,
                                            plotFuncs=plotFuncs)
        noSaveBundleList.append(bundle)

    ##
    # Depth metrics.
    slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)
    for f in filters:
        propCaption = '%s band, all proposals %s' % (f, slicermetadata)
        sqlconstraint = 'filter = "%s"' % (f)
        metadata = '%s band' % (f) + slicermetadata
        # Number of visits.
        metric = metrics.CountMetric(col='observationStartMJD', metricName='NVisits')
        plotDict = {'xlabel': 'Number of visits',
                    'xMin': nvisitsRange['all'][f][0],
                    'xMax': nvisitsRange['all'][f][1],
                    'colorMin': nvisitsRange['all'][f][0],
                    'colorMax': nvisitsRange['all'][f][1],
                    'binsize': 5,
                    'logScale': True, 'nTicks': 4, 'colorMin': 1}
        summaryStats = allStats
        displayDict = {'group': depthgroup, 'subgroup': 'Nvisits', 'order': filtorder[f],
                       'caption': 'Number of visits in filter %s, %s.' % (f, propCaption)}
        histMerge = {'color': colors[f], 'label': '%s' % (f),
                     'binsize': 5,
                     'xMin': nvisitsRange['all'][f][0], 'xMax': nvisitsRange['all'][f][1],
                     'legendloc': 'upper right'}
        bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                            displayDict=displayDict, runName=runName, metadata=metadata,
                                            summaryMetrics=summaryStats)
        mergedHistDict['NVisits'].addBundle(bundle, plotDict=histMerge)
        bundleList.append(bundle)
        # Coadded depth.
        metric = metrics.Coaddm5Metric()
        plotDict = {'zp': benchmarkVals['coaddedDepth'][f], 'xMin': -0.8, 'xMax': 0.8,
                    'xlabel': 'coadded m5 - %.1f' % benchmarkVals['coaddedDepth'][f]}
        summaryStats = allStats
        histMerge = {'legendloc': 'upper right', 'color': colors[f], 'label': '%s' % f, 'binsize': .02,
                     'xlabel': 'coadded m5 - benchmark value'}
        caption = ('Coadded depth in filter %s, with %s value subtracted (%.1f), %s. '
                   % (f, benchmark, benchmarkVals['coaddedDepth'][f], propCaption))
        caption += 'More positive numbers indicate fainter limiting magnitudes.'
        displayDict = {'group': depthgroup, 'subgroup': 'Coadded Depth',
                       'order': filtorder[f], 'caption': caption}
        bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                            displayDict=displayDict, runName=runName, metadata=metadata,
                                            summaryMetrics=summaryStats)
        mergedHistDict['coaddm5'].addBundle(bundle, plotDict=histMerge)
        bundleList.append(bundle)
        # Effective time.
        metric = metrics.TeffMetric(metricName='Normalized Effective Time', normed=True,
                                    fiducialDepth=benchmarkVals['singleVisitDepth'])
        plotDict = {'xMin': 0.1, 'xMax': 1.1}
        summaryStats = allStats
        histMerge = {'legendLoc': 'upper right', 'color': colors[f], 'label': '%s' % f, 'binsize': 0.02}
        caption = ('"Time Effective" in filter %s, calculated with fiducial single-visit depth of %s mag. '
                   % (f, benchmarkVals['singleVisitDepth'][f]))
        caption += 'Normalized by the fiducial time effective, if every observation was at '
        caption += 'the fiducial depth.'
        displayDict = {'group': depthgroup, 'subgroup': 'Time Eff.',
                       'order': filtorder[f], 'caption': caption}
        bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                            displayDict=displayDict, runName=runName, metadata=metadata,
                                            summaryMetrics=summaryStats)
        mergedHistDict['NormEffTime'].addBundle(bundle, plotDict=histMerge)
        bundleList.append(bundle)

    # Put in a z=0.5 Type Ia SN, based on Cambridge 2015 workshop notebook.
    # Check for 1) detection in any band, 2) detection on the rise in any band,
    # 3) good characterization
    peaks = {'uPeak': 25.9, 'gPeak': 23.6, 'rPeak': 22.6, 'iPeak': 22.7, 'zPeak': 22.7, 'yPeak': 22.8}
    peakTime = 15.
    transDuration = peakTime + 30.  # Days
    metric = metrics.TransientMetric(riseSlope=-2. / peakTime, declineSlope=1.4 / 30.0,
                                     transDuration=transDuration, peakTime=peakTime,
                                     surveyDuration=runLength,
                                     metricName='SNDetection', **peaks)
    caption = 'Fraction of z=0.5 type Ia SN that are detected in any filter'
    displayDict = {'group': transgroup, 'subgroup': 'Detected', 'caption': caption}
    sqlconstraint = ''
    metadata = '' + slicermetadata
    plotDict = {}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, runName=runName, metadata=metadata)
    bundleList.append(bundle)

    metric = metrics.TransientMetric(riseSlope=-2. / peakTime, declineSlope=1.4 / 30.0,
                                     transDuration=transDuration, peakTime=peakTime,
                                     surveyDuration=runLength,
                                     nPrePeak=1, metricName='SNAlert', **peaks)
    caption = 'Fraction of z=0.5 type Ia SN that are detected pre-peak in any filter'
    displayDict = {'group': transgroup, 'subgroup': 'Detected on the rise', 'caption': caption}
    plotDict = {}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, runName=runName, metadata=metadata)
    bundleList.append(bundle)

    metric = metrics.TransientMetric(riseSlope=-2. / peakTime, declineSlope=1.4 / 30.,
                                     transDuration=transDuration, peakTime=peakTime,
                                     surveyDuration=runLength, metricName='SNLots',
                                     nFilters=3, nPrePeak=3, nPerLC=2, **peaks)
    caption = 'Fraction of z=0.5 type Ia SN that are observed 6 times, 3 pre-peak, '
    caption += '3 post-peak, with observations in 3 filters'
    displayDict = {'group': transgroup, 'subgroup': 'Well observed', 'caption': caption}
    sqlconstraint = 'filter="r" or filter="g" or filter="i" or filter="z" '
    plotDict = {}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, runName=runName, metadata=metadata)
    bundleList.append(bundle)

    # Good seeing in r/i band metrics, including in first/second years.
    order = 0
    for tcolor, tlabel, timespan in zip(['k', 'g', 'r'], ['10 years', '1 year', '2 years'],
                                        ['', ' and night<=365', ' and night<=730']):
        order += 1
        for f in (['r', 'i']):
            sqlconstraint = 'filter = "%s" %s' % (f, timespan)
            propCaption = '%s band, all proposals %s, over %s.' % (f, slicermetadata, tlabel)
            metadata = '%s band, %s' % (f, tlabel) + slicermetadata
            seeing_limit = 0.7
            airmass_limit = 1.2
            metric = metrics.MinMetric(col=seeingCol)
            summaryStats = allStats
            plotDict = {'xMin': 0.35, 'xMax': 1.5, 'color': tcolor}
            displayDict = {'group': seeinggroup, 'subgroup': 'Best Seeing',
                           'order': filtorder[f] * 100 + order,
                           'caption': 'Minimum FWHMgeom values in %s.' % (propCaption)}
            histMerge = {'label': '%s %s' % (f, tlabel), 'color': tcolor,
                         'binsize': 0.03, 'xMin': 0.35, 'xMax': 1.5, 'legendloc': 'upper right'}
            bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                                displayDict=displayDict, runName=runName, metadata=metadata,
                                                summaryMetrics=summaryStats)
            mergedHistDict['Minseeing'].addBundle(bundle, plotDict=histMerge)
            bundleList.append(bundle)

            metric = metrics.FracAboveMetric(col=seeingCol, cutoff=seeing_limit)
            summaryStats = allStats
            plotDict = {'xMin': 0, 'xMax': 1.1, 'color': tcolor}
            displayDict = {'group': seeinggroup, 'subgroup': 'Good seeing fraction',
                           'order': filtorder[f] * 100 + order,
                           'caption': 'Fraction of total images with FWHMgeom worse than %.1f, in %s'
                           % (seeing_limit, propCaption)}
            histMerge = {'color': tcolor, 'label': '%s %s' % (f, tlabel),
                         'binsize': 0.05, 'legendloc': 'upper right'}
            bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                                displayDict=displayDict, runName=runName, metadata=metadata,
                                                summaryMetrics=summaryStats)
            mergedHistDict['seeingAboveLimit'].addBundle(bundle, plotDict=histMerge)
            bundleList.append(bundle)

