Ejemplo n.º 1
0
def naka_rushton(data, sig=2.0, n=0.73, scaling=1.0, noise=0.0, forward=True):
    """
    Apply a Naka-Rushton response compression (n) and an adaptive shift (sig).
    
    | NK(x) = sign(x) * scaling * ((abs(x)**n) / ((abs(x)**n) + (sig**n))) + noise
    
    Args:
        :data:
            | float or ndarray
        :sig: 
            | 2.0, optional
            | Semi-saturation constant. Value for which NK(:data:) is 1/2
        :n: 
            | 0.73, optional
            | Compression power.
        :scaling:
            | 1.0, optional
            | Maximum value of NK-function.
        :noise:
            | 0.0, optional
            | Cone excitation noise.
        :forward:
            | True, optional
            | True: do NK(x) 
            | False: do NK(x)**(-1).
    
    Returns:
        :returns: 
            | float or ndarray with NK-(de)compressed input :x:        
    """
    if forward:
        return np.sign(data) * scaling * ((np.abs(data)**n) /
                                          ((np.abs(data)**n) +
                                           (sig**n))) + noise
    elif forward == False:
        Ip = sig * (((np.abs(np.abs(data) - noise)) /
                     (scaling - np.abs(np.abs(data) - noise))))**(1 / n)
        if not np.isscalar(Ip):
            p = np.where(np.abs(data) < noise)
            Ip[p] = -Ip[p]
        else:
            if np.abs(data) < noise:
                Ip = -Ip
        return Ip
Ejemplo n.º 2
0
def xyz_to_Ydlep(xyz,
                 cieobs=_CIEOBS,
                 xyzw=_COLORTF_DEFAULT_WHITE_POINT,
                 flip_axes=False,
                 SL_max_lambda=None,
                 **kwargs):
    """
    Convert XYZ tristimulus values to Y, dominant (complementary) wavelength
    and excitation purity.

    Args:
        :xyz:
            | ndarray with tristimulus values
        :xyzw:
            | None or ndarray with tristimulus values of a single (!) native white point, optional
            | None defaults to xyz of CIE D65 using the :cieobs: observer.
        :cieobs:
            | luxpy._CIEOBS, optional
            | CMF set to use when calculating spectrum locus coordinates.
        :flip_axes:
            | False, optional
            | If True: flip axis 0 and axis 1 in Ydelep to increase speed of loop in function.
            |          (single xyzw with is not flipped!)
        :SL_max_lambda:
            | None or float, optional
            | Maximum wavelength of spectrum locus before it turns back on itelf in the high wavelength range (~700 nm)
    Returns:
        :Ydlep: 
            | ndarray with Y, dominant (complementary) wavelength
            |  and excitation purity
    """

    xyz3 = np3d(xyz).copy().astype(np.float)

    # flip axis so that shortest dim is on axis0 (save time in looping):
    if (xyz3.shape[0] < xyz3.shape[1]) & (flip_axes == True):
        axes12flipped = True
        xyz3 = xyz3.transpose((1, 0, 2))
    else:
        axes12flipped = False

    # convert xyz to Yxy:
    Yxy = xyz_to_Yxy(xyz3)
    Yxyw = xyz_to_Yxy(xyzw)

    # get spectrum locus Y,x,y and wavelengths:
    SL = _CMF[cieobs]['bar']
    SL = SL[:, SL[1:].sum(axis=0) >
            0]  # avoid div by zero in xyz-to-Yxy conversion
    wlsl = SL[0]
    Yxysl = xyz_to_Yxy(SL[1:4].T)[:, None]

    # Get maximum wavelength of spectrum locus (before it turns back on itself)
    if SL_max_lambda is None:
        pmaxlambda = Yxysl[..., 1].argmax()  # lambda with largest x value
        dwl = np.diff(
            Yxysl[:, 0,
                  1])  # spectrumlocus in that range should have increasing x
        dwl[wlsl[:-1] < 600] = 10000
        pmaxlambda = np.where(
            dwl <= 0)[0][0]  # Take first element with zero or <zero slope
    else:
        pmaxlambda = np.abs(wlsl - SL_max_lambda).argmin()
    Yxysl = Yxysl[:(pmaxlambda + 1), :]
    wlsl = wlsl[:(pmaxlambda + 1)]

    # center on xyzw:
    Yxy = Yxy - Yxyw
    Yxysl = Yxysl - Yxyw
    Yxyw = Yxyw - Yxyw

    #split:
    Y, x, y = asplit(Yxy)
    Yw, xw, yw = asplit(Yxyw)
    Ysl, xsl, ysl = asplit(Yxysl)

    # calculate hue:
    h = math.positive_arctan(x, y, htype='deg')

    hsl = math.positive_arctan(xsl, ysl, htype='deg')

    hsl_max = hsl[0]  # max hue angle at min wavelength
    hsl_min = hsl[-1]  # min hue angle at max wavelength
    if hsl_min < hsl_max: hsl_min += 360

    dominantwavelength = np.empty(Y.shape)
    purity = np.empty(Y.shape)

    for i in range(xyz3.shape[1]):

        # find index of complementary wavelengths/hues:
        pc = np.where(
            (h[:, i] > hsl_max) & (h[:, i] < hsl_min)
        )  # hue's requiring complementary wavelength (purple line)
        h[:, i][pc] = h[:, i][pc] - np.sign(
            h[:, i][pc] - 180.0
        ) * 180.0  # add/subtract 180° to get positive complementary wavelength

        # find 2 closest enclosing hues in sl:
        #hslb,hib = meshblock(hsl,h[:,i:i+1])
        hib, hslb = np.meshgrid(h[:, i:i + 1], hsl)
        dh = (hslb - hib)
        q1 = np.abs(dh).argmin(axis=0)  # index of closest hue
        sign_q1 = np.sign(dh[q1])[0]
        dh[np.sign(dh) ==
           sign_q1] = 1000000  # set all dh on the same side as q1 to a very large value
        q2 = np.abs(dh).argmin(
            axis=0)  # index of second  closest (enclosing) hue

        # # Test changes to code:
        # print('wls',i, wlsl[q1],wlsl[q2])
        # import matplotlib.pyplot as plt
        # plt.figure()
        # plt.plot(wlsl[:-1],np.diff(xsl[:,0]),'k.-')
        # plt.figure()
        # plt.plot(x[0,i],y[0,i],'k.'); plt.plot(xsl,ysl,'r.-');plt.plot(xsl[q1],ysl[q1],'b.');plt.plot(xsl[q2],ysl[q2],'g.');plt.plot(xsl[-1],ysl[-1],'c+')

        dominantwavelength[:, i] = wlsl[q1] + np.multiply(
            (h[:, i] - hsl[q1, 0]),
            np.divide((wlsl[q2] - wlsl[q1]), (hsl[q2, 0] - hsl[q1, 0]))
        )  # calculate wl corresponding to h: y = y1 + (x-x1)*(y2-y1)/(x2-x1)
        dominantwavelength[:, i][pc] = -dominantwavelength[:, i][
            pc]  #complementary wavelengths are specified by '-' sign

        # calculate excitation purity:
        x_dom_wl = xsl[q1, 0] + (xsl[q2, 0] - xsl[q1, 0]) * (h[:, i] - hsl[
            q1, 0]) / (hsl[q2, 0] - hsl[q1, 0])  # calculate x of dom. wl
        y_dom_wl = ysl[q1, 0] + (ysl[q2, 0] - ysl[q1, 0]) * (h[:, i] - hsl[
            q1, 0]) / (hsl[q2, 0] - hsl[q1, 0])  # calculate y of dom. wl
        d_wl = (x_dom_wl**2.0 +
                y_dom_wl**2.0)**0.5  # distance from white point to sl
        d = (x[:, i]**2.0 +
             y[:, i]**2.0)**0.5  # distance from white point to test point
        purity[:, i] = d / d_wl

