Ejemplo n.º 1
0
def SagCWL2GCN_Binary_quick_max(
  dsm,
  cwl2_local_act="sigmoid",
  cwl2_layer_widths=[64],
  cwl2_layer_depths=[3],
  cwl2_stack_tfs=["keep_input"]):
  in_dim = dsm.dim_wl2_features()

  hidden = [
    [b] * l
    for b, l in cart(cwl2_layer_widths, cwl2_layer_depths)]

  hps = cart(
    conv_layer_dims=[[in_dim, *h, 1] for h in hidden],
    conv_act=["sigmoid"],
    conv_local_act=[cwl2_local_act],
    conv_stack_tf=cwl2_stack_tfs,
    conv_bias=[True],
    learning_rate=[0.001],
    squeeze_output=[True]
  )

  duplicate_settings = {
    "conv_layer_dims": ["att_conv_layer_dims"],
    "conv_act": ["att_conv_act"],
    "conv_local_act": ["att_conv_local_act"],
    "conv_stack_tf": ["att_conv_stack_tf"],
    "conv_bias": ["att_conv_bias"],
  }

  return fy.map(entry_duplicator(duplicate_settings), hps)
Ejemplo n.º 2
0
def AvgCWL2GCN_FC_Binary(
  dsm,
  cwl2_local_act="sigmoid",
  cwl2_layer_widths=[32, 64],
  cwl2_layer_depths=[1, 3],
  cwl2_stack_tfs=[None, "keep_input"]):
  in_dim = dsm.dim_wl2_features()

  hidden = [
    ([b] * l, [b, b])
    for b, l in cart(cwl2_layer_widths, cwl2_layer_depths)]

  hidden_hp = [dict(
    conv_layer_dims=[in_dim, *ch],
    fc_layer_dims=[*fh, 1]
  ) for ch, fh in hidden]

  return cart_merge(cart(
    conv_act=["sigmoid"],
    conv_local_act=[cwl2_local_act],
    conv_stack_tf=cwl2_stack_tfs,
    conv_bias=[True],
    fc_bias=[True],
    learning_rate=[0.01, 0.001, 0.0001],
    squeeze_output=[True]
  ), hidden_hp)
Ejemplo n.º 3
0
def AvgCWL2GCN_Binary(
  dsm,
  cwl2_local_act="sigmoid",
  cwl2_layer_widths=[32, 64],
  cwl2_layer_depths=[1, 3],
  cwl2_stack_tfs=[None, "keep_input"]):
  in_dim = dsm.dim_wl2_features()

  hidden = [
    [b] * l
    for b, l in cart(cwl2_layer_widths, cwl2_layer_depths)]

  return cart(
    conv_layer_dims=[[in_dim, *h, 1] for h in hidden],
    conv_act=["sigmoid"],
    conv_local_act=[cwl2_local_act],
    conv_stack_tf=cwl2_stack_tfs,
    conv_bias=[True],
    learning_rate=[0.01, 0.001, 0.0001],
    squeeze_output=[True]
  )
Ejemplo n.º 4
0
def AvgWL2GCN_Binary_3x32(dsm):
  "Like AvgWL2GCN_Binary but only one hyperparam config."
  in_dim = dsm.dim_wl2_features()

  hidden = [
    [32, 32, 32]
  ]

  return cart(
    layer_dims=[[in_dim, *h, 1] for h in hidden],
    bias=[True],
    learning_rate=[0.0001]
  )
Ejemplo n.º 5
0
def SagK2GNN_FC_Binary(
  dsm,
  cwl2_local_act="sigmoid",
  cwl2_layer_widths=[32, 64],
  cwl2_layer_depths=[2, 4],
  cwl2_stack_tfs=[None, "keep_input"]):
  in_dim = dsm.dim_wl2_features()

  hidden = [
    ([b] * l, [b, b])
    for b, l in cart(cwl2_layer_widths, cwl2_layer_depths)]

  hidden_hp = [dict(
    conv_layer_dims=[in_dim, *ch],
    fc_layer_dims=[*fh, 1]
  ) for ch, fh in hidden]