            metric = metrics.MinMetric(col='airmass')
            plotDict = {'xMin': 1, 'xMax': 1.5, 'color': tcolor}
            summaryStats = allStats
            displayDict = {'group': airmassgroup, 'subgroup': 'Best Airmass',
                           'order': filtorder[f] * 100 + order, 'caption':
                           'Minimum airmass in %s.' % (propCaption)}
            histMerge = {'color': tcolor, 'label': '%s %s' % (f, tlabel),
                         'binsize': 0.03, 'legendloc': 'upper right'}
            bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                                displayDict=displayDict, runName=runName, metadata=metadata,
                                                summaryMetrics=summaryStats)
            mergedHistDict['minAirmass'].addBundle(bundle, plotDict=histMerge)
            bundleList.append(bundle)

            metric = metrics.FracAboveMetric(col='airmass', cutoff=airmass_limit)
            plotDict = {'xMin': 0, 'xMax': 1, 'color': tcolor}
            summaryStats = allStats
            displayDict = {'group': airmassgroup, 'subgroup': 'Low airmass fraction',
                           'order': filtorder[f] * 100 + order, 'caption':
                           'Fraction of total images with airmass higher than %.2f, in %s'
                           % (airmass_limit, propCaption)}
            histMerge = {'color': tcolor, 'label': '%s %s' % (
                f, tlabel), 'binsize': 0.05, 'legendloc': 'upper right'}

            bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                                displayDict=displayDict, runName=runName, metadata=metadata,
                                                summaryMetrics=summaryStats)
            mergedHistDict['fracAboveAirmass'].addBundle(bundle, plotDict=histMerge)
            bundleList.append(bundle)

# SNe metrics from UK workshop.


    peaks = {'uPeak': 25.9, 'gPeak': 23.6, 'rPeak': 22.6, 'iPeak': 22.7, 'zPeak': 22.7, 'yPeak': 22.8}
    peakTime = 15.
    transDuration = peakTime + 30.  # Days
    metric = metrics.TransientMetric(riseSlope=-2. / peakTime, declineSlope=1.4 / 30.0,
                                     transDuration=transDuration, peakTime=peakTime,
                                     surveyDuration=runLength,
                                     metricName='SNDetection', **peaks)
    caption = 'Fraction of z=0.5 type Ia SN that are detected at any point in their light curve in any filter'
    displayDict = {'group': sngroup, 'subgroup': 'Detected', 'caption': caption}
    sqlconstraint = ''
    plotDict = {}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, runName=runName)
    bundleList.append(bundle)

    metric = metrics.TransientMetric(riseSlope=-2. / peakTime, declineSlope=1.4 / 30.0,
                                     transDuration=transDuration, peakTime=peakTime,
                                     surveyDuration=runLength,
                                     nPrePeak=1, metricName='SNAlert', **peaks)
    caption = 'Fraction of z=0.5 type Ia SN that are detected pre-peak in any filter'
    displayDict = {'group': sngroup, 'subgroup': 'Detected on the rise', 'caption': caption}
    plotDict = {}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, runName=runName)
    bundleList.append(bundle)

    metric = metrics.TransientMetric(riseSlope=-2. / peakTime, declineSlope=1.4 / 30.,
                                     transDuration=transDuration, peakTime=peakTime,
                                     surveyDuration=runLength, metricName='SNLots',
                                     nFilters=3, nPrePeak=3, nPerLC=2, **peaks)
    caption = 'Fraction of z=0.5 type Ia SN that are observed 6 times, 3 pre-peak, '
    caption += '3 post-peak, with observations in 3 filters'
    displayDict = {'group': sngroup, 'subgroup': 'Well observed', 'caption': caption}
    sqlconstraint = 'filter="r" or filter="g" or filter="i" or filter="z" '
    plotDict = {}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, runName=runName)
    bundleList.append(bundle)

    propIDOrderDict = {}
    orderVal = 100
    for propID in propids:
        propIDOrderDict[propID] = orderVal
        orderVal += 100

    # Full range of dates:
    metric = metrics.FullRangeMetric(col='observationStartMJD')
    plotFuncs = [plots.HealpixSkyMap(), plots.HealpixHistogram()]
    caption = 'Time span of survey.'
    sqlconstraint = ''
    plotDict = {}
    displayDict = {'group': rangeGroup, 'caption': caption}

    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, runName=runName)
    bundleList.append(bundle)
    for f in filters:
        for propid in propids:
            displayDict = {'group': rangeGroup, 'subgroup': propids[propid], 'caption': caption,
                           'order': filtorder[f]}
            md = '%s, %s' % (f, propids[propid])
            sql = 'filter="%s" and proposalId=%i' % (f, propid)
            bundle = metricBundles.MetricBundle(metric, slicer, sql, plotDict=plotDict,
                                                metadata=md, plotFuncs=plotFuncs,
                                                displayDict=displayDict, runName=runName)
            bundleList.append(bundle)

    # Alt az plots
    slicer = slicers.HealpixSlicer(nside=64, latCol='zenithDistance', lonCol='azimuth', useCache=False)
    metric = metrics.CountMetric('observationStartMJD', metricName='Nvisits as function of Alt/Az')
    plotDict = {}
    plotFuncs = [plots.LambertSkyMap()]
    displayDict = {'group': altAzGroup, 'caption': 'Alt Az pointing distribution'}
    for f in filters:
        for propid in propids:
            displayDict = {'group': altAzGroup, 'subgroup': propids[propid],
                           'caption': 'Alt Az pointing distribution',
                           'order': filtorder[f]}
            md = '%s, %s' % (f, propids[propid])
            sql = 'filter="%s" and proposalId=%i' % (f, propid)
            bundle = metricBundles.MetricBundle(metric, slicer, sql, plotDict=plotDict,
                                                plotFuncs=plotFuncs, metadata=md,
                                                displayDict=displayDict, runName=runName)
            bundleList.append(bundle)

    sql = ''
    md = 'all observations'
    displayDict = {'group': altAzGroup, 'subgroup': 'All Observations',
                   'caption': 'Alt Az pointing distribution'}
    bundle = metricBundles.MetricBundle(metric, slicer, sql, plotDict=plotDict,
                                        plotFuncs=plotFuncs, metadata=md,
                                        displayDict=displayDict, runName=runName)
    bundleList.append(bundle)

    # Median inter-night gap (each and all filters)
    slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)
    metric = metrics.InterNightGapsMetric(metricName='Median Inter-Night Gap')
    sqls = ['filter = "%s"' % f for f in filters]
    orders = [filtorder[f] for f in filters]
    orders.append(0)
    sqls.append('')
    for sql, order in zip(sqls, orders):
        displayDict = {'group': intergroup, 'subgroup': 'Median Gap', 'caption': 'Median gap between days',
                       'order': order}
        bundle = metricBundles.MetricBundle(metric, slicer, sql, displayDict=displayDict, runName=runName)
        bundleList.append(bundle)

    # Max inter-night gap in r and all bands
    dslicer = slicers.HealpixSlicer(nside=nside, lonCol='ditheredRA', latCol='ditheredDec')
    metric = metrics.InterNightGapsMetric(metricName='Max Inter-Night Gap', reduceFunc=np.max)

    plotDict = {'percentileClip': 95.}
    for sql, order in zip(sqls, orders):
        displayDict = {'group': intergroup, 'subgroup': 'Max Gap', 'caption': 'Max gap between nights',
                       'order': order}
        bundle = metricBundles.MetricBundle(metric, dslicer, sql, displayDict=displayDict,
                                            plotDict=plotDict, runName=runName)
        bundleList.append(bundle)