        # correct for those test points that have a complementary wavelength
        # calculate intersection of line through white point and test point and purple line:
        xy = np.vstack((x[:, i], y[:, i])).T
        xyw = np.hstack((xw, yw))
        xypl1 = np.hstack((xsl[0, None], ysl[0, None]))
        xypl2 = np.hstack((xsl[-1, None], ysl[-1, None]))
        da = (xy - xyw)
        db = (xypl2 - xypl1)
        dp = (xyw - xypl1)
        T = np.array([[0.0, -1.0], [1.0, 0.0]])
        dap = np.dot(da, T)
        denom = np.sum(dap * db, axis=1, keepdims=True)
        num = np.sum(dap * dp, axis=1, keepdims=True)
        xy_linecross = (num / denom) * db + xypl1
        d_linecross = np.atleast_2d(
            (xy_linecross[:, 0]**2.0 + xy_linecross[:, 1]**2.0)**0.5).T  #[0]
        purity[:, i][pc] = d[pc] / d_linecross[pc][:, 0]
    Ydlep = np.dstack((xyz3[:, :, 1], dominantwavelength, purity))

    if axes12flipped == True:
        Ydlep = Ydlep.transpose((1, 0, 2))
    else:
        Ydlep = Ydlep.transpose((0, 1, 2))
    return Ydlep.reshape(xyz.shape)
def cie2006cmfsEx(age = 32,fieldsize = 10, wl = None,\
                  var_od_lens = 0, var_od_macula = 0, \
                  var_od_L = 0, var_od_M = 0, var_od_S = 0,\
                  var_shft_L = 0, var_shft_M = 0, var_shft_S = 0,\
                  out = 'LMS', allow_negative_values = False):
    """
    Generate Individual Observer CMFs (cone fundamentals) 
    based on CIE2006 cone fundamentals and published literature 
    on observer variability in color matching and in physiological parameters.
    
    Args:
        :age: 
            | 32 or float or int, optional
            | Observer age
        :fieldsize:
            | 10, optional
            | Field size of stimulus in degrees (between 2° and 10°).
        :wl: 
            | None, optional
            | Interpolation/extraplation of :LMS: output to specified wavelengths.
            | None: output original _WL = np.array([390,780,5])
        :var_od_lens:
            | 0, optional
            | Std Dev. in peak optical density [%] of lens.
        :var_od_macula:
            | 0, optional
            | Std Dev. in peak optical density [%] of macula.
        :var_od_L:
            | 0, optional
            | Std Dev. in peak optical density [%] of L-cone.
        :var_od_M:
            | 0, optional
            | Std Dev. in peak optical density [%] of M-cone.
        :var_od_S:
            | 0, optional
            | Std Dev. in peak optical density [%] of S-cone.
        :var_shft_L:
            | 0, optional
            | Std Dev. in peak wavelength shift [nm] of L-cone. 
        :var_shft_L:
            | 0, optional
            | Std Dev. in peak wavelength shift [nm] of M-cone.  
        :var_shft_S:
            | 0, optional
            | Std Dev. in peak wavelength shift [nm] of S-cone. 
        :out: 
            | 'LMS' or , optional
            | Determines output.
        :allow_negative_values:
            | False, optional
            | Cone fundamentals or color matching functions 
              should not have negative values.
            |     If False: X[X<0] = 0.
            
    Returns:
        :returns: 
            | - 'LMS' : ndarray with individual observer area-normalized 
            |           cone fundamentals. Wavelength have been added.
                
            | [- 'trans_lens': ndarray with lens transmission 
            |      (no wavelengths added, no interpolation)
            |  - 'trans_macula': ndarray with macula transmission 
            |      (no wavelengths added, no interpolation)
            |  - 'sens_photopig' : ndarray with photopigment sens. 
            |      (no wavelengths added, no interpolation)]
            
    References:
         1. `Asano Y, Fairchild MD, and Blondé L (2016). 
         Individual Colorimetric Observer Model. 
         PLoS One 11, 1–19. 
         <http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145671>`_
        
         2. `Asano Y, Fairchild MD, Blondé L, and Morvan P (2016). 
         Color matching experiment for highlighting interobserver variability. 
         Color Res. Appl. 41, 530–539. 
         <https://onlinelibrary.wiley.com/doi/abs/10.1002/col.21975>`_
         
         3. `CIE, and CIE (2006). 
         Fundamental Chromaticity Diagram with Physiological Axes - Part I 
         (Vienna: CIE). 
         <http://www.cie.co.at/publications/fundamental-chromaticity-diagram-physiological-axes-part-1>`_ 
         
         4. `Asano's Individual Colorimetric Observer Model 
         <https://www.rit.edu/cos/colorscience/re_AsanoObserverFunctions.php>`_
    """
    fs = fieldsize
    rmd = _INDVCMF_DATA['rmd'].copy()
    LMSa = _INDVCMF_DATA['LMSa'].copy()
    docul = _INDVCMF_DATA['docul'].copy()

    # field size corrected macular density:
    pkOd_Macula = 0.485 * np.exp(-fs / 6.132) * (
        1 + var_od_macula / 100)  # varied peak optical density of macula
    corrected_rmd = rmd * pkOd_Macula

    # age corrected lens/ocular media density:
    if (age <= 60):
        correct_lomd = docul[:1] * (1 + 0.02 * (age - 32)) + docul[1:2]
    else:
        correct_lomd = docul[:1] * (1.56 + 0.0667 * (age - 60)) + docul[1:2]
    correct_lomd = correct_lomd * (1 + var_od_lens / 100
                                   )  # varied overall optical density of lens

    # Peak Wavelength Shift:
    wl_shifted = np.empty(LMSa.shape)
    wl_shifted[0] = _WL + var_shft_L
    wl_shifted[1] = _WL + var_shft_M
    wl_shifted[2] = _WL + var_shft_S

    LMSa_shft = np.empty(LMSa.shape)
    kind = 'cubic'
    LMSa_shft[0] = sp.interpolate.interp1d(wl_shifted[0],
                                           LMSa[0],
                                           kind=kind,
                                           bounds_error=False,
                                           fill_value="extrapolate")(_WL)
    LMSa_shft[1] = sp.interpolate.interp1d(wl_shifted[1],
                                           LMSa[1],
                                           kind=kind,
                                           bounds_error=False,
                                           fill_value="extrapolate")(_WL)
    LMSa_shft[2] = sp.interpolate.interp1d(wl_shifted[2],
                                           LMSa[2],
                                           kind=kind,
                                           bounds_error=False,
                                           fill_value="extrapolate")(_WL)
    #    LMSa[2,np.where(_WL >= _WL_CRIT)] = 0 #np.nan # Not defined above 620nm
    #    LMSa_shft[2,np.where(_WL >= _WL_CRIT)] = 0

    ssw = np.hstack(
        (0, np.sign(np.diff(LMSa_shft[2, :]))
         ))  #detect poor interpolation (sign switch due to instability)
    LMSa_shft[2, np.where((ssw >= 0) & (_WL > 560))] = np.nan

    # corrected LMS (no age correction):
    pkOd_L = (0.38 + 0.54 * np.exp(-fs / 1.333)) * (
        1 + var_od_L / 100)  # varied peak optical density of L-cone
    pkOd_M = (0.38 + 0.54 * np.exp(-fs / 1.333)) * (
        1 + var_od_M / 100)  # varied peak optical density of M-cone
    pkOd_S = (0.30 + 0.45 * np.exp(-fs / 1.333)) * (
        1 + var_od_S / 100)  # varied peak optical density of S-cone

    alpha_lms = 0. * LMSa_shft
    alpha_lms[0] = 1 - 10**(-pkOd_L * (10**LMSa_shft[0]))
    alpha_lms[1] = 1 - 10**(-pkOd_M * (10**LMSa_shft[1]))
    alpha_lms[2] = 1 - 10**(-pkOd_S * (10**LMSa_shft[2]))

    # this fix is required because the above math fails for alpha_lms[2,:]==0
    alpha_lms[2, np.where(_WL >= _WL_CRIT)] = 0

