Ejemplo n.º 1
0
def test_direction_results(tmp_path, simulated_dl2_file):
    dl2_df = pd.read_hdf(simulated_dl2_file, key=dl2_params_lstcam_key)
    # Strings are required as input for the output files not PosixPath
    plt.figure()
    plot_dl2.direction_results(dl2_df,
                               points_outfile=os.path.join(tmp_path, 'dir.h5'),
                               plot_outfile=os.path.join(tmp_path, 'dir.png'))
Ejemplo n.º 2
0
def main():
    custom_config = {}
    if args.config_file is not None:
        try:
            custom_config = read_configuration_file(args.config_file)
        except ("Custom configuration could not be loaded !!!"):
            pass

    config = replace_config(standard_config, custom_config)

    reg_energy, reg_disp_vector, cls_gh = dl1_to_dl2.build_models(
        args.gammafile,
        args.protonfile,
        save_models=args.storerf,
        path_models=args.path_models,
        custom_config=config,
    )

    gammas = filter_events(
        pd.read_hdf(args.gammatest, key=dl1_params_lstcam_key),
        config["events_filters"],
    )
    proton = filter_events(
        pd.read_hdf(args.protontest, key=dl1_params_lstcam_key),
        config["events_filters"],
    )

    data = pd.concat([gammas, proton], ignore_index=True)

    dl2 = dl1_to_dl2.apply_models(data,
                                  cls_gh,
                                  reg_energy,
                                  reg_disp_vector,
                                  custom_config=config)

    ####PLOT SOME RESULTS#####

    selected_gammas = dl2.query('reco_type==0 & mc_type==0')

    if (len(selected_gammas) == 0):
        log.warning('No gammas selected, I will not plot any output')
        sys.exit()

    plot_dl2.plot_features(dl2)
    if not args.batch:
        plt.show()

    plot_dl2.energy_results(selected_gammas)
    if not args.batch:
        plt.show()

    plot_dl2.direction_results(selected_gammas)
    if not args.batch:
        plt.show()

    plot_dl2.plot_disp_vector(selected_gammas)
    if not args.batch:
        plt.show()

    plot_dl2.plot_pos(dl2)
    if not args.batch:
        plt.show()

    plot_dl2.plot_roc_gamma(dl2)
    if not args.batch:
        plt.show()

    plot_dl2.plot_models_features_importances(args.path_models,
                                              args.config_file)
    if not args.batch:
        plt.show()

    plt.hist(dl2[dl2['mc_type'] == 101]['gammaness'], bins=100)
    plt.hist(dl2[dl2['mc_type'] == 0]['gammaness'], bins=100)
    if not args.batch:
        plt.show()
Ejemplo n.º 3
0
def test_direction_results():
    dl2_df = pd.read_hdf(dl2_file, key=dl2_params_lstcam_key)
    plot_dl2.direction_results(dl2_df,
                               points_outfile=os.path.join(test_dir, 'dir.h5'),
                               plot_outfile=os.path.join(test_dir, 'dir.png'))
def main():
    args = parser.parse_args()

    custom_config = {}
    if args.config_file is not None:
        custom_config = read_configuration_file(args.config_file)

    config = replace_config(standard_config, custom_config)

    subarray_info = SubarrayDescription.from_hdf(args.gammatest)
    tel_id = config["allowed_tels"][0] if "allowed_tels" in config else 1
    focal_length = subarray_info.tel[tel_id].optics.equivalent_focal_length

    reg_energy, reg_disp_norm, cls_disp_sign, cls_gh = dl1_to_dl2.build_models(
        args.gammafile,
        args.protonfile,
        save_models=args.save_models,
        path_models=args.path_models,
        custom_config=config,
    )

    gammas = filter_events(
        pd.read_hdf(args.gammatest, key=dl1_params_lstcam_key),
        config["events_filters"],
    )
    proton = filter_events(
        pd.read_hdf(args.protontest, key=dl1_params_lstcam_key),
        config["events_filters"],
    )

    data = pd.concat([gammas, proton], ignore_index=True)

    dl2 = dl1_to_dl2.apply_models(data,
                                  cls_gh,
                                  reg_energy,
                                  reg_disp_norm=reg_disp_norm,
                                  cls_disp_sign=cls_disp_sign,
                                  focal_length=focal_length,
                                  custom_config=config)

    ####PLOT SOME RESULTS#####

    selected_gammas = dl2.query('reco_type==0 & mc_type==0')

    if (len(selected_gammas) == 0):
        log.warning('No gammas selected, I will not plot any output')
        sys.exit()

    plot_dl2.plot_features(dl2)
    if not args.batch:
        plt.show()

    plot_dl2.energy_results(selected_gammas)
    if not args.batch:
        plt.show()

    plot_dl2.direction_results(selected_gammas)
    if not args.batch:
        plt.show()

    plot_dl2.plot_disp_vector(selected_gammas)
    if not args.batch:
        plt.show()

    plot_dl2.plot_pos(dl2)
    if not args.batch:
        plt.show()

    plot_dl2.plot_roc_gamma(dl2)
    if not args.batch:
        plt.show()

    plot_dl2.plot_models_features_importances(args.path_models,
                                              args.config_file)
    if not args.batch:
        plt.show()

    plt.hist(dl2[dl2['mc_type'] == 101]['gammaness'], bins=100)
    plt.hist(dl2[dl2['mc_type'] == 0]['gammaness'], bins=100)
    if not args.batch:
        plt.show()