    # largest phase gap for periods
    periods = [0.1, 1.0, 10., 100.]
    sqls = {'u': 'filter = "u"', 'r': 'filter="r"',
            'g,r,i,z': 'filter="g" or filter="r" or filter="i" or filter="z"',
            'all': ''}

    for sql in sqls:
        for period in periods:
            displayDict = {'group': phaseGroup,
                           'subgroup': 'period=%.2f days, filter=%s' % (period, sql),
                           'caption': 'Maximum phase gaps'}
            metric = metrics.PhaseGapMetric(nPeriods=1, periodMin=period, periodMax=period,
                                            metricName='PhaseGap, %.1f' % period)
            bundle = metricBundles.MetricBundle(metric, slicer, sqls[sql],
                                                displayDict=displayDict, runName=runName)
            bundleList.append(bundle)

    # NEO XY plots
    slicer = slicers.UniSlicer()
    metric = metrics.PassMetric(metricName='NEODistances')
    stacker = stackers.NEODistStacker()
    stacker2 = stackers.EclipticStacker()
    for f in filters:
        plotFunc = plots.NeoDistancePlotter(eclipMax=10., eclipMin=-10.)
        caption = 'Observations within 10 degrees of the ecliptic. Distance an H=22 NEO would be detected'
        displayDict = {'group': NEOGroup, 'subgroup': 'xy', 'order': filtorder[f],
                       'caption': caption}
        plotDict = {}
        sqlconstraint = 'filter = "%s"' % (f)
        bundle = metricBundles.MetricBundle(metric, slicer,
                                            sqlconstraint, displayDict=displayDict,
                                            stackerList=[stacker, stacker2],
                                            plotDict=plotDict,
                                            plotFuncs=[plotFunc])
        noSaveBundleList.append(bundle)

    # Solar elongation
    sqls = ['filter = "%s"' % f for f in filters]
    orders = [filtorder[f] for f in filters]
    sqls.append('')
    orders.append(0)
    for sql, order in zip(sqls, orders):
        plotFuncs = [plots.HealpixSkyMap(), plots.HealpixHistogram()]
        displayDict = {'group': NEOGroup, 'subgroup': 'Solar Elongation',
                       'caption': 'Median solar elongation in degrees', 'order': order}
        metric = metrics.MedianMetric('solarElong')
        slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)
        bundle = metricBundles.MetricBundle(metric, slicer, sql, displayDict=displayDict,
                                            plotFuncs=plotFuncs)
        bundleList.append(bundle)

        plotFuncs = [plots.HealpixSkyMap(), plots.HealpixHistogram()]
        displayDict = {'group': NEOGroup, 'subgroup': 'Solar Elongation',
                       'caption': 'Minimum solar elongation in degrees', 'order': order}
        metric = metrics.MinMetric('solarElong')
        slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)
        bundle = metricBundles.MetricBundle(metric, slicer, sql, displayDict=displayDict,
                                            plotFuncs=plotFuncs)
        bundleList.append(bundle)

    return (metricBundles.makeBundlesDictFromList(bundleList), mergedHistDict,
            metricBundles.makeBundlesDictFromList(noSaveBundleList))
Ejemplo n.º 3
0
def go(nside=64, rmag=21., SedTemplate='flat', DoRun=False, LFilters = [], \
           LNightMax=[], nightMax=1e4, \
           CustomPlotLimits=True, \
           RunOne=False, MaxRuns=1e3, \
           SpatialClip=95., \
           seeingCol='FWHMeff', \
           sCmap='cubehelix_r', \
           checkCorrKind=False, \
           wfdPlane=True, \
           useGRIZ=False):

    # Go to the directory where the sqlite databases are held...

    # cd /Users/clarkson/Data/LSST/OpSimRuns/opsim20160411

    # WIC 2015-12-29 - set up for a master-run with all cases, this time with plotting limits
    # Break the specifications across lines to make subdivision easier

    # Subsets by time first, then by filter, finally the whole shebang

    # 2016-04-23 - replaced enigma_1189 --> minion_1016
    # 2016-04-23 - replaced ops2_1092 --> minion_1020

    # (Yes the inversion of the first two is deliberate.)
    runNames = ['minion_1016', 'minion_1020', 'minion_1020', 'minion_1016', \
                    'minion_1020', 'minion_1016', 'minion_1020', 'minion_1016', \
                    'minion_1020', 'minion_1016']
    LFilters = ['', '', '', '', \
                    'u', 'u', 'y', 'y', \
                    '', '']
    LNightMax = [365, 365, 730, 730, \
                     1e4, 1e4, 1e4, 1e4, \
                     1e4, 1e4]

    # WIC try again, this time on the new astro_lsst_01_1004 only
    if wfdPlane:
        LFilters = ['', '', '', 'u', 'y']
        LNightMax = [365, 730, 1e4, 1e4, 1e4]
        runNames = ['astro_lsst_01_1004' for i in range(len(LFilters))]

    # WIC 2016-05-01 check correlation
    if checkCorrKind:
        LFilters = ['', '']
        LNightMax = [365, 365]
        runNames = ['minion_1016', 'minion_1016']

        # Type of correlation used for HA Degen
        # checkCorrKind = True
        useSpearmanR = [False, True]

    if useGRIZ:
        runNames = ['minion_1016', 'astro_lsst_01_1004', 'minion_1020']
        LFilters = ['griz' for iRun in range(len(runNames))]
        #LNightMax = [1e4 for iRun in range(len(runNames)) ]
        #LNightMax = [365 for iRun in range(len(runNames)) ]
        LNightMax = [730 for iRun in range(len(runNames))]

    # List of upper limits to parallax and proper motion error. For parallax, 3.0 mas is probably good
    LUpperParallax = []
    LUpperPropmotion = []

    if CustomPlotLimits:

        LUpperParallax = [10, 10, 10, 10, \
                              10, 10, 40, 40, \
                              3.0, 3.0 ]

        # For proper motion, it's a little tricky to say because the
        # regular case is so pathological for the field. Try the following:
        LUpperPropmotion = [40, 40, 5, 20, \
                                3.5, 20, 3.5, 20, \
                                0.5, 5]

        if len(runNames) < 2:
            LUpperPropmotion = [100 for i in range(len(runNames))]

    print "runAstromDcr.go INFO - will run the following:"
    for iSho in range(len(runNames)):
        sFilThis = ''
        # print iSho, len(LFilters)
        if iSho <= len(LFilters):
            sFilThis = sqlFromFilterString(LFilters[iSho])

        print "%i: %-12s, %1s, %i, sqlFilter -- %s" % (
            iSho, runNames[iSho], LFilters[iSho], LNightMax[iSho], sFilThis)
    print "==========================="

    print "mag max = %.2f" % (rmag)
    if RunOne:
        print "runAstromDcr.go INFO -- RunOne set. Will only run the first entry."
    print "---------------------------"

    #    print runNames
    #    if not DoRun:
    #        print "Set DoRun=True to actually run this."
    #        print len(LFilters), len(runNames), len(LFilters) == len(runNames)
    #        return

    #'kraken_1038', 'kraken_1034', 'ops2_1098']

    # nside = 64

    slicer = slicers.HealpixSlicer(nside=nside)

    # Make it so we don't bother with the silly power spectra
    plotFuncs = [plots.HealpixSkyMap(), plots.HealpixHistogram()]

    # WIC - back up the plotting arguments with a default value
    plotFuncsPristine = copy.deepcopy(plotFuncs)

    # WIC - the only way this will make sense to me is if I make a
    # dictionary of plot arguments. Let's try it...
    DPlotArgs = {}
    for plotArg in ['parallax', 'propmotion', 'coverage', 'DcrDegen']:
        DPlotArgs[plotArg] = copy.deepcopy(plotFuncs)

    if CustomPlotLimits:

        # if want non-default colormap, ensure it propagates through
        # to all the spatial maps
        if len(sCmap) > 0:
            for plotMetric in DPlotArgs.keys():
                DPlotArgs[plotMetric][0].defaultPlotDict['cmap'] = sCmap

        # Apply spatial clipping for all but the DcrDegen, for which we
        # have other limits...
        for plotMetric in ['parallax', 'propmotion', 'coverage']:
            DPlotArgs[plotMetric][0].defaultPlotDict[
                'percentileClip'] = SpatialClip

        # Some limits common to spatial maps and histograms
        for iPl in range(0, 2):
            DPlotArgs['propmotion'][iPl].defaultPlotDict['logScale'] = True

        # NOT a loop because we might want to separate out the behavior

        # Standardized range for the histograms for new parallax metrics
        DPlotArgs['coverage'][1].defaultPlotDict['xMin'] = 0.
        DPlotArgs['coverage'][1].defaultPlotDict['xMax'] = 1.
        DPlotArgs['DcrDegen'][1].defaultPlotDict['xMin'] = -1.
        DPlotArgs['DcrDegen'][1].defaultPlotDict['xMax'] = 1.