    # Corrected to Corneal Incidence:
    lms_barq = alpha_lms * (10**(-corrected_rmd - correct_lomd)) * np.ones(
        alpha_lms.shape)

    # Corrected to Energy Terms:
    lms_bar = lms_barq * _WL

    # Set NaN values to zero:
    lms_bar[np.isnan(lms_bar)] = 0

    # normalized:
    LMS = 100 * lms_bar / np.nansum(lms_bar, axis=1, keepdims=True)

    # Output extra:
    trans_lens = 10**(-correct_lomd)
    trans_macula = 10**(-corrected_rmd)
    sens_photopig = alpha_lms * _WL

    # Add wavelengths:
    LMS = np.vstack((_WL, LMS))

    if ('xyz' in out.lower().split(',')):
        LMS = lmsb_to_xyzb(LMS,
                           fieldsize,
                           out='xyz',
                           allow_negative_values=allow_negative_values)
        out = out.replace('xyz', 'LMS').replace('XYZ', 'LMS')
    if ('lms' in out.lower().split(',')):
        out = out.replace('lms', 'LMS')

    # Interpolate/extrapolate:
    if wl is None:
        interpolation = None
    else:
        interpolation = 'cubic'
    LMS = spd(LMS, wl=wl, interpolation=interpolation, norm_type='area')

    if (out == 'LMS'):
        return LMS
    elif (out == 'LMS,trans_lens,trans_macula,sens_photopig'):
        return LMS, trans_lens, trans_macula, sens_photopig
    elif (out == 'LMS,trans_lens,trans_macula,sens_photopig,LMSa'):
        return LMS, trans_lens, trans_macula, sens_photopig, LMSa
    else:
        return eval(out)
Ejemplo n.º 4
0
def xyz_to_Ydlep_(xyz,
                  cieobs=_CIEOBS,
                  xyzw=_COLORTF_DEFAULT_WHITE_POINT,
                  flip_axes=False,
                  **kwargs):
    """
    Convert XYZ tristimulus values to Y, dominant (complementary) wavelength
    and excitation purity.

    Args:
        :xyz:
            | ndarray with tristimulus values
        :xyzw:
            | None or ndarray with tristimulus values of a single (!) native white point, optional
            | None defaults to xyz of CIE D65 using the :cieobs: observer.
        :cieobs:
            | luxpy._CIEOBS, optional
            | CMF set to use when calculating spectrum locus coordinates.
        :flip_axes:
            | False, optional
            | If True: flip axis 0 and axis 1 in Ydelep to increase speed of loop in function.
            |          (single xyzw with is not flipped!)
    Returns:
        :Ydlep: 
            | ndarray with Y, dominant (complementary) wavelength
            |  and excitation purity
    """

    xyz3 = np3d(xyz).copy().astype(np.float)

    # flip axis so that shortest dim is on axis0 (save time in looping):
    if (xyz3.shape[0] < xyz3.shape[1]) & (flip_axes == True):
        axes12flipped = True
        xyz3 = xyz3.transpose((1, 0, 2))
    else:
        axes12flipped = False

    # convert xyz to Yxy:
    Yxy = xyz_to_Yxy(xyz3)
    Yxyw = xyz_to_Yxy(xyzw)

    # get spectrum locus Y,x,y and wavelengths:
    SL = _CMF[cieobs]['bar']
    SL = SL[:, SL[1:].sum(axis=0) >
            0]  # avoid div by zero in xyz-to-Yxy conversion
    wlsl = SL[0]
    Yxysl = xyz_to_Yxy(SL[1:4].T)[:, None]
    pmaxlambda = Yxysl[..., 1].argmax()
    maxlambda = wlsl[pmaxlambda]
    maxlambda = 700
    print(np.where(wlsl == maxlambda))
    pmaxlambda = np.where(wlsl == maxlambda)[0][0]
    Yxysl = Yxysl[:(pmaxlambda + 1), :]
    wlsl = wlsl[:(pmaxlambda + 1)]

    # center on xyzw:
    Yxy = Yxy - Yxyw
    Yxysl = Yxysl - Yxyw
    Yxyw = Yxyw - Yxyw

    #split:
    Y, x, y = asplit(Yxy)
    Yw, xw, yw = asplit(Yxyw)
    Ysl, xsl, ysl = asplit(Yxysl)

    # calculate hue:
    h = math.positive_arctan(x, y, htype='deg')
    print(h)
    print('rh', h[0, 0] - h[0, 1])
    print(wlsl[0], wlsl[-1])

    hsl = math.positive_arctan(xsl, ysl, htype='deg')

    hsl_max = hsl[0]  # max hue angle at min wavelength
    hsl_min = hsl[-1]  # min hue angle at max wavelength
    if hsl_min < hsl_max: hsl_min += 360

    dominantwavelength = np.empty(Y.shape)
    purity = np.empty(Y.shape)
    print('xyz:', xyz)
    for i in range(xyz3.shape[1]):
        print('\ni:', i, h[:, i], hsl_max, hsl_min)
        print(h)
        # find index of complementary wavelengths/hues:
        pc = np.where(
            (h[:, i] > hsl_max) & (h[:, i] < hsl_min)
        )  # hue's requiring complementary wavelength (purple line)
        print('pc', (h[:, i] > hsl_max) & (h[:, i] < hsl_min))
        h[:, i][pc] = h[:, i][pc] - np.sign(
            h[:, i][pc] - 180.0
        ) * 180.0  # add/subtract 180° to get positive complementary wavelength

        # find 2 closest hues in sl:
        #hslb,hib = meshblock(hsl,h[:,i:i+1])
        hib, hslb = np.meshgrid(h[:, i:i + 1], hsl)
        dh = np.abs(hslb - hib)
        q1 = dh.argmin(axis=0)  # index of closest hue
        dh[q1] = 1000000.0
        q2 = dh.argmin(axis=0)  # index of second closest hue
        print('q1q2', q2, q1)

        print('wls:', h[:, i], wlsl[q1], wlsl[q2])
        print('hsls:', hsl[q2, 0], hsl[q1, 0])
        print('d', (wlsl[q2] - wlsl[q1]), (hsl[q2, 0] - hsl[q1, 0]),
              (wlsl[q2] - wlsl[q1]) / (hsl[q2, 0] - hsl[q1, 0]))
        print('(h[:,i] - hsl[q1,0])', (h[:, i] - hsl[q1, 0]))
        print('div', np.divide((wlsl[q2] - wlsl[q1]),
                               (hsl[q2, 0] - hsl[q1, 0])))
        print(
            'mult(...)',
            np.multiply((h[:, i] - hsl[q1, 0]),
                        np.divide((wlsl[q2] - wlsl[q1]),
                                  (hsl[q2, 0] - hsl[q1, 0]))))
        dominantwavelength[:, i] = wlsl[q1] + np.multiply(
            (h[:, i] - hsl[q1, 0]),
            np.divide((wlsl[q2] - wlsl[q1]), (hsl[q2, 0] - hsl[q1, 0]))
        )  # calculate wl corresponding to h: y = y1 + (x-x1)*(y2-y1)/(x2-x1)
        print('dom', dominantwavelength[:, i])
        dominantwavelength[(dominantwavelength[:,
                                               i] > max(wlsl[q1], wlsl[q2])),
                           i] = max(wlsl[q1], wlsl[q2])
        dominantwavelength[(dominantwavelength[:,
                                               i] < min(wlsl[q1], wlsl[q2])),
                           i] = min(wlsl[q1], wlsl[q2])

        dominantwavelength[:, i][pc] = -dominantwavelength[:, i][
            pc]  #complementary wavelengths are specified by '-' sign

