Ejemplo n.º 1
0
def estimateBackground():
    """
    Example of a face detection background estimation.

    """
    image = VLImage.load(filename=EXAMPLE_4)
    faceEngine = VLFaceEngine()
    detector = faceEngine.createFaceDetector(DetectorType.FACE_DET_V3)
    backgroundEstimator = faceEngine.createFaceDetectionBackgroundEstimator()
    faceDetection = detector.detectOne(image)

    #: single estimation
    imageWithFaceDetection = ImageWithFaceDetection(image, faceDetection.boundingBox)
    background = backgroundEstimator.estimate(imageWithFaceDetection)
    pprint.pprint(background)

    image2 = VLImage.load(filename=EXAMPLE_4)
    faceDetection2 = detector.detectOne(image2)
    #: batch estimation
    imageWithFaceDetectionList = [
        ImageWithFaceDetection(image, faceDetection.boundingBox),
        ImageWithFaceDetection(image2, faceDetection2.boundingBox),
    ]
    backgrounds = backgroundEstimator.estimateBatch(imageWithFaceDetectionList)
    pprint.pprint(backgrounds)
Ejemplo n.º 2
0
def estimateAGS():
    """
    Estimate face detection ags.
    """
    image = VLImage.load(filename=EXAMPLE_O)
    faceEngine = VLFaceEngine()
    detector = faceEngine.createFaceDetector(DetectorType.FACE_DET_V3)
    faceDetection = detector.detectOne(image)

    agsEstimator = faceEngine.createAGSEstimator()

    imageWithFaceDetection = ImageWithFaceDetection(image,
                                                    faceDetection.boundingBox)
    pprint.pprint(
        agsEstimator.estimate(imageWithFaceDetection=imageWithFaceDetection))
    pprint.pprint(agsEstimator.estimate(faceDetection))

    image2 = VLImage.load(filename=EXAMPLE_1)
    faceDetection2 = detector.detectOne(image2)

    imageWithFaceDetectionList = [
        ImageWithFaceDetection(image, faceDetection.boundingBox),
        ImageWithFaceDetection(image2, faceDetection2.boundingBox),
    ]
    pprint.pprint(agsEstimator.estimateBatch(imageWithFaceDetectionList))

    pprint.pprint(
        agsEstimator.estimateBatch(detections=[faceDetection, faceDetection2]))
Ejemplo n.º 3
0
def estimateFisheye():
    """
    Example of a fisheye estimation.

    """
    image = VLImage.load(filename=EXAMPLE_O)
    faceEngine = VLFaceEngine()
    detector = faceEngine.createFaceDetector(DetectorType.FACE_DET_V3)
    fishEstimator = faceEngine.createFisheyeEstimator()
    faceDetection = detector.detectOne(image, detect5Landmarks=False, detect68Landmarks=True)

    #: single estimation
    imageWithFaceDetection = ImageWithFaceDetection(image, faceDetection.boundingBox)
    fisheye = fishEstimator.estimate(imageWithFaceDetection)
    pprint.pprint(fisheye)

    image2 = VLImage.load(filename=EXAMPLE_1)
    faceDetection2 = detector.detectOne(image2, detect5Landmarks=False, detect68Landmarks=True)
    #: batch estimation
    imageWithFaceDetectionList = [
        ImageWithFaceDetection(image, faceDetection.boundingBox),
        ImageWithFaceDetection(image2, faceDetection2.boundingBox),
    ]
    fisheyeList = fishEstimator.estimateBatch(imageWithFaceDetectionList)
    pprint.pprint(fisheyeList)
Ejemplo n.º 4
0
def estimateHeadPose():
    """
    Example of a head pose estimation.

    """
    image = VLImage.load(filename=EXAMPLE_O)
    faceEngine = VLFaceEngine()
    detector = faceEngine.createFaceDetector(DetectorType.FACE_DET_V3)
    headPoseEstimator = faceEngine.createHeadPoseEstimator()
    faceDetection = detector.detectOne(image, detect5Landmarks=False, detect68Landmarks=True)
    #: estimate by 68 landmarks
    angles = headPoseEstimator.estimateBy68Landmarks(faceDetection.landmarks68)
    pprint.pprint(angles.asDict())

    #: get frontal type
    pprint.pprint(angles.getFrontalType())

    #: estimate by detection
    imageWithFaceDetection = ImageWithFaceDetection(image, faceDetection.boundingBox)
    angles = headPoseEstimator.estimateByBoundingBox(imageWithFaceDetection)
    angles.getFrontalType()
    pprint.pprint(angles)