        # Standardize the sky map for the DcrDegen as well.
        DPlotArgs['coverage'][1].defaultPlotDict['xMin'] = 0.
        DPlotArgs['coverage'][1].defaultPlotDict['xMax'] = 1.
        DPlotArgs['DcrDegen'][0].defaultPlotDict['xMin'] = -1.
        DPlotArgs['DcrDegen'][0].defaultPlotDict['xMax'] = 1.
        DPlotArgs['DcrDegen'][0].defaultPlotDict['colorMin'] = -1.0
        #DPlotArgs['DcrDegen'][0].defaultPlotDict['colorMax'] =  1.0

        # Standardize at least the lower bound of the histogram in
        # both the proper motion and parallax errors. Upper limit we
        # can customize with a loop.
        DPlotArgs['propmotion'][1].defaultPlotDict[
            'xMin'] = 1e-2  # should not be zero if log scale!!
        DPlotArgs['parallax'][1].defaultPlotDict['xMin'] = 0.

    # WIC - try changing the plot dictionary

    if not DoRun:
        plotFuncs[0].defaultPlotDict['logScale'] = True
        print DPlotArgs['propmotion'][0].defaultPlotDict
        print DPlotArgs['propmotion'][1].defaultPlotDict
        return

    # The old runs have the seeing in finSeeing
    #seeingCol = 'finSeeing'

    ### UPDATE THE SEEING COLUMN
    #seeingCol = 'FWHMeff'   ## Moved up to a command-line argument

    # Use all the observations. Can change if you want a different
    # time span
    # sqlconstraint = ''

    # list of sqlconstraints now used, which gets handled within the loop.

    # run some summary stats on everything
    summaryMetrics = [metrics.MedianMetric()]

    tStart = time.time()

    # Running one, or the whole lot?
    RunMax = len(runNames)

    # allow user to set a different number (say, 2)
    if MaxRuns < RunMax and MaxRuns > 0:
        RunMax = int(MaxRuns)

    # the following keyword overrides
    if RunOne:
        RunMax = 1

    print "Starting runs. RunMax = %i" % (RunMax)

    for iRun in range(RunMax):
        run = runNames[iRun][:]

        # for run in runNames:
        # Open the OpSim database
        timeStartIteration = time.time()

        # Some syntax added to test for existence of the database
        dbFil = run + '_sqlite.db'
        if not os.access(dbFil, os.R_OK):
            print "runAstromDcr.go FATAL - cannot acces db file %s" % (dbFil)
            print "runAstromDcr.go FATAL - skipping run %s" % (run)

            continue

        else:
            deltaT = time.time() - tStart
            print "runAstromDcr.go INFO - ##################################"
            print "runAstromDcr.go INFO - starting run %s with nside=%i after %.2f minutes" \
                % (run, nside, deltaT/60.)

        opsdb = db.OpsimDatabase(run + '_sqlite.db')

        # Set SQL constraint appropriate for each filter in the
        # list. If we supplied a list of filters, use it for
        sqlconstraint = ''
        ThisFilter = 'ugrizy'
        if len(LFilters) == len(runNames):

            # Only change the filter if one was actually supplied!
            if len(LFilters[iRun]) > 0:
                ThisFilter = LFilters[iRun]

                sqlconstraint = sqlFromFilterString(ThisFilter)


###                sqlconstraint = 'filter = "%s"' % (ThisFilter)

# If nightmax was supplied, use it
        ThisNightMax = int(nightMax)  # copy not view
        if len(LNightMax) == len(runNames):

            # Only update nightmax if one was given
            try:
                ThisNightMax = int(
                    LNightMax[iRun]
                )  # This might be redundant with the fmt statement below.
                if len(sqlconstraint) < 1:
                    sqlconstraint = 'night < %i' % (ThisNightMax)
                else:
                    sqlconstraint = '%s and night < %i' % (sqlconstraint,
                                                           ThisNightMax)
            except:
                print "runAstromDcr.go WARN - run %i problem with NightMax" % (
                    iRun)
                dumdum = 1.

        # Set where the output should go - include the filter!!
        sMag = '%.1f' % (rmag)
        sMag = sMag.replace(".", "p")
        outDir = './metricEvals/%s_nside%i_%s_n%i_r%s' % (
            run, nside, ThisFilter, ThisNightMax, sMag)

        # Ensure we'll be able to find this later on...
        if CustomPlotLimits:
            outDir = '%s_lims' % (outDir)

        # if we are testing the kind of correlation used, include that
        # in the output here.
        if checkCorrKind:
            if useSpearmanR[iRun]:
                sCorr = 'spearmanR'
            else:
                sCorr = 'pearsonR'

            outDir = '%s_%s' % (outDir, sCorr)

        # From this point onwards, stuff actually gets run. This is
        # the place to output what will actually happen next.
        print "runAstromDcr.go INFO - about to run:"
        print "runAstromDcr.go INFO - sqlconstraint: %s ; run name %s ; nside %i" % (
            sqlconstraint, run, nside)
        print "runAstromDcr.go INFO - output directory will be %s" % (outDir)
        if not DoRun:
            continue

        # ensure the output directory actually exists...
        if not os.access(outDir, os.R_OK):
            print "runAstromDcr.go INFO - creating output directory %s" % (
                outDir)
            os.makedirs(outDir)

        resultsDb = db.ResultsDb(outDir=outDir)
        bundleList = []

        # WIC - to make this at least somewhat uniform, build the plot
        # functions including arguments out of our copies above.
        plotFuncsPropmotion = copy.deepcopy(DPlotArgs['propmotion'])
        plotFuncsParallax = copy.deepcopy(DPlotArgs['parallax'])
        plotFuncsCoverage = copy.deepcopy(DPlotArgs['coverage'])
        plotFuncsDcrDegen = copy.deepcopy(DPlotArgs['DcrDegen'])

        # if using custom plot limits, will want to include the limits
        # for proper motion and parallax too... programming a bit defensively
        # here, including an extra check (rather than just the length of the lists
        # above).
        if CustomPlotLimits:
            if len(LUpperParallax) == len(runNames):
                plotFuncsParallax[1].defaultPlotDict['xMax'] = float(
                    LUpperParallax[iRun])

            if len(LUpperPropmotion) == len(runNames):
                plotFuncsPropmotion[1].defaultPlotDict['xMax'] = float(
                    LUpperPropmotion[iRun])

        # Configure the metrics
        metric = metrics.ParallaxMetric(rmag=rmag,
                                        seeingCol=seeingCol,
                                        SedTemplate=SedTemplate)
        bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, runName=run,
                                            #                                            plotFuncs=plotFuncs, \
                                                plotFuncs = plotFuncsParallax, \
                                                summaryMetrics=summaryMetrics)
        bundleList.append(bundle)

        metric = metrics.ProperMotionMetric(rmag=rmag,
                                            seeingCol=seeingCol,
                                            SedTemplate=SedTemplate)
        bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, runName=run,
                                            #                                            plotFuncs=plotFuncs, \
                                                plotFuncs=plotFuncsPropmotion, \
                                                summaryMetrics=summaryMetrics)
        bundleList.append(bundle)

        metric = calibrationMetrics.ParallaxCoverageMetric(
            rmag=rmag, seeingCol=seeingCol, SedTemplate=SedTemplate)
        bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, runName=run,
                                            #                                            plotFuncs=plotFuncs, \
                                                plotFuncs=plotFuncsCoverage, \
                                                summaryMetrics=summaryMetrics)
        bundleList.append(bundle)

        # Now for the HA Degen metric. If testing the type of
        # correlation, call the metric differently here. Since the
        # argument to actually do this is only part of my github fork
        # at the moment, we use a different call. Running with default
        # arguments (checkCorrKind=False) should then work without
        # difficulty.
        metric = metrics.ParallaxDcrDegenMetric(rmag=rmag,
                                                seeingCol=seeingCol,
                                                SedTemplate=SedTemplate)

        if checkCorrKind:
            metric = metrics.ParallaxDcrDegenMetric(
                rmag=rmag,
                seeingCol=seeingCol,
                SedTemplate=SedTemplate,
                useSpearmanR=useSpearmanR[iRun])
            print "TESTING CORRELATION KIND -- useSpearmanR", useSpearmanR[
                iRun]


        bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, runName=run,
                                            #                                            plotFuncs=plotFuncs, \
                                                plotFuncs=plotFuncsDcrDegen, \
                                                summaryMetrics=summaryMetrics)
        bundleList.append(bundle)

        # Run everything and make plots
        bundleDict = metricBundles.makeBundlesDictFromList(bundleList)
        bgroup = metricBundles.MetricBundleGroup(bundleDict,
                                                 opsdb,
                                                 outDir=outDir,
                                                 resultsDb=resultsDb)
        #        try:
        bgroup.runAll()

        print "runAstromDcr.go INFO - bundles took %.2f minutes" \
            % ((time.time() - timeStartIteration) / 60.)