        # calculate excitation purity:
        x_dom_wl = xsl[q1, 0] + (xsl[q2, 0] - xsl[q1, 0]) * (h[:, i] - hsl[
            q1, 0]) / (hsl[q2, 0] - hsl[q1, 0])  # calculate x of dom. wl
        y_dom_wl = ysl[q1, 0] + (ysl[q2, 0] - ysl[q1, 0]) * (h[:, i] - hsl[
            q1, 0]) / (hsl[q2, 0] - hsl[q1, 0])  # calculate y of dom. wl
        d_wl = (x_dom_wl**2.0 +
                y_dom_wl**2.0)**0.5  # distance from white point to sl
        d = (x[:, i]**2.0 +
             y[:, i]**2.0)**0.5  # distance from white point to test point
        purity[:, i] = d / d_wl

        # correct for those test points that have a complementary wavelength
        # calculate intersection of line through white point and test point and purple line:
        xy = np.vstack((x[:, i], y[:, i])).T
        xyw = np.hstack((xw, yw))
        xypl1 = np.hstack((xsl[0, None], ysl[0, None]))
        xypl2 = np.hstack((xsl[-1, None], ysl[-1, None]))
        da = (xy - xyw)
        db = (xypl2 - xypl1)
        dp = (xyw - xypl1)
        T = np.array([[0.0, -1.0], [1.0, 0.0]])
        dap = np.dot(da, T)
        denom = np.sum(dap * db, axis=1, keepdims=True)
        num = np.sum(dap * dp, axis=1, keepdims=True)
        xy_linecross = (num / denom) * db + xypl1
        d_linecross = np.atleast_2d(
            (xy_linecross[:, 0]**2.0 + xy_linecross[:, 1]**2.0)**0.5).T  #[0]
        purity[:, i][pc] = d[pc] / d_linecross[pc][:, 0]
    Ydlep = np.dstack((xyz3[:, :, 1], dominantwavelength, purity))

    if axes12flipped == True:
        Ydlep = Ydlep.transpose((1, 0, 2))
    else:
        Ydlep = Ydlep.transpose((0, 1, 2))
    return Ydlep.reshape(xyz.shape)
Ejemplo n.º 5
0
def Ydlep_to_xyz(Ydlep,
                 cieobs=_CIEOBS,
                 xyzw=_COLORTF_DEFAULT_WHITE_POINT,
                 flip_axes=False,
                 SL_max_lambda=None,
                 **kwargs):
    """
    Convert Y, dominant (complementary) wavelength and excitation purity to XYZ
    tristimulus values.

    Args:
        :Ydlep: 
            | ndarray with Y, dominant (complementary) wavelength
              and excitation purity
        :xyzw: 
            | None or narray with tristimulus values of a single (!) native white point, optional
            | None defaults to xyz of CIE D65 using the :cieobs: observer.
        :cieobs:
            | luxpy._CIEOBS, optional
            | CMF set to use when calculating spectrum locus coordinates.
        :flip_axes:
            | False, optional
            | If True: flip axis 0 and axis 1 in Ydelep to increase speed of loop in function.
            |          (single xyzw with is not flipped!)
        :SL_max_lambda:
            | None or float, optional
            | Maximum wavelength of spectrum locus before it turns back on itelf in the high wavelength range (~700 nm)

    Returns:
        :xyz: 
            | ndarray with tristimulus values
    """

    Ydlep3 = np3d(Ydlep).copy().astype(np.float)

    # flip axis so that longest dim is on first axis  (save time in looping):
    if (Ydlep3.shape[0] < Ydlep3.shape[1]) & (flip_axes == True):
        axes12flipped = True
        Ydlep3 = Ydlep3.transpose((1, 0, 2))
    else:
        axes12flipped = False

    # convert xyzw to Yxyw:
    Yxyw = xyz_to_Yxy(xyzw)
    Yxywo = Yxyw.copy()

    # get spectrum locus Y,x,y and wavelengths:
    SL = _CMF[cieobs]['bar']
    SL = SL[:, SL[1:].sum(axis=0) >
            0]  # avoid div by zero in xyz-to-Yxy conversion
    wlsl = SL[0, None].T
    Yxysl = xyz_to_Yxy(SL[1:4].T)[:, None]

    # Get maximum wavelength of spectrum locus (before it turns back on itself)
    if SL_max_lambda is None:
        pmaxlambda = Yxysl[..., 1].argmax()  # lambda with largest x value
        dwl = np.diff(
            Yxysl[:, 0,
                  1])  # spectrumlocus in that range should have increasing x
        dwl[wlsl[:-1, 0] < 600] = 10000
        pmaxlambda = np.where(
            dwl <= 0)[0][0]  # Take first element with zero or <zero slope
    else:
        pmaxlambda = np.abs(wlsl - SL_max_lambda).argmin()
    Yxysl = Yxysl[:(pmaxlambda + 1), :]
    wlsl = wlsl[:(pmaxlambda + 1), :1]

    # center on xyzw:
    Yxysl = Yxysl - Yxyw
    Yxyw = Yxyw - Yxyw

    #split:
    Y, dom, pur = asplit(Ydlep3)
    Yw, xw, yw = asplit(Yxyw)
    Ywo, xwo, ywo = asplit(Yxywo)
    Ysl, xsl, ysl = asplit(Yxysl)

    # loop over longest dim:
    x = np.empty(Y.shape)
    y = np.empty(Y.shape)
    for i in range(Ydlep3.shape[1]):

        # find closest wl's to dom:
        #wlslb,wlib = meshblock(wlsl,np.abs(dom[i,:])) #abs because dom<0--> complemtary wl
        wlib, wlslb = np.meshgrid(np.abs(dom[:, i]), wlsl)

        dwl = wlslb - wlib
        q1 = np.abs(dwl).argmin(axis=0)  # index of closest wl
        sign_q1 = np.sign(dwl[q1])
        dwl[np.sign(dwl) ==
            sign_q1] = 1000000  # set all dwl on the same side as q1 to a very large value
        q2 = np.abs(dwl).argmin(
            axis=0)  # index of second closest (enclosing) wl

        # calculate x,y of dom:
        x_dom_wl = xsl[q1, 0] + (xsl[q2, 0] - xsl[q1, 0]) * (
            np.abs(dom[:, i]) - wlsl[q1, 0]) / (wlsl[q2, 0] - wlsl[q1, 0]
                                                )  # calculate x of dom. wl
        y_dom_wl = ysl[q1, 0] + (ysl[q2, 0] - ysl[q1, 0]) * (
            np.abs(dom[:, i]) - wlsl[q1, 0]) / (wlsl[q2, 0] - wlsl[q1, 0]
                                                )  # calculate y of dom. wl

        # calculate x,y of test:
        d_wl = (x_dom_wl**2.0 +
                y_dom_wl**2.0)**0.5  # distance from white point to dom
        d = pur[:, i] * d_wl
        hdom = math.positive_arctan(x_dom_wl, y_dom_wl, htype='deg')
        x[:, i] = d * np.cos(hdom * np.pi / 180.0)
        y[:, i] = d * np.sin(hdom * np.pi / 180.0)

        # complementary:
        pc = np.where(dom[:, i] < 0.0)
        hdom[pc] = hdom[pc] - np.sign(dom[:, i][pc] -
                                      180.0) * 180.0  # get positive hue angle

        # calculate intersection of line through white point and test point and purple line:
        xy = np.vstack((x_dom_wl, y_dom_wl)).T
        xyw = np.vstack((xw, yw)).T
        xypl1 = np.vstack((xsl[0, None], ysl[0, None])).T
        xypl2 = np.vstack((xsl[-1, None], ysl[-1, None])).T
        da = (xy - xyw)
        db = (xypl2 - xypl1)
        dp = (xyw - xypl1)
        T = np.array([[0.0, -1.0], [1.0, 0.0]])
        dap = np.dot(da, T)
        denom = np.sum(dap * db, axis=1, keepdims=True)
        num = np.sum(dap * dp, axis=1, keepdims=True)
        xy_linecross = (num / denom) * db + xypl1
        d_linecross = np.atleast_2d(
            (xy_linecross[:, 0]**2.0 + xy_linecross[:, 1]**2.0)**0.5).T[:, 0]
        x[:, i][pc] = pur[:, i][pc] * d_linecross[pc] * np.cos(
            hdom[pc] * np.pi / 180)
        y[:, i][pc] = pur[:, i][pc] * d_linecross[pc] * np.sin(
            hdom[pc] * np.pi / 180)
    Yxy = np.dstack((Ydlep3[:, :, 0], x + xwo, y + ywo))
    if axes12flipped == True:
        Yxy = Yxy.transpose((1, 0, 2))
    else:
        Yxy = Yxy.transpose((0, 1, 2))
    return Yxy_to_xyz(Yxy).reshape(Ydlep.shape)
Ejemplo n.º 6
0
def plot_tm30_Rhshj(spd, cri_type = 'ies-tm30', axh = None, 
                    xlabel = True, y_offset = 0, 
                    font_size = _TM30_FONT_SIZE, **kwargs):
    """
    Plot Local Hue Shift values (Rhshj) (one for each hue-bin).
    
