Ejemplo n.º 1
0
def process_args(api, args):

    df = lpt.read_csv(args.filename)
    date = lpt.to_date(args.date)
    scope = args.scope

    c1 = df.columns.values[0]  # First column is the instrument

    if args.fx:
        scope = scope + "_FX"
        df[c1] = "CCY_" + df[c1]
        df["column3"] = None
    else:
        mi.map_instruments(api, df, c1)

    # fix the column names
    df.columns = ["instrument", "price", "ccy"]

    def upsert_analytics(result=None):
        analytics = [
            api.models.InstrumentAnalytic(row["instrument"], row["price"],
                                          row["ccy"])
            for i, row in df.iterrows()
        ]

        return api.call.set_analytics(scope, date.year, date.month, date.day,
                                      analytics).bind(lambda r: None)

    if args.update:
        return upsert_analytics()

    return api.call.create_analytic_store(
        api.models.CreateAnalyticStoreRequest(scope,
                                              date)).bind(upsert_analytics)
Ejemplo n.º 2
0
    def transactions(r=None):
        if args.transactions:
            df = lpt.read_input(args.transactions)
            if args.map:
                mi.map_instruments(api, df, "instrument_uid"),

            def load_transactions(portfolio, txns):
                return api.call.upsert_transactions(
                    args.scope,
                    portfolio,
                    transactions=api.from_df(txns, api.models.TransactionRequest),
                )

            if args.portfolio.lower().startswith("col:"):
                # Multiple portfolios contained in the file. Read the ID from the columns

                portfolio_column = args.portfolio[4:]

                def load_groups(iterator):
                    try:
                        portfolio, df = next(iterator)
                        print("Transactions: {}".format(portfolio))
                        return load_transactions(
                            portfolio, df.drop(portfolio_column, axis=1)
                        ).bind(lambda r: load_groups(iterator))
                    except StopIteration:
                        return Either.Right(None)

                return load_groups(iter(df.groupby(portfolio_column)))
            else:
                # one-off load. The portfolio id is provided
                return load_transactions(args.portfolio, df)

        return Either.Right(None)