        #        except KeyboardInterrupt:
        #            print "runAstromDcr.go FATAL - keyboard interrupt detected. Halting."
        #            return
        bgroup.plotAll()

        print "runAstromDcr.go INFO - bundles + plotting took %.2f minutes" \
            % ((time.time() - timeStartIteration) / 60.)

    print "Finished entire set. %i runs took %.2f minutes." % (
        iRun + 1, (time.time() - tStart) / 60.)
Ejemplo n.º 4
0
def astrometryBatch(colmap=None,
                    runName='opsim',
                    extraSql=None,
                    extraMetadata=None,
                    nside=64,
                    ditherStacker=None,
                    ditherkwargs=None):
    """Metrics for evaluating proper motion and parallax.

    Parameters
    ----------
    colmap : dict or None, opt
        A dictionary with a mapping of column names. Default will use OpsimV4 column names.
    runName : str, opt
        The name of the simulated survey. Default is "opsim".
    nside : int, opt
        Nside for the healpix slicer. Default 64.
    extraSql : str or None, opt
        Additional sql constraint to apply to all metrics.
    extraMetadata : str or None, opt
        Additional metadata to apply to all results.
    ditherStacker: str or lsst.sims.maf.stackers.BaseDitherStacker
        Optional dither stacker to use to define ra/dec columns.
    ditherkwargs: dict, opt
        Optional dictionary of kwargs for the dither stacker.

    Returns
    -------
    metricBundleDict
    """
    if colmap is None:
        colmap = ColMapDict('opsimV4')
    bundleList = []

    sql = ''
    metadata = 'All visits'
    # Add additional sql constraint (such as wfdWhere) and metadata, if provided.
    if (extraSql is not None) and (len(extraSql) > 0):
        sql = extraSql
        if extraMetadata is None:
            metadata = extraSql.replace('filter =', '').replace('filter=', '')
            metadata = metadata.replace('"', '').replace("'", '')
    if extraMetadata is not None:
        metadata = extraMetadata

    subgroup = metadata

    raCol, decCol, degrees, ditherStacker, ditherMeta = radecCols(
        ditherStacker, colmap, ditherkwargs)
    # Don't want dither info in subgroup (too long), but do want it in bundle name.
    metadata = combineMetadata(metadata, ditherMeta)

    rmags_para = [22.4, 24.0]
    rmags_pm = [20.5, 24.0]

    # Set up parallax/dcr stackers.
    parallaxStacker = stackers.ParallaxFactorStacker(raCol=raCol,
                                                     decCol=decCol,
                                                     dateCol=colmap['mjd'],
                                                     degrees=degrees)
    dcrStacker = stackers.DcrStacker(filterCol=colmap['filter'],
                                     altCol=colmap['alt'],
                                     degrees=degrees,
                                     raCol=raCol,
                                     decCol=decCol,
                                     lstCol=colmap['lst'],
                                     site='LSST',
                                     mjdCol=colmap['mjd'])

    # Set up parallax metrics.
    slicer = slicers.HealpixSlicer(nside=nside,
                                   lonCol=raCol,
                                   latCol=decCol,
                                   latLonDeg=degrees)
    subsetPlots = [plots.HealpixSkyMap(), plots.HealpixHistogram()]

    displayDict = {
        'group': 'Parallax',
        'subgroup': subgroup,
        'order': 0,
        'caption': None
    }
    # Expected error on parallax at 10 AU.
    plotmaxVals = (2.0, 15.0)
    for rmag, plotmax in zip(rmags_para, plotmaxVals):
        plotDict = {
            'xMin': 0,
            'xMax': plotmax,
            'colorMin': 0,
            'colorMax': plotmax
        }
        metric = metrics.ParallaxMetric(metricName='Parallax Error @ %.1f' %
                                        (rmag),
                                        rmag=rmag,
                                        seeingCol=colmap['seeingGeom'],
                                        filterCol=colmap['filter'],
                                        m5Col=colmap['fiveSigmaDepth'],
                                        normalize=False)
        bundle = mb.MetricBundle(metric,
                                 slicer,
                                 sql,
                                 metadata=metadata,
                                 stackerList=[parallaxStacker, ditherStacker],
                                 displayDict=displayDict,
                                 plotDict=plotDict,
                                 summaryMetrics=standardSummary(),
                                 plotFuncs=subsetPlots)
        bundleList.append(bundle)
        displayDict['order'] += 1

    # Parallax normalized to 'best possible' if all visits separated by 6 months.
    # This separates the effect of cadence from depth.
    for rmag in rmags_para:
        metric = metrics.ParallaxMetric(
            metricName='Normalized Parallax @ %.1f' % (rmag),
            rmag=rmag,
            seeingCol=colmap['seeingGeom'],
            filterCol=colmap['filter'],
            m5Col=colmap['fiveSigmaDepth'],
            normalize=True)
        bundle = mb.MetricBundle(metric,
                                 slicer,
                                 sql,
                                 metadata=metadata,
                                 stackerList=[parallaxStacker, ditherStacker],
                                 displayDict=displayDict,
                                 summaryMetrics=standardSummary(),
                                 plotFuncs=subsetPlots)
        bundleList.append(bundle)
        displayDict['order'] += 1
    # Parallax factor coverage.
    for rmag in rmags_para:
        metric = metrics.ParallaxCoverageMetric(
            metricName='Parallax Coverage @ %.1f' % (rmag),
            rmag=rmag,
            m5Col=colmap['fiveSigmaDepth'],
            mjdCol=colmap['mjd'],
            filterCol=colmap['filter'],
            seeingCol=colmap['seeingGeom'])
        bundle = mb.MetricBundle(metric,
                                 slicer,
                                 sql,
                                 metadata=metadata,
                                 stackerList=[parallaxStacker, ditherStacker],
                                 displayDict=displayDict,
                                 summaryMetrics=standardSummary(),
                                 plotFuncs=subsetPlots)
        bundleList.append(bundle)
        displayDict['order'] += 1
    # Parallax problems can be caused by HA and DCR degeneracies. Check their correlation.
    for rmag in rmags_para:
        metric = metrics.ParallaxDcrDegenMetric(
            metricName='Parallax-DCR degeneracy @ %.1f' % (rmag),
            rmag=rmag,
            seeingCol=colmap['seeingEff'],
            filterCol=colmap['filter'],
            m5Col=colmap['fiveSigmaDepth'])
        caption = 'Correlation between parallax offset magnitude and hour angle for a r=%.1f star.' % (
            rmag)
        caption += ' (0 is good, near -1 or 1 is bad).'
        bundle = mb.MetricBundle(
            metric,
            slicer,
            sql,
            metadata=metadata,
            stackerList=[dcrStacker, parallaxStacker, ditherStacker],
            displayDict=displayDict,
            summaryMetrics=standardSummary(),
            plotFuncs=subsetPlots)
        bundleList.append(bundle)
        displayDict['order'] += 1