    image2 = VLImage.load(filename=EXAMPLE_1)
    faceDetection2 = detector.detectOne(image2, detect5Landmarks=False, detect68Landmarks=True)
    #: batch estimate by detection
    imageWithFaceDetectionList = [
        ImageWithFaceDetection(image, faceDetection.boundingBox),
        ImageWithFaceDetection(image2, faceDetection2.boundingBox),
    ]
    anglesList = headPoseEstimator.estimateBatch(imageWithFaceDetectionList)
    pprint.pprint(anglesList)
Ejemplo n.º 5
0
 def test_head_pose_batch_estimation(self):
     """
     Batch estimating head pose test.
     """
     image = VLImage.load(filename=GOST_HEAD_POSE_FACE)
     detection = self.detector.detectOne(image, detect5Landmarks=True, detect68Landmarks=True)
     imageWithFaceDetectionList = [
         ImageWithFaceDetection(self.image, self.detection.boundingBox),
         ImageWithFaceDetection(image, detection.boundingBox),
     ]
     anglesList = self.headPoseEstimator.estimateBatch(imageWithFaceDetectionList)
     assert isinstance(anglesList, list)
     assert len(anglesList) == 2
     for angles in anglesList:
         self.assertHeadPose(angles)
Ejemplo n.º 6
0
 def test_estimate_head_pose_by_bounding_box(self):
     """
     Estimating head pose by bounding box test.
     """
     angles = TestHeadPose.headPoseEstimator.estimateByBoundingBox(
         ImageWithFaceDetection(self.image, self.detection.boundingBox))
     self.assertHeadPose(angles)
Ejemplo n.º 7
0
 def test_estimate_head_pose_by_bounding_box_from_other_image(self):
     """
     Estimating head pose on image without faces by bounding box from other image.
     """
     angles = self.headPoseEstimator.estimateByBoundingBox(
         ImageWithFaceDetection(self.image, self.detection.boundingBox)
     )
     self.assertHeadPose(angles)
Ejemplo n.º 8
0
 def test_estimate_head_pose_by_image_and_bounding_box_empty_bounding_box(self):
     """
     Estimating head pose by image and empty bounding box
     """
     fakeDetection = Detection(RectFloat(0.0, 0.0, 0.0, 0.0), 0.9)
     bBox = BoundingBox(fakeDetection)
     with pytest.raises(LunaSDKException) as exceptionInfo:
         self.headPoseEstimator.estimateByBoundingBox(ImageWithFaceDetection(self.image, bBox))
     self.assertLunaVlError(exceptionInfo, LunaVLError.InvalidDetection.format("Invalid detection"))
Ejemplo n.º 9
0
 def test_estimate_head_pose_by_image_and_bounding_box_without_intersection(self):
     """
     Estimating head pose by image and bounding box without intersection
     """
     fakeDetection = Detection(RectFloat(3000.0, 3000.0, 100.0, 100.0), 0.9)
     bBox = BoundingBox(fakeDetection)
     with pytest.raises(LunaSDKException) as exceptionInfo:
         self.headPoseEstimator.estimateByBoundingBox(ImageWithFaceDetection(self.image, bBox))
     self.assertLunaVlError(exceptionInfo, LunaVLError.InvalidRect.format("Invalid rectangle"))
Ejemplo n.º 10
0
 def test_estimate_background_by_image_and_bounding_box_without_intersection(
         self):
     """
     Estimating background by image and bounding box without intersection
     """
     fakeDetection = Detection(RectFloat(3000.0, 3000.0, 100.0, 100.0), 0.9)
     bBox = BoundingBox(fakeDetection)
     with pytest.raises(LunaSDKException) as exceptionInfo:
         self.backgroundEstimator.estimate(
             ImageWithFaceDetection(VLImage.load(filename=ONE_FACE), bBox))
     self.assertLunaVlError(
         exceptionInfo, LunaVLError.InvalidRect.format("Invalid rectangle"))
Ejemplo n.º 11
0
 def test_estimate_background_by_image_and_bounding_box_empty_bounding_box(
         self):
     """
     Estimating background by image and empty bounding box
     """
     fakeDetection = Detection(RectFloat(0.0, 0.0, 0.0, 0.0), 0.9)
     bBox = BoundingBox(fakeDetection)
     with pytest.raises(LunaSDKException) as exceptionInfo:
         self.backgroundEstimator.estimate(
             ImageWithFaceDetection(VLImage.load(filename=ONE_FACE), bBox))
     self.assertLunaVlError(
         exceptionInfo,
         LunaVLError.InvalidDetection.format("Invalid detection"))
Ejemplo n.º 12
0
 def test_async_estimate_head_pose(self):
     """
     Test async estimate head pose
     """
     task = self.headPoseEstimator.estimate(self.detection.landmarks68, asyncEstimate=True)
     self.assertAsyncEstimation(task, HeadPose)
     task = self.headPoseEstimator.estimateBatch([self.detection] * 2, asyncEstimate=True)
     self.assertAsyncBatchEstimation(task, HeadPose)
     task = self.headPoseEstimator.estimateByBoundingBox(
         ImageWithFaceDetection(self.image, self.detection.boundingBox), asyncEstimate=True
     )
     self.assertAsyncEstimation(task, HeadPose)
     task = self.headPoseEstimator.estimateBy68Landmarks(self.detection.landmarks68, asyncEstimate=True)
     self.assertAsyncEstimation(task, HeadPose)
Ejemplo n.º 13
0
async def asyncEstimateBackground():
    """
    Example of an async background estimation.
    """
    image = VLImage.load(filename=EXAMPLE_4)
    faceEngine = VLFaceEngine()
    detector = faceEngine.createFaceDetector(DetectorType.FACE_DET_V3)
    backgroundEstimator = faceEngine.createFaceDetectionBackgroundEstimator()
    faceDetection = detector.detectOne(image)
    # async estimation
    imageWithFaceDetection = ImageWithFaceDetection(image, faceDetection.boundingBox)
    backgrounds = await backgroundEstimator.estimate(imageWithFaceDetection, asyncEstimate=True)
    pprint.pprint(backgrounds.asDict())
    # run tasks and get results
    task1 = backgroundEstimator.estimate(imageWithFaceDetection, asyncEstimate=True)
    task2 = backgroundEstimator.estimate(imageWithFaceDetection, asyncEstimate=True)
    for task in (task1, task2):
        pprint.pprint(task.get().asDict())