  base_hp = cart(
    conv_act=["sigmoid"],
    conv_local_act=[cwl2_local_act],
    conv_stack_tf=cwl2_stack_tfs,
    conv_bias=[True],
    fc_bias=[True],
    learning_rate=[0.01, 0.001, 0.0001],
    squeeze_output=[True]
  )

  hps = cart_merge(base_hp, hidden_hp)

  duplicate_settings = {
    "conv_layer_dims": ["att_conv_layer_dims"],
    "conv_act": ["att_conv_act"],
    "conv_local_act": ["att_conv_local_act"],
    "conv_stack_tf": ["att_conv_stack_tf"],
    "conv_bias": ["att_conv_bias"],
  }

  return fy.map(entry_duplicator(duplicate_settings), hps)
Ejemplo n.º 6
0
def AvgWL2GCN_Binary(dsm):
  "Small hyperparam space for averaging WL2GCNs + binary classification."
  in_dim = dsm.dim_wl2_features()

  hidden = [
    [8], [8, 8, 8],
    [32], [32, 32]
  ]

  return cart(
    layer_dims=[[in_dim, *h, 1] for h in hidden],
    bias=[True],
    learning_rate=[0.0001]
  )
Ejemplo n.º 7
0
def AvgGIN_Timing_Binary(
  dsm,
  wl1_local_act="sigmoid",
  wl1_stack_tfs=[None]):
  in_dim = dsm.dim_wl1_features()

  return cart(
    conv_act=["sigmoid"],
    conv_stack_tf=wl1_stack_tfs,
    conv_layer_dims=[[in_dim, 32, 1]],
    conv_bias=[True],
    fc_bias=[True],
    learning_rate=[0.01],
    squeeze_output=[True]
  )
Ejemplo n.º 8
0
def AvgCWL2GCN_Timing_Binary(
  dsm,
  cwl2_local_act="sigmoid",
  cwl2_stack_tfs=[None]):
  in_dim = dsm.dim_wl2_features()

  return cart(
    conv_act=["sigmoid"],
    conv_local_act=[cwl2_local_act],
    conv_stack_tf=cwl2_stack_tfs,
    conv_layer_dims=[[in_dim, 24, 24, 1]],
    conv_bias=[True],
    fc_bias=[True],
    learning_rate=[0.01],
    squeeze_output=[True]
  )
Ejemplo n.º 9
0
def AvgWL2GCN_FC_Binary_Small(dsm):
  "Small hyperparam space for averaging FC WL2GCNs + binary classification."
  in_dim = dsm.dim_wl2_features()

  base = cart(
    squeeze_output=[False],
    bias=[True],
    learning_rate=[0.0001])

  hidden = [
    ([8, 8, 8], [8, 8]),
    ([32, 32], [32, 32])
  ]

  hidden_hp = [dict(
    conv_layer_dims=[in_dim, *ch],
    fc_layer_dims=[*fh, 1]
  ) for ch, fh in hidden]

  return cart_merge(base, hidden_hp)
Ejemplo n.º 10
0
from __future__ import absolute_import, division, print_function,\
  unicode_literals

import ltag.models.kernel as kernel_models
from ltag.evaluation.model_factories import kernel_classifier
from ltag.utils import cart

kernel_hps = lambda dsm: cart(C=[1, 0.1, 0.01, 0.001, 0.0001])
WL_st = kernel_classifier(kernel_models.WL_st)(kernel_hps)
WL_st_1 = kernel_classifier(kernel_models.WL_st_1)(kernel_hps)
WL_st_2 = kernel_classifier(kernel_models.WL_st_2)(kernel_hps)
WL_st_3 = kernel_classifier(kernel_models.WL_st_3)(kernel_hps)
WL_st_4 = kernel_classifier(kernel_models.WL_st_4)(kernel_hps)
WL_sp = kernel_classifier(kernel_models.WL_sp)(kernel_hps)
WL_sp_3 = kernel_classifier(kernel_models.WL_sp_3)(kernel_hps)
LWL2 = kernel_classifier(kernel_models.LWL2)(kernel_hps)
LWL2_1 = kernel_classifier(kernel_models.LWL2_1)(kernel_hps)
GWL2 = kernel_classifier(kernel_models.GWL2)(kernel_hps)