    Args:
        :spd:
            | ndarray or dict
            | If ndarray: single spectral power distribution.
            | If dict: dictionary with pre-computed parameters (using _tm30_process_spd()).
            |  required keys:
            |   'Rf','Rg','cct','duv','Sr','cri_type','xyzri','xyzrw',
            |   'hbinnrs','Rfi','Rfhi','Rcshi','Rhshi',
            |   'jabt_binned','jabr_binned',
            |   'nhbins','start_hue','normalize_gamut','normalized_chroma_ref'
            | see cri.spd_to_cri() for more info on parameters.
        :cri_type:
            | _CRI_TYPE_DEFAULT or str or dict, optional
            |   -'str: specifies dict with default cri model parameters 
            |     (for supported types, see luxpy.cri._CRI_DEFAULTS['cri_types'])
            |   - dict: user defined model parameters 
            |     (see e.g. luxpy.cri._CRI_DEFAULTS['cierf'] 
            |     for required structure)
            | Note that any non-None input arguments (in kwargs) 
            | to the function will override default values in cri_type dict.
        :axh: 
            | None, optional
            | If None: create new figure with single axes, else plot on specified axes. 
        :xlabel:
            | True, optional
            | If False: don't add label and numbers to x-axis 
            | (useful when plotting plotting all 'Local Rfhi, Rcshi, Rshhi' 
            |  values in 3x1 subplots with 'shared x-axis': saves vertical space)
        :y_offset:
            | 0, optional
            | text-offset from top of bars in barplot.
        :font_size:
            | _TM30_FONT_SIZE, optional
            | Font size of text, axis labels and axis values.
        :kwargs:
            | Additional optional keyword arguments, 
            | the same as in cri.spd_to_cri()
            
    Returns:
        :axh: 
            | handle to figure axes.
        :data:
            | dictionary with required parameters for plotting functions.     
    """

    
    data = _tm30_process_spd(spd, cri_type = 'ies-tm30',**kwargs)
    Rhshi = data['Rhshi']

    # Get color map based on sample colors:
    cmap = _get_hue_map(hbins = data['nhbins'], start_hue = data['start_hue'], 
                        hbinnrs = data['hbinnrs'], 
                        xyzri = data['xyzri'], 
                        xyzrw = data['xyzrw'], 
                        cri_type = data['cri_type'])
    
    # Plot local hue shift, Rhshi:
    hbins = range(data['nhbins'])
    if axh is None:
        fig, axh = plt.subplots(nrows = 1, ncols = 1)
    for j in hbins:
        axh.bar(hbins[j],Rhshi[j,0], color = cmap[j], width = 1,edgecolor = 'k', alpha = 1)
        ypos = ((np.abs(Rhshi[j,0]) + 0.05 + y_offset))*np.sign(Rhshi[j,0])
        axh.text(hbins[j],ypos, '{:1.2f}'.format(Rhshi[j,0]) ,fontsize = font_size,horizontalalignment='center',verticalalignment='center',color = np.array([1,1,1])*0.3, rotation = 90)
    
    xticks = np.array(hbins)
    axh.set_xticks(xticks)
    if xlabel == True:
        xtickslabels = ['{:1.0f}'.format(ii+1) for ii in hbins]
        axh.set_xlabel('Hue-Angle Bin (j)', fontsize = font_size)
    else:
        xtickslabels = [''.format(ii+1) for ii in hbins]
    axh.set_xticklabels(xtickslabels, fontsize = font_size)
    axh.set_xlim([-0.5,data['nhbins']-0.5])
    
    axh.set_ylabel(r'Local Hue Shift $(R_{hs,hj})$', fontsize = 9)
    axh.set_ylim([min([-0.5,Rhshi.min()]),max([0.5,Rhshi.max()])])
    
    return axh, data
Ejemplo n.º 7
0
def cam_sww16(data, dataw = None, Yb = 20.0, Lw = 400.0, Ccwb = None, relative = True, \
              parameters = None, inputtype = 'xyz', direction = 'forward', \
              cieobs = '2006_10'):
    """
    A simple principled color appearance model based on a mapping 
    of the Munsell color system.
    
    | This function implements the JOSA A (parameters = 'JOSA') published model. 
    
    Args:
        :data: 
            | ndarray with input tristimulus values 
            | or spectral data 
            | or input color appearance correlates
            | Can be of shape: (N [, xM], x 3), whereby: 
            | N refers to samples and M refers to light sources.
            | Note that for spectral input shape is (N x (M+1) x wl) 
        :dataw: 
            | None or ndarray, optional
            | Input tristimulus values or spectral data of white point.
            | None defaults to the use of CIE illuminant C.
        :Yb: 
            | 20.0, optional
            | Luminance factor of background (perfect white diffuser, Yw = 100)
        :Lw:
            | 400.0, optional
            | Luminance (cd/m²) of white point.
        :Ccwb:
            | None,  optional
            | Degree of cognitive adaptation (white point balancing)
            | If None: use [..,..] from parameters dict.
        :relative:
            | True or False, optional
            | True: xyz tristimulus values are relative (Yw = 100)
        :parameters:
            | None or str or dict, optional
            | Dict with model parameters.
            |    - None: defaults to luxpy.cam._CAM_SWW_2016_PARAMETERS['JOSA']
            |    - str: 'best-fit-JOSA' or 'best-fit-all-Munsell'
            |    - dict: user defined model parameters 
            |            (dict should have same structure)
        :inputtype:
            | 'xyz' or 'spd', optional
            | Specifies the type of input: 
            |     tristimulus values or spectral data for the forward mode.
        :direction:
            | 'forward' or 'inverse', optional
            |   -'forward': xyz -> cam_sww_2016
            |   -'inverse': cam_sww_2016 -> xyz 
        :cieobs:
            | '2006_10', optional
            | CMF set to use to perform calculations where spectral data 
              is involved (inputtype == 'spd'; dataw = None)
            | Other options: see luxpy._CMF['types']
    
    Returns:
        :returns: 
            | ndarray with color appearance correlates (:direction: == 'forward')
            |  or 
            | XYZ tristimulus values (:direction: == 'inverse')
    
    Notes:
        | This function implements the JOSA A (parameters = 'JOSA') 
          published model. 
        | With:
        |    1. A correction for the parameter 
        |         in Eq.4 of Fig. 11: 0.952 --> -0.952 
        |         
        |     2. The delta_ac and delta_bc white-balance shifts in Eq. 5e & 5f 
        |         should be: -0.028 & 0.821 
        |  
        |     (cfr. Ccwb = 0.66 in: 
        |         ab_test_out = ab_test_int - Ccwb*ab_gray_adaptation_field_int))
             
    References:
        1. `Smet, K. A. G., Webster, M. A., & Whitehead, L. A. (2016). 
        A simple principled approach for modeling and understanding uniform color metrics. 
        Journal of the Optical Society of America A, 33(3), A319–A331. 
        <https://doi.org/10.1364/JOSAA.33.00A319>`_

    """