    # Proper Motion metrics.
    displayDict = {
        'group': 'Proper Motion',
        'subgroup': subgroup,
        'order': 0,
        'caption': None
    }
    # Proper motion errors.
    plotmaxVals = (1.0, 5.0)
    for rmag, plotmax in zip(rmags_pm, plotmaxVals):
        plotDict = {
            'xMin': 0,
            'xMax': plotmax,
            'colorMin': 0,
            'colorMax': plotmax
        }
        metric = metrics.ProperMotionMetric(
            metricName='Proper Motion Error @ %.1f' % rmag,
            rmag=rmag,
            m5Col=colmap['fiveSigmaDepth'],
            mjdCol=colmap['mjd'],
            filterCol=colmap['filter'],
            seeingCol=colmap['seeingGeom'],
            normalize=False)
        bundle = mb.MetricBundle(metric,
                                 slicer,
                                 sql,
                                 metadata=metadata,
                                 stackerList=[ditherStacker],
                                 displayDict=displayDict,
                                 plotDict=plotDict,
                                 summaryMetrics=standardSummary(),
                                 plotFuncs=subsetPlots)
        bundleList.append(bundle)
        displayDict['order'] += 1
    # Normalized proper motion.
    for rmag in rmags_pm:
        metric = metrics.ProperMotionMetric(
            metricName='Normalized Proper Motion @ %.1f' % rmag,
            rmag=rmag,
            m5Col=colmap['fiveSigmaDepth'],
            mjdCol=colmap['mjd'],
            filterCol=colmap['filter'],
            seeingCol=colmap['seeingGeom'],
            normalize=True)
        bundle = mb.MetricBundle(metric,
                                 slicer,
                                 sql,
                                 metadata=metadata,
                                 stackerList=[ditherStacker],
                                 displayDict=displayDict,
                                 summaryMetrics=standardSummary(),
                                 plotFuncs=subsetPlots)
        bundleList.append(bundle)
        displayDict['order'] += 1

    # Set the runName for all bundles and return the bundleDict.
    for b in bundleList:
        b.setRunName(runName)
    return mb.makeBundlesDictFromList(bundleList)
Ejemplo n.º 5
0
def scienceRadarBatch(colmap=None,
                      runName='',
                      extraSql=None,
                      extraMetadata=None,
                      nside=64,
                      benchmarkArea=18000,
                      benchmarkNvisits=825,
                      DDF=True):
    """A batch of metrics for looking at survey performance relative to the SRD and the main
    science drivers of LSST.

    Parameters
    ----------

    """
    # Hide dependencies
    from mafContrib.LSSObsStrategy.galaxyCountsMetric_extended import GalaxyCountsMetric_extended
    from mafContrib import Plasticc_metric, plasticc_slicer, load_plasticc_lc

    if colmap is None:
        colmap = ColMapDict('opsimV4')

    if extraSql is None:
        extraSql = ''
    if extraSql == '':
        joiner = ''
    else:
        joiner = ' and '

    bundleList = []

    healslicer = slicers.HealpixSlicer(nside=nside)
    subsetPlots = [plots.HealpixSkyMap(), plots.HealpixHistogram()]

    # Load up the plastic light curves
    models = ['SNIa-normal', 'KN']
    plasticc_models_dict = {}
    for model in models:
        plasticc_models_dict[model] = list(
            load_plasticc_lc(model=model).values())

    #########################
    # SRD, DM, etc
    #########################
    sql = extraSql
    displayDict = {
        'group': 'SRD',
        'subgroup': 'fO',
        'order': 0,
        'caption': None
    }
    metric = metrics.CountMetric(col=colmap['mjd'], metricName='fO')
    plotDict = {
        'xlabel': 'Number of Visits',
        'Asky': benchmarkArea,
        'Nvisit': benchmarkNvisits,
        'xMin': 0,
        'xMax': 1500
    }
    summaryMetrics = [
        metrics.fOArea(nside=nside,
                       norm=False,
                       metricName='fOArea',
                       Asky=benchmarkArea,
                       Nvisit=benchmarkNvisits),
        metrics.fOArea(nside=nside,
                       norm=True,
                       metricName='fOArea/benchmark',
                       Asky=benchmarkArea,
                       Nvisit=benchmarkNvisits),
        metrics.fONv(nside=nside,
                     norm=False,
                     metricName='fONv',
                     Asky=benchmarkArea,
                     Nvisit=benchmarkNvisits),
        metrics.fONv(nside=nside,
                     norm=True,
                     metricName='fONv/benchmark',
                     Asky=benchmarkArea,
                     Nvisit=benchmarkNvisits)
    ]
    caption = 'The FO metric evaluates the overall efficiency of observing. '
    caption += (
        'foNv: out of %.2f sq degrees, the area receives at least X and a median of Y visits '
        '(out of %d, if compared to benchmark). ' %
        (benchmarkArea, benchmarkNvisits))
    caption += ('fOArea: this many sq deg (out of %.2f sq deg if compared '
                'to benchmark) receives at least %d visits. ' %
                (benchmarkArea, benchmarkNvisits))
    displayDict['caption'] = caption
    bundle = mb.MetricBundle(metric,
                             healslicer,
                             sql,
                             plotDict=plotDict,
                             displayDict=displayDict,
                             summaryMetrics=summaryMetrics,
                             plotFuncs=[plots.FOPlot()])
    bundleList.append(bundle)
    displayDict['order'] += 1

    displayDict = {
        'group': 'SRD',
        'subgroup': 'Gaps',
        'order': 0,
        'caption': None
    }
    plotDict = {'percentileClip': 95.}
    for filtername in 'ugrizy':
        sql = extraSql + joiner + 'filter ="%s"' % filtername
        metric = metrics.MaxGapMetric()
        summaryMetrics = [
            metrics.PercentileMetric(
                percentile=95,
                metricName='95th percentile of Max gap, %s' % filtername)
        ]
        bundle = mb.MetricBundle(metric,
                                 healslicer,
                                 sql,
                                 plotFuncs=subsetPlots,
                                 summaryMetrics=summaryMetrics,
                                 displayDict=displayDict,
                                 plotDict=plotDict)
        bundleList.append(bundle)
        displayDict['order'] += 1

    #########################
    # Solar System
    #########################

    # XXX -- may want to do Solar system seperatly

    # XXX--fraction of NEOs detected (assume some nominal size and albido)
    # XXX -- fraction of MBAs detected
    # XXX -- fraction of KBOs detected
    # XXX--any others? Planet 9s? Comets? Neptune Trojans?

    #########################
    # Cosmology
    #########################

    displayDict = {
        'group': 'Cosmology',
        'subgroup': 'galaxy counts',
        'order': 0,
        'caption': None
    }
    plotDict = {'percentileClip': 95.}
    sql = extraSql + joiner + 'filter="i"'
    metric = GalaxyCountsMetric_extended(filterBand='i',
                                         redshiftBin='all',
                                         nside=nside)
    summary = [
        metrics.AreaSummaryMetric(area=18000,
                                  reduce_func=np.sum,
                                  decreasing=True,
                                  metricName='N Galaxies (WFD)')
    ]
    summary.append(metrics.SumMetric(metricName='N Galaxies (all)'))
    # make sure slicer has cache off
    slicer = slicers.HealpixSlicer(nside=nside, useCache=False)
    bundle = mb.MetricBundle(metric,
                             slicer,
                             sql,
                             plotDict=plotDict,
                             displayDict=displayDict,
                             summaryMetrics=summary,
                             plotFuncs=subsetPlots)
    bundleList.append(bundle)
    displayDict['order'] += 1

    # let's put Type Ia SN in here
    displayDict['subgroup'] = 'SNe Ia'
    metadata = ''
    # XXX-- use the light curves from PLASTICC here
    displayDict['Caption'] = 'Fraction of normal SNe Ia'
    sql = ''
    slicer = plasticc_slicer(plcs=plasticc_models_dict['SNIa-normal'],
                             seed=42,
                             badval=0)
    metric = Plasticc_metric(metricName='SNIa')
    # Set the maskval so that we count missing objects as zero.
    summary_stats = [metrics.MeanMetric(maskVal=0)]
    plotFuncs = [plots.HealpixSkyMap()]
    bundle = mb.MetricBundle(metric,
                             slicer,
                             sql,
                             runName=runName,
                             summaryMetrics=summary_stats,
                             plotFuncs=plotFuncs,
                             metadata=metadata,
                             displayDict=displayDict)
    bundleList.append(bundle)
    displayDict['order'] += 1