    # get model parameters
    args = locals().copy()
    if parameters is None:
        parameters = _CAM_SWW16_PARAMETERS['JOSA']
    if isinstance(parameters, str):
        parameters = _CAM_SWW16_PARAMETERS[parameters]
    parameters = put_args_in_db(
        parameters,
        args)  #overwrite parameters with other (not-None) args input

    #unpack model parameters:
    Cc, Ccwb, Cf, Mxyz2lms, cLMS, cab_int, cab_out, calpha, cbeta, cga1, cga2, cgb1, cgb2, cl_int, clambda, lms0 = [
        parameters[x] for x in sorted(parameters.keys())
    ]

    # setup default adaptation field:
    if (dataw is None):
        dataw = _CIE_ILLUMINANTS['C'].copy()  # get illuminant C
        xyzw = spd_to_xyz(dataw, cieobs=cieobs,
                          relative=False)  # get abs. tristimulus values
        if relative == False:  #input is expected to be absolute
            dataw[1:] = Lw * dataw[
                1:] / xyzw[:, 1:2]  #dataw = Lw*dataw # make absolute
        else:
            dataw = dataw  # make relative (Y=100)
        if inputtype == 'xyz':
            dataw = spd_to_xyz(dataw, cieobs=cieobs, relative=relative)

    # precomputations:
    Mxyz2lms = np.dot(
        np.diag(cLMS),
        math.normalize_3x3_matrix(Mxyz2lms, np.array([[1, 1, 1]]))
    )  # normalize matrix for xyz-> lms conversion to ill. E weighted with cLMS
    invMxyz2lms = np.linalg.inv(Mxyz2lms)
    MAab = np.array([clambda, calpha, cbeta])
    invMAab = np.linalg.inv(MAab)

    #initialize data and camout:
    data = np2d(data).copy(
    )  # stimulus data (can be upto NxMx3 for xyz, or [N x (M+1) x wl] for spd))
    dataw = np2d(dataw).copy(
    )  # white point (can be upto Nx3 for xyz, or [(N+1) x wl] for spd)

    # make axis 1 of dataw have 'same' dimensions as data:
    if (data.ndim == 2):
        data = np.expand_dims(data, axis=1)  # add light source axis 1

    if inputtype == 'xyz':
        if dataw.shape[
                0] == 1:  #make dataw have same lights source dimension size as data
            dataw = np.repeat(dataw, data.shape[1], axis=0)
    else:
        if dataw.shape[0] == 2:
            dataw = np.vstack(
                (dataw[0], np.repeat(dataw[1:], data.shape[1], axis=0)))

    # Flip light source dim to axis 0:
    data = np.transpose(data, axes=(1, 0, 2))

    # Initialize output array:
    dshape = list(data.shape)
    dshape[-1] = 3  # requested number of correlates: l_int, a_int, b_int
    if (inputtype != 'xyz') & (direction == 'forward'):
        dshape[-2] = dshape[
            -2] - 1  # wavelength row doesn't count & only with forward can the input data be spectral
    camout = np.zeros(dshape)
    camout.fill(np.nan)

    # apply forward/inverse model for each row in data:
    for i in range(data.shape[0]):

        # stage 1: calculate photon rates of stimulus and adapting field, lmst & lmsf:
        if (inputtype != 'xyz'):
            if relative == True:
                xyzw_abs = spd_to_xyz(np.vstack((dataw[0], dataw[i + 1])),
                                      cieobs=cieobs,
                                      relative=False)
                dataw[i +
                      1] = Lw * dataw[i + 1] / xyzw_abs[0, 1]  # make absolute
            xyzw = spd_to_xyz(np.vstack((dataw[0], dataw[i + 1])),
                              cieobs=cieobs,
                              relative=False)
            lmsw = 683.0 * np.dot(Mxyz2lms, xyzw.T).T / _CMF[cieobs]['K']
            lmsf = (Yb / 100.0
                    ) * lmsw  # calculate adaptation field and convert to l,m,s
            if (direction == 'forward'):
                if relative == True:
                    data[i, 1:, :] = Lw * data[i, 1:, :] / xyzw_abs[
                        0, 1]  # make absolute
                xyzt = spd_to_xyz(data[i], cieobs=cieobs,
                                  relative=False) / _CMF[cieobs]['K']
                lmst = 683.0 * np.dot(Mxyz2lms, xyzt.T).T  # convert to l,m,s
            else:
                lmst = lmsf  # put lmsf in lmst for inverse-mode

        elif (inputtype == 'xyz'):
            if relative == True:
                dataw[i] = Lw * dataw[i] / 100.0  # make absolute
            lmsw = 683.0 * np.dot(
                Mxyz2lms, dataw[i].T).T / _CMF[cieobs]['K']  # convert to lms
            lmsf = (Yb / 100.0) * lmsw
            if (direction == 'forward'):
                if relative == True:
                    data[i] = Lw * data[i] / 100.0  # make absolute
                lmst = 683.0 * np.dot(
                    Mxyz2lms,
                    data[i].T).T / _CMF[cieobs]['K']  # convert to lms
            else:
                lmst = lmsf  # put lmsf in lmst for inverse-mode

        # stage 2: calculate cone outputs of stimulus lmstp
        lmstp = math.erf(Cc * (np.log(lmst / lms0) + Cf * np.log(lmsf / lms0)))
        lmsfp = math.erf(Cc * (np.log(lmsf / lms0) + Cf * np.log(lmsf / lms0)))
        lmstp = np.vstack(
            (lmsfp, lmstp)
        )  # add adaptation field lms temporarily to lmsp for quick calculation

        # stage 3: calculate optic nerve signals, lam*, alphp, betp:
        lstar, alph, bet = asplit(np.dot(MAab, lmstp.T).T)

        alphp = cga1[0] * alph
        alphp[alph < 0] = cga1[1] * alph[alph < 0]
        betp = cgb1[0] * bet
        betp[bet < 0] = cgb1[1] * bet[bet < 0]

        # stage 4: calculate recoded nerve signals, alphapp, betapp:
        alphpp = cga2[0] * (alphp + betp)
        betpp = cgb2[0] * (alphp - betp)

        # stage 5: calculate conscious color perception:
        lstar_int = cl_int[0] * (lstar + cl_int[1])
        alph_int = cab_int[0] * (np.cos(cab_int[1] * np.pi / 180.0) * alphpp -
                                 np.sin(cab_int[1] * np.pi / 180.0) * betpp)
        bet_int = cab_int[0] * (np.sin(cab_int[1] * np.pi / 180.0) * alphpp +
                                np.cos(cab_int[1] * np.pi / 180.0) * betpp)
        lstar_out = lstar_int

        if direction == 'forward':
            if Ccwb is None:
                alph_out = alph_int - cab_out[0]
                bet_out = bet_int - cab_out[1]
            else:
                Ccwb = Ccwb * np.ones((2))
                Ccwb[Ccwb < 0.0] = 0.0
                Ccwb[Ccwb > 1.0] = 1.0
                alph_out = alph_int - Ccwb[0] * alph_int[
                    0]  # white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation
                bet_out = bet_int - Ccwb[1] * bet_int[0]

            camout[i] = np.vstack(
                (lstar_out[1:], alph_out[1:], bet_out[1:])
            ).T  # stack together and remove adaptation field from vertical stack
        elif direction == 'inverse':
            labf_int = np.hstack((lstar_int[0], alph_int[0], bet_int[0]))

            # get lstar_out, alph_out & bet_out for data:
            lstar_out, alph_out, bet_out = asplit(data[i])

            # stage 5 inverse:
            # undo cortical white-balance:
            if Ccwb is None:
                alph_int = alph_out + cab_out[0]
                bet_int = bet_out + cab_out[1]
            else:
                Ccwb = Ccwb * np.ones((2))
                Ccwb[Ccwb < 0.0] = 0.0
                Ccwb[Ccwb > 1.0] = 1.0
                alph_int = alph_out + Ccwb[0] * alph_int[
                    0]  #  inverse white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation
                bet_int = bet_out + Ccwb[1] * bet_int[0]

            lstar_int = lstar_out
            alphpp = (1.0 / cab_int[0]) * (
                np.cos(-cab_int[1] * np.pi / 180.0) * alph_int -
                np.sin(-cab_int[1] * np.pi / 180.0) * bet_int)
            betpp = (1.0 / cab_int[0]) * (
                np.sin(-cab_int[1] * np.pi / 180.0) * alph_int +
                np.cos(-cab_int[1] * np.pi / 180.0) * bet_int)
            lstar_int = lstar_out
            lstar = (lstar_int / cl_int[0]) - cl_int[1]

            # stage 4 inverse:
            alphp = 0.5 * (alphpp / cga2[0] + betpp / cgb2[0]
                           )  # <-- alphpp = (Cga2.*(alphp+betp));
            betp = 0.5 * (alphpp / cga2[0] - betpp / cgb2[0]
                          )  # <-- betpp = (Cgb2.*(alphp-betp));

            # stage 3 invers:
            alph = alphp / cga1[0]
            bet = betp / cgb1[0]
            sa = np.sign(cga1[1])
            sb = np.sign(cgb1[1])
            alph[(sa * alphp) < 0.0] = alphp[(sa * alphp) < 0] / cga1[1]
            bet[(sb * betp) < 0.0] = betp[(sb * betp) < 0] / cgb1[1]
            lab = ajoin((lstar, alph, bet))

            # stage 2 inverse:
            lmstp = np.dot(invMAab, lab.T).T
            lmstp[lmstp < -1.0] = -1.0
            lmstp[lmstp > 1.0] = 1.0

            lmstp = math.erfinv(lmstp) / Cc - Cf * np.log(lmsf / lms0)
            lmst = np.exp(lmstp) * lms0

            # stage 1 inverse:
            xyzt = np.dot(invMxyz2lms, lmst.T).T

            if relative == True:
                xyzt = (100.0 / Lw) * xyzt

            camout[i] = xyzt

#    if flipaxis0and1 == True: # loop over shortest dim.
#        camout = np.transpose(camout, axes = (1,0,2))

# Flip light source dim back to axis 1:
    camout = np.transpose(camout, axes=(1, 0, 2))

    if camout.shape[0] == 1:
        camout = np.squeeze(camout, axis=0)

    return camout
Ejemplo n.º 8
0
def cam_sww16(data,
              dataw=None,
              Yb=20.0,
              Lw=400.0,
              Ccwb=None,
              relative=True,
              inputtype='xyz',
              direction='forward',
              parameters=None,
              cieobs='2006_10',
              match_to_conversionmatrix_to_cieobs=True):
    """
    A simple principled color appearance model based on a mapping of 
    the Munsell color system.
    
    | This function implements the JOSA A (parameters = 'JOSA') published model. 
    
    Args:
        :data: 
            | ndarray with input tristimulus values 
            | or spectral data 
            | or input color appearance correlates
            | Can be of shape: (N [, xM], x 3), whereby: 
            | N refers to samples and M refers to light sources.
            | Note that for spectral input shape is (N x (M+1) x wl) 
        :dataw: 
            | None or ndarray, optional
            | Input tristimulus values or spectral data of white point.
            | None defaults to the use of CIE illuminant C.
        :Yb: 
            | 20.0, optional
            | Luminance factor of background (perfect white diffuser, Yw = 100)
        :Lw:
            | 400.0, optional
            | Luminance (cd/m²) of white point.
        :Ccwb:
            | None,  optional
            | Degree of cognitive adaptation (white point balancing)
            | If None: use [..,..] from parameters dict.
        :relative:
            | True or False, optional
            | True: xyz tristimulus values are relative (Yw = 100)
        :parameters:
            | None or str or dict, optional
            | Dict with model parameters.
            |    - None: defaults to luxpy.cam._CAM_SWW_2016_PARAMETERS['JOSA']
            |    - str: 'best-fit-JOSA' or 'best-fit-all-Munsell'
            |    - dict: user defined model parameters 
            |            (dict should have same structure)
        :inputtype:
            | 'xyz' or 'spd', optional
            | Specifies the type of input: 
            |     tristimulus values or spectral data for the forward mode.
        :direction:
            | 'forward' or 'inverse', optional
            |   -'forward': xyz -> cam_sww_2016
            |   -'inverse': cam_sww_2016 -> xyz 
        :cieobs:
            | '2006_10', optional
            | CMF set to use to perform calculations where spectral data 
            | is involved (inputtype == 'spd'; dataw = None)
            | Other options: see luxpy._CMF['types']
        :match_to_conversionmatrix_to_cieobs:
            | When channging to a different CIE observer, change the xyz-to_lms
            | matrix to the one corresponding to that observer. If False: use 
            | the one set in parameters or _CAM_SWW16_PARAMETERS
    
    Returns:
        :returns: 
            | ndarray with color appearance correlates (:direction: == 'forward')
            |  or 
            | XYZ tristimulus values (:direction: == 'inverse')
    
    Notes:
        | This function implements the JOSA A (parameters = 'JOSA') 
        | published model. 
        | With:
        |    1. A correction for the parameter 
        |         in Eq.4 of Fig. 11: 0.952 --> -0.952 
        |         
        |     2. The delta_ac and delta_bc white-balance shifts in Eq. 5e & 5f 
        |         should be: -0.028 & 0.821 
        |  
        |     (cfr. Ccwb = 0.66 in: 
        |         ab_test_out = ab_test_int - Ccwb*ab_gray_adaptation_field_int))
             
    References:
        1. `Smet, K. A. G., Webster, M. A., & Whitehead, L. A. (2016). 
        A simple principled approach for modeling and understanding uniform color metrics. 
        Journal of the Optical Society of America A, 33(3), A319–A331. 
        <https://doi.org/10.1364/JOSAA.33.00A319>`_

    """
    #--------------------------------------------------------------------------
    # Get model parameters:
    #--------------------------------------------------------------------------
    args = locals().copy()
    parameters = _update_parameter_dict(
        args,
        parameters=parameters,
        match_to_conversionmatrix_to_cieobs=match_to_conversionmatrix_to_cieobs
    )

    #unpack model parameters:
    Cc, Ccwb, Cf, Mxyz2lms, cLMS, cab_int, cab_out, calpha, cbeta, cga1, cga2, cgb1, cgb2, cl_int, clambda, lms0 = [
        parameters[x] for x in sorted(parameters.keys())
    ]

    #--------------------------------------------------------------------------
    # Setup default adaptation field:
    #--------------------------------------------------------------------------
    dataw = _setup_default_adaptation_field(dataw=dataw,
                                            Lw=Lw,
                                            inputtype=inputtype,
                                            relative=relative,
                                            cieobs=cieobs)

    #--------------------------------------------------------------------------
    # Redimension input data to ensure most appropriate sizes
    # for easy and efficient looping and initialize output array:
    #--------------------------------------------------------------------------
    data, dataw, camout, originalshape = _massage_input_and_init_output(
        data, dataw, inputtype=inputtype, direction=direction)

    #--------------------------------------------------------------------------
    # Do precomputations needed for both the forward and inverse model,
    # and which do not depend on sample or light source data:
    #--------------------------------------------------------------------------
    Mxyz2lms = np.dot(
        np.diag(cLMS), Mxyz2lms
    )  # weight the xyz-to-lms conversion matrix with cLMS (cfr. stage 1 calculations)
    invMxyz2lms = np.linalg.inv(
        Mxyz2lms)  # Calculate the inverse lms-to-xyz conversion matrix
    MAab = np.array(
        [clambda, calpha, cbeta]
    )  # Create matrix with scale factors for L, M, S for quick matrix multiplications
    invMAab = np.linalg.inv(
        MAab)  # Pre-calculate its inverse to avoid repeat in loop.