    # XXX--need some sort of metric for weak lensing and camera rotation.

    #########################
    # Variables and Transients
    #########################
    displayDict = {
        'group': 'Variables and Transients',
        'subgroup': 'Periodic Stars',
        'order': 0,
        'caption': None
    }
    periods = [0.1, 0.5, 1., 2., 5., 10., 20.]  # days

    plotDict = {}
    metadata = ''
    sql = extraSql
    displayDict[
        'Caption'] = 'Measure of how well a periodic signal can be measured combining amplitude and phase coverage. 1 is perfect, 0 is no way to fit'
    for period in periods:
        summary = metrics.PercentileMetric(
            percentile=10.,
            metricName='10th %%-ile Periodic Quality, Period=%.1f days' %
            period)
        metric = metrics.PeriodicQualityMetric(
            period=period,
            starMag=20.,
            metricName='Periodic Stars, P=%.1f d' % period)
        bundle = mb.MetricBundle(metric,
                                 healslicer,
                                 sql,
                                 metadata=metadata,
                                 displayDict=displayDict,
                                 plotDict=plotDict,
                                 plotFuncs=subsetPlots,
                                 summaryMetrics=summary)
        bundleList.append(bundle)
        displayDict['order'] += 1

    # XXX add some PLASTICC metrics for kilovnova and tidal disruption events.
    displayDict['subgroup'] = 'KN'
    displayDict['caption'] = 'Fraction of Kilonova (from PLASTICC)'
    sql = ''
    slicer = plasticc_slicer(plcs=plasticc_models_dict['KN'],
                             seed=43,
                             badval=0)
    metric = Plasticc_metric(metricName='KN')
    summary_stats = [metrics.MeanMetric(maskVal=0)]
    plotFuncs = [plots.HealpixSkyMap()]
    bundle = mb.MetricBundle(metric,
                             slicer,
                             sql,
                             runName=runName,
                             summaryMetrics=summary_stats,
                             plotFuncs=plotFuncs,
                             metadata=metadata,
                             displayDict=displayDict)
    bundleList.append(bundle)

    displayDict['order'] += 1

    # XXX -- would be good to add some microlensing events, for both MW and LMC/SMC.

    #########################
    # Milky Way
    #########################

    # Let's do the proper motion, parallax, and DCR degen of a 20nd mag star
    rmag = 20.
    displayDict = {
        'group': 'Milky Way',
        'subgroup': 'Astrometry',
        'order': 0,
        'caption': None
    }

    sql = extraSql
    metadata = ''
    plotDict = {'percentileClip': 95.}
    metric = metrics.ParallaxMetric(metricName='Parallax Error r=%.1f' %
                                    (rmag),
                                    rmag=rmag,
                                    seeingCol=colmap['seeingGeom'],
                                    filterCol=colmap['filter'],
                                    m5Col=colmap['fiveSigmaDepth'],
                                    normalize=False)
    summary = [
        metrics.AreaSummaryMetric(area=18000,
                                  reduce_func=np.median,
                                  decreasing=False,
                                  metricName='Median Parallax Error (WFD)')
    ]
    summary.append(
        metrics.PercentileMetric(percentile=95,
                                 metricName='95th Percentile Parallax Error'))
    bundle = mb.MetricBundle(metric,
                             healslicer,
                             sql,
                             metadata=metadata,
                             displayDict=displayDict,
                             plotDict=plotDict,
                             plotFuncs=subsetPlots,
                             summaryMetrics=summary)
    bundleList.append(bundle)
    displayDict['order'] += 1

    metric = metrics.ProperMotionMetric(
        metricName='Proper Motion Error r=%.1f' % rmag,
        rmag=rmag,
        m5Col=colmap['fiveSigmaDepth'],
        mjdCol=colmap['mjd'],
        filterCol=colmap['filter'],
        seeingCol=colmap['seeingGeom'],
        normalize=False)
    summary = [
        metrics.AreaSummaryMetric(
            area=18000,
            reduce_func=np.median,
            decreasing=False,
            metricName='Median Proper Motion Error (WFD)')
    ]
    summary.append(
        metrics.PercentileMetric(
            metricName='95th Percentile Proper Motion Error'))
    bundle = mb.MetricBundle(metric,
                             healslicer,
                             sql,
                             metadata=metadata,
                             displayDict=displayDict,
                             plotDict=plotDict,
                             summaryMetrics=summary,
                             plotFuncs=subsetPlots)
    bundleList.append(bundle)
    displayDict['order'] += 1

    metric = metrics.ParallaxDcrDegenMetric(
        metricName='Parallax-DCR degeneracy r=%.1f' % (rmag),
        rmag=rmag,
        seeingCol=colmap['seeingEff'],
        filterCol=colmap['filter'],
        m5Col=colmap['fiveSigmaDepth'])
    caption = 'Correlation between parallax offset magnitude and hour angle for a r=%.1f star.' % (
        rmag)
    caption += ' (0 is good, near -1 or 1 is bad).'
    # XXX--not sure what kind of summary to do here
    summary = [metrics.MeanMetric(metricName='Mean DCR Degeneracy')]
    bundle = mb.MetricBundle(metric,
                             healslicer,
                             sql,
                             metadata=metadata,
                             displayDict=displayDict,
                             summaryMetrics=summary,
                             plotFuncs=subsetPlots)
    bundleList.append(bundle)
    displayDict['order'] += 1

    for b in bundleList:
        b.setRunName(runName)

    #########################
    # DDF
    #########################
    ddf_time_bundleDicts = []
    if DDF:
        # Hide this import to avoid adding a dependency.
        from lsst.sims.featureScheduler.surveys import generate_dd_surveys
        ddf_surveys = generate_dd_surveys()
        # For doing a high-res sampling of the DDF for co-adds
        ddf_radius = 1.8  # Degrees
        ddf_nside = 512

        ra, dec = hpid2RaDec(ddf_nside, np.arange(hp.nside2npix(ddf_nside)))

        displayDict = {
            'group': 'DDF depths',
            'subgroup': None,
            'order': 0,
            'caption': None
        }

        # Run the inter and intra gaps at the center of the DDFs
        for survey in ddf_surveys:
            slicer = slicers.UserPointsSlicer(ra=np.degrees(survey.ra),
                                              dec=np.degrees(survey.dec),
                                              useCamera=False)
            ddf_time_bundleDicts.append(
                interNight(colmap=colmap,
                           slicer=slicer,
                           runName=runName,
                           nside=64,
                           extraSql='note="%s"' % survey.survey_name,
                           subgroup=survey.survey_name)[0])
            ddf_time_bundleDicts.append(
                intraNight(colmap=colmap,
                           slicer=slicer,
                           runName=runName,
                           nside=64,
                           extraSql='note="%s"' % survey.survey_name,
                           subgroup=survey.survey_name)[0])

        for survey in ddf_surveys:
            displayDict['subgroup'] = survey.survey_name
            # Crop off the u-band only DDF
            if survey.survey_name[0:4] != 'DD:u':
                dist_to_ddf = angularSeparation(ra, dec, np.degrees(survey.ra),
                                                np.degrees(survey.dec))
                goodhp = np.where(dist_to_ddf <= ddf_radius)
                slicer = slicers.UserPointsSlicer(ra=ra[goodhp],
                                                  dec=dec[goodhp],
                                                  useCamera=False)
                for filtername in ['u', 'g', 'r', 'i', 'z', 'y']:
                    metric = metrics.Coaddm5Metric(
                        metricName=survey.survey_name + ', ' + filtername)
                    summary = [
                        metrics.MedianMetric(metricName='median depth ' +
                                             survey.survey_name + ', ' +
                                             filtername)
                    ]
                    sql = extraSql + joiner + 'filter = "%s"' % filtername
                    bundle = mb.MetricBundle(metric,
                                             slicer,
                                             sql,
                                             metadata=metadata,
                                             displayDict=displayDict,
                                             summaryMetrics=summary,
                                             plotFuncs=[])
                    bundleList.append(bundle)
                    displayDict['order'] += 1