    #--------------------------------------------------------------------------
    # Apply forward/inverse model by looping over each row (=light source dim.)
    # in data:
    #--------------------------------------------------------------------------
    N = data.shape[0]
    for i in range(N):
        #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        #  START FORWARD MODE and common part of inverse mode
        #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

        #-----------------------------------------------------------------------------
        # Get absolute tristimulus values for stimulus field and white point for row i:
        #-----------------------------------------------------------------------------
        xyzt, xyzw, xyzw_abs = _get_absolute_xyz_xyzw(data,
                                                      dataw,
                                                      i=i,
                                                      Lw=Lw,
                                                      direction=direction,
                                                      cieobs=cieobs,
                                                      inputtype=inputtype,
                                                      relative=relative)

        #-----------------------------------------------------------------------------
        # stage 1: calculate photon rates of stimulus and white white, and
        # adapting field: i.e. lmst, lmsw and lmsf
        #-----------------------------------------------------------------------------
        # Convert to white point l,m,s:
        lmsw = 683.0 * np.dot(Mxyz2lms, xyzw.T).T / _CMF[cieobs]['K']

        # Calculate adaptation field and convert to l,m,s:
        lmsf = (Yb / 100.0) * lmsw

        # Calculate lms of stimulus
        # or put adaptation lmsf in test field lmst for later use in inverse-mode (no xyz in 'inverse' mode!!!):
        lmst = (683.0 * np.dot(Mxyz2lms, xyzt.T).T /
                _CMF[cieobs]['K']) if (direction == 'forward') else lmsf

        #-----------------------------------------------------------------------------
        # stage 2: calculate cone outputs of stimulus lmstp
        #-----------------------------------------------------------------------------
        lmstp = math.erf(Cc *
                         (np.log(lmst / lms0) +
                          Cf * np.log(lmsf / lms0)))  # stimulus test field
        lmsfp = math.erf(Cc * (np.log(lmsf / lms0) +
                               Cf * np.log(lmsf / lms0)))  # adaptation field

        # add adaptation field lms temporarily to lmstp for quick calculation
        lmstp = np.vstack((lmsfp, lmstp))

        #-----------------------------------------------------------------------------
        # stage 3: calculate optic nerve signals, lam*, alphp, betp:
        #-----------------------------------------------------------------------------
        lstar, alph, bet = asplit(np.dot(MAab, lmstp.T).T)

        alphp = cga1[0] * alph
        alphp[alph < 0] = cga1[1] * alph[alph < 0]
        betp = cgb1[0] * bet
        betp[bet < 0] = cgb1[1] * bet[bet < 0]

        #-----------------------------------------------------------------------------
        #  stage 4: calculate recoded nerve signals, alphapp, betapp:
        #-----------------------------------------------------------------------------
        alphpp = cga2[0] * (alphp + betp)
        betpp = cgb2[0] * (alphp - betp)

        #-----------------------------------------------------------------------------
        #  stage 5: calculate conscious color perception:
        #-----------------------------------------------------------------------------
        lstar_int = cl_int[0] * (lstar + cl_int[1])
        alph_int = cab_int[0] * (np.cos(cab_int[1] * np.pi / 180.0) * alphpp -
                                 np.sin(cab_int[1] * np.pi / 180.0) * betpp)
        bet_int = cab_int[0] * (np.sin(cab_int[1] * np.pi / 180.0) * alphpp +
                                np.cos(cab_int[1] * np.pi / 180.0) * betpp)
        lstar_out = lstar_int

        #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        #  stage 5 continued but SPLIT IN FORWARD AND INVERSE MODES:
        #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

        #--------------------------------------
        # FORWARD MODE TO PERCEPTUAL SIGNALS:
        #--------------------------------------
        if direction == 'forward':
            if Ccwb is None:
                alph_out = alph_int - cab_out[0]
                bet_out = bet_int - cab_out[1]

            else:
                Ccwb = Ccwb * np.ones((2))
                Ccwb[Ccwb < 0.0] = 0.0
                Ccwb[Ccwb > 1.0] = 1.0

                # white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation:
                alph_out = alph_int - Ccwb[0] * alph_int[0]
                bet_out = bet_int - Ccwb[1] * bet_int[0]

            # stack together and remove adaptation field from vertical stack
            # camout is an ndarray with perceptual signals:
            camout[i] = np.vstack((lstar_out[1:], alph_out[1:], bet_out[1:])).T

        #--------------------------------------
        # INVERSE MODE FROM PERCEPTUAL SIGNALS:
        #--------------------------------------
        elif direction == 'inverse':

            # stack cognitive pre-adapted adaptation field signals (first on stack) together:
            #labf_int = np.hstack((lstar_int[0],alph_int[0],bet_int[0]))

            # get lstar_out, alph_out & bet_out for data
            #(contains model perceptual signals in inverse mode!!!):
            lstar_out, alph_out, bet_out = asplit(data[i])

            #------------------------------------------------------------------------
            #  Inverse stage 5: undo cortical white-balance:
            #------------------------------------------------------------------------
            if Ccwb is None:
                alph_int = alph_out + cab_out[0]
                bet_int = bet_out + cab_out[1]
            else:
                Ccwb = Ccwb * np.ones((2))
                Ccwb[Ccwb < 0.0] = 0.0
                Ccwb[Ccwb > 1.0] = 1.0

                #  inverse white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation
                alph_int = alph_out + Ccwb[0] * alph_int[0]
                bet_int = bet_out + Ccwb[1] * bet_int[0]

            alphpp = (1.0 / cab_int[0]) * (
                np.cos(-cab_int[1] * np.pi / 180.0) * alph_int -
                np.sin(-cab_int[1] * np.pi / 180.0) * bet_int)
            betpp = (1.0 / cab_int[0]) * (
                np.sin(-cab_int[1] * np.pi / 180.0) * alph_int +
                np.cos(-cab_int[1] * np.pi / 180.0) * bet_int)
            lstar_int = lstar_out
            lstar = (lstar_int / cl_int[0]) - cl_int[1]

            #---------------------------------------------------------------------------
            #  Inverse stage 4: pre-adapted perceptual signals to recoded nerve signals:
            #---------------------------------------------------------------------------
            alphp = 0.5 * (alphpp / cga2[0] + betpp / cgb2[0]
                           )  # <-- alphpp = (Cga2.*(alphp+betp));
            betp = 0.5 * (alphpp / cga2[0] - betpp / cgb2[0]
                          )  # <-- betpp = (Cgb2.*(alphp-betp));

            #---------------------------------------------------------------------------
            #  Inverse stage 3: recoded nerve signals to optic nerve signals:
            #---------------------------------------------------------------------------
            alph = alphp / cga1[0]
            bet = betp / cgb1[0]
            sa = np.sign(cga1[1])
            sb = np.sign(cgb1[1])
            alph[(sa * alphp) < 0.0] = alphp[(sa * alphp) < 0] / cga1[1]
            bet[(sb * betp) < 0.0] = betp[(sb * betp) < 0] / cgb1[1]
            lab = ajoin((lstar, alph, bet))

            #---------------------------------------------------------------------------
            #  Inverse stage 2: optic nerve signals to cone outputs:
            #---------------------------------------------------------------------------
            lmstp = np.dot(invMAab, lab.T).T
            lmstp[lmstp < -1.0] = -1.0
            lmstp[lmstp > 1.0] = 1.0

            #---------------------------------------------------------------------------
            #  Inverse stage 1: cone outputs to photon rates:
            #---------------------------------------------------------------------------
            lmstp = math.erfinv(lmstp) / Cc - Cf * np.log(lmsf / lms0)
            lmst = np.exp(lmstp) * lms0

            #---------------------------------------------------------------------------
            #  Photon rates to absolute or relative tristimulus values:
            #---------------------------------------------------------------------------
            xyzt = np.dot(invMxyz2lms, lmst.T).T * (_CMF[cieobs]['K'] / 683.0)
            if relative == True:
                xyzt = (100 / Lw) * xyzt

            # store in same named variable as forward mode:
            camout[i] = xyzt

            #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
            #  END inverse mode
            #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    return _massage_output_data_to_original_shape(camout, originalshape)