        displayDict = {
            'group': 'DDF Transients',
            'subgroup': None,
            'order': 0,
            'caption': None
        }
        for survey in ddf_surveys:
            displayDict['subgroup'] = survey.survey_name
            if survey.survey_name[0:4] != 'DD:u':
                slicer = plasticc_slicer(
                    plcs=plasticc_models_dict['SNIa-normal'],
                    seed=42,
                    ra_cen=survey.ra,
                    dec_cen=survey.dec,
                    radius=np.radians(3.),
                    useCamera=False)
                metric = Plasticc_metric(metricName=survey.survey_name +
                                         ' SNIa')
                sql = ''
                summary_stats = [metrics.MeanMetric(maskVal=0)]
                plotFuncs = [plots.HealpixSkyMap()]
                bundle = mb.MetricBundle(metric,
                                         slicer,
                                         sql,
                                         runName=runName,
                                         summaryMetrics=summary_stats,
                                         plotFuncs=plotFuncs,
                                         metadata=metadata,
                                         displayDict=displayDict)
                bundleList.append(bundle)

    displayDict['order'] += 1

    for b in bundleList:
        b.setRunName(runName)

    bundleDict = mb.makeBundlesDictFromList(bundleList)

    intraDict = intraNight(colmap=colmap,
                           runName=runName,
                           nside=nside,
                           extraSql=extraSql,
                           extraMetadata=extraMetadata)[0]
    interDict = interNight(colmap=colmap,
                           runName=runName,
                           nside=nside,
                           extraSql=extraSql,
                           extraMetadata=extraMetadata)[0]

    bundleDict.update(intraDict)
    bundleDict.update(interDict)
    for ddf_time in ddf_time_bundleDicts:
        bundleDict.update(ddf_time)

    return bundleDict
Ejemplo n.º 6
0
def astrometryBatch(colmap=None, runName='opsim',
                    extraSql=None, extraMetadata=None,
                    nside=64):
    # Allow user to add dithering.
    if colmap is None:
        colmap = ColMapDict('opsimV4')
    bundleList = []

    sql = ''
    metadata = 'All visits'
    # Add additional sql constraint (such as wfdWhere) and metadata, if provided.
    if (extraSql is not None) and (len(extraSql) > 0):
        sql = extraSql
        if extraMetadata is None:
            metadata = extraSql.replace('filter =', '').replace('filter=', '')
            metadata = metadata.replace('"', '').replace("'", '')
    if extraMetadata is not None:
        metadata = extraMetadata

    subgroup = metadata

    raCol = colmap['ra']
    decCol = colmap['dec']
    degrees = colmap['raDecDeg']

    # Set up stackers.
    parallaxStacker = stackers.ParallaxFactorStacker(raCol=raCol, decCol=decCol,
                                                     dateCol=colmap['mjd'], degrees=degrees)
    dcrStacker = stackers.DcrStacker(filterCol=colmap['filter'], altCol=colmap['alt'], degrees=degrees,
                                     raCol=raCol, decCol=decCol, lstCol=colmap['lst'],
                                     site='LSST', mjdCol=colmap['mjd'])

    # Set up parallax metrics.
    slicer = slicers.HealpixSlicer(nside=nside, lonCol=raCol, latCol=decCol, latLonDeg=degrees)
    subsetPlots = [plots.HealpixSkyMap(), plots.HealpixHistogram()]

    displayDict = {'group': 'Parallax', 'subgroup': subgroup,
                   'order': 0, 'caption': None}
    # Expected error on parallax at 10 AU.
    for rmag in (20.0, 24.0):
        metric = metrics.ParallaxMetric(metricName='Parallax @ %.1f' % (rmag), rmag=rmag,
                                        seeingCol=colmap['seeingGeom'], filterCol=colmap['filter'],
                                        m5Col=colmap['fiveSigmaDepth'], normalize=False)
        bundle = mb.MetricBundle(metric, slicer, sql, metadata=metadata,
                                 stackerList=[parallaxStacker],
                                 displayDict=displayDict,
                                 summaryMetrics=standardSummary(),
                                 plotFuncs=subsetPlots)
        bundleList.append(bundle)
        displayDict['order'] += 1

    # Parallax normalized to 'best possible' if all visits separated by 6 months.
    # This separates the effect of cadence from depth.
    for rmag in (20.0, 24.0):
        metric = metrics.ParallaxMetric(metricName='Normalized Parallax @ %.1f' % (rmag), rmag=rmag,
                                        seeingCol=colmap['seeingGeom'], filterCol=colmap['filter'],
                                        m5Col=colmap['fiveSigmaDepth'], normalize=True)
        bundle = mb.MetricBundle(metric, slicer, sql, metadata=metadata,
                                 stackerList=[parallaxStacker],
                                 displayDict=displayDict,
                                 summaryMetrics=standardSummary(),
                                 plotFuncs=subsetPlots)
        bundleList.append(bundle)
        displayDict['order'] += 1
    # Parallax factor coverage.
    for rmag in (20.0, 24.0):
        metric = metrics.ParallaxCoverageMetric(metricName='Parallax Coverage @ %.1f' % (rmag),
                                                rmag=rmag, m5Col=colmap['fiveSigmaDepth'],
                                                mjdCol=colmap['mjd'], filterCol=colmap['filter'],
                                                seeingCol=colmap['seeingGeom'])
        bundle = mb.MetricBundle(metric, slicer, sql, metadata=metadata,
                                 stackerList=[parallaxStacker],
                                 displayDict=displayDict, summaryMetrics=standardSummary(),
                                 plotFuncs=subsetPlots)
        bundleList.append(bundle)
        displayDict['order'] += 1
    # Parallax problems can be caused by HA and DCR degeneracies. Check their correlation.
    for rmag in (20.0, 24.0):
        metric = metrics.ParallaxDcrDegenMetric(metricName='Parallax-DCR degeneracy @ %.1f' % (rmag),
                                                rmag=rmag, seeingCol=colmap['seeingEff'],
                                                filterCol=colmap['filter'], m5Col=colmap['fiveSigmaDepth'])
        caption = 'Correlation between parallax offset magnitude and hour angle for a r=%.1f star.' % (rmag)
        caption += ' (0 is good, near -1 or 1 is bad).'
        bundle = mb.MetricBundle(metric, slicer, sql, metadata=metadata,
                                 stackerList=[dcrStacker, parallaxStacker],
                                 displayDict=displayDict, summaryMetrics=standardSummary(),
                                 plotFuncs=subsetPlots)
        bundleList.append(bundle)
        displayDict['order'] += 1

    # Proper Motion metrics.
    displayDict = {'group': 'Proper Motion', 'subgroup': subgroup, 'order': 0, 'caption': None}
    # Proper motion errors.
    for rmag in (20.0, 24.0):
        metric = metrics.ProperMotionMetric(metricName='Proper Motion %.1f' % rmag,
                                            rmag=rmag, m5Col=colmap['fiveSigmaDepth'],
                                            mjdCol=colmap['mjd'], filterCol=colmap['filter'],
                                            seeingCol=colmap['seeingGeom'], normalize=False)
        bundle = mb.MetricBundle(metric, slicer, sql, metadata=metadata,
                                 displayDict=displayDict, summaryMetrics=standardSummary(),
                                 plotFuncs=subsetPlots)
        bundleList.append(bundle)
        displayDict['order'] += 1
    # Normalized proper motion.
    for rmag in (20.0, 24.0):
        metric = metrics.ProperMotionMetric(metricName='Normalized Proper Motion %.1f' % rmag,
                                            rmag=rmag, m5Col=colmap['fiveSigmaDepth'],
                                            mjdCol=colmap['mjd'], filterCol=colmap['filter'],
                                            seeingCol=colmap['seeingGeom'], normalize=True)
        bundle = mb.MetricBundle(metric, slicer, sql, metadata=metadata,
                                 displayDict=displayDict, summaryMetrics=standardSummary(),
                                 plotFuncs=subsetPlots)
        bundleList.append(bundle)
        displayDict['order'] += 1

    # Set the runName for all bundles and return the bundleDict.
    for b in bundleList:
        b.setRunName(runName)
    return mb.makeBundlesDictFromList(bundleList)