Ejemplo n.º 1
0
def run(data,
        xyzw=_DEFAULT_WHITE_POINT,
        Yw=None,
        outin='J,aM,bM',
        conditions=None,
        forward=True,
        yellowbluepurplecorrect=False,
        mcat='cat02'):
    """ 
    Run CIECAM02 color appearance model in forward or backward modes.
    
    Args:
        :data:
            | ndarray with relative sample xyz values (forward mode) or J'a'b' coordinates (inverse mode)
        :xyzw:
            | ndarray with relative white point tristimulus values 
        :Yw: 
            | None, optional
            | Luminance factor of white point.
            | If None: xyz (in data) and xyzw are entered as relative tristimulus values 
            |          (normalized to Yw = 100). 
            | If not None: input tristimulus are absolute and Yw is used to
            |              rescale the absolute values to relative ones 
            |              (relative to a reference perfect white diffuser 
            |               with Ywr = 100). 
            | Yw can be < 100 for e.g. paper as white point. If Yw is None, it 
            | is assumed that the relative Y-tristimulus value in xyzw 
            | represents the luminance factor Yw.
        :conditions:
            | None, optional
            | Dictionary with viewing condition parameters for:
            |       La, Yb, D and surround.
            |  surround can contain:
            |      - str (options: 'avg','dim','dark') or 
            |      - dict with keys c, Nc, F.
            | None results in:
            |   {'La':100, 'Yb':20, 'D':1, 'surround':'avg'}
        :forward:
            | True, optional
            | If True: run in CAM in forward mode, else: inverse mode.
        :outin:
            | 'J,aM,bM', optional
            | String with requested output (e.g. "J,aM,bM,M,h") [Forward mode]
            | - attributes: 'J': lightness,'Q': brightness,
            |               'M': colorfulness,'C': chroma, 's': saturation,
            |               'h': hue angle, 'H': hue quadrature/composition,
            | String with inputs in data [inverse mode]. 
            | Input must have data.shape[-1]==3 and last dim of data must have 
            | the following structure for inverse mode: 
            |  * data[...,0] = J or Q,
            |  * data[...,1:] = (aM,bM) or (aC,bC) or (aS,bS) or (M,h) or (C, h), ...
        :yellowbluepurplecorrect:
            | False, optional
            | If False: don't correct for yellow-blue and purple problems in ciecam02. 
            | If 'brill-suss': 
            |       for yellow-blue problem, see: 
            |          - Brill [Color Res Appl, 2006; 31, 142-145] and 
            |          - Brill and Süsstrunk [Color Res Appl, 2008; 33, 424-426] 
            | If 'jiang-luo': 
            |       for yellow-blue problem + purple line problem, see:
            |          - Jiang, Jun et al. [Color Res Appl 2015: 40(5), 491-503] 
        :mcat:
            | 'cat02', optional
            | Specifies CAT sensor space.
            | - options:
            |    - None defaults to 'cat02' 
            |         (others e.g. 'cat02-bs', 'cat02-jiang',
            |         all trying to correct gamut problems of original cat02 matrix)
            |    - str: see see luxpy.cat._MCATS.keys() for options 
            |         (details on type, ?luxpy.cat)
            |    - ndarray: matrix with sensor primaries
    Returns:
        :camout: 
            | ndarray with color appearance correlates (forward mode) 
            |  or 
            | XYZ tristimulus values (inverse mode)
        
    References:
        1. `N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, (2002), 
        "The CIECAM02 color appearance model,” 
        IS&T/SID Tenth Color Imaging Conference. p. 23, 2002.
        <http://rit-mcsl.org/fairchild/PDFs/PRO19.pdf>`_
    """
    outin = outin.split(',') if isinstance(outin, str) else outin

    #--------------------------------------------
    # Get condition parameters:
    if conditions is None:
        conditions = _DEFAULT_CONDITIONS
    D, Dtype, La, Yb, surround = (conditions[x]
                                  for x in sorted(conditions.keys()))

    surround_parameters = _SURROUND_PARAMETERS
    if isinstance(surround, str):
        surround = surround_parameters[conditions['surround']]
    F, FLL, Nc, c = [surround[x] for x in sorted(surround.keys())]

    #--------------------------------------------
    # Define sensor space and cat matrices:
    # Hunt-Pointer-Estevez sensors (cone fundamentals)
    mhpe = cat._MCATS['hpe']

    # chromatic adaptation sensors:
    if (mcat is None) | (mcat == 'cat02'):
        mcat = cat._MCATS['cat02']
        if yellowbluepurplecorrect == 'brill-suss':
            mcat = cat._MCATS[
                'cat02-bs']  # for yellow-blue problem, Brill [Color Res Appl 2006;31:142-145] and Brill and Süsstrunk [Color Res Appl 2008;33:424-426]
        elif yellowbluepurplecorrect == 'jiang-luo':
            mcat = cat._MCATS[
                'cat02-jiang-luo']  # for yellow-blue problem + purple line problem
    elif isinstance(mcat, str):
        mcat = cat._MCATS[mcat]

    #--------------------------------------------
    # pre-calculate some matrices:
    invmcat = np.linalg.inv(mcat)
    mhpe_x_invmcat = np.dot(mhpe, invmcat)
    if not forward: mcat_x_invmhpe = np.dot(mcat, np.linalg.inv(mhpe))

    #--------------------------------------------
    # Set Yw:
    if Yw is not None:
        Yw = (Yw * np.ones_like(xyzw2[..., 1:2]).T)
    else:
        Yw = xyzw[..., 1:2].T

    #--------------------------------------------
    # calculate condition dependent parameters:
    k = 1.0 / (5.0 * La + 1.0)
    FL = 0.2 * (k**4.0) * (5.0 * La) + 0.1 * ((1.0 - k**4.0)**2.0) * (
        (5.0 * La)**(1.0 / 3.0))  # luminance adaptation factor
    n = Yb / Yw
    Nbb = 0.725 * (1 / n)**0.2
    Ncb = Nbb
    z = 1.48 + FLL * n**0.5
    yw = xyzw[..., 1:2].T  # original Y in xyzw (pre-transposed)

    #--------------------------------------------
    # Calculate degree of chromatic adaptation:
    if D is None:
        D = F * (1.0 - (1.0 / 3.6) * np.exp((-La - 42.0) / 92.0))

    #===================================================================
    # WHITE POINT transformations (common to forward and inverse modes):

    #--------------------------------------------
    # Normalize white point (keep transpose for next step):
    xyzw = Yw * xyzw.T / yw

    #--------------------------------------------
    # transform from xyzw to cat sensor space:
    rgbw = math.dot23(mcat, xyzw)

    #--------------------------------------------
    # apply von Kries cat:
    rgbwc = (
        (D * Yw / rgbw) + (1 - D)
    ) * rgbw  # factor 100 from ciecam02 is replaced with Yw[i] in ciecam16, but see 'note' in Fairchild's "Color Appearance Models" (p291 ni 3ed.)

    #--------------------------------------------
    # convert from cat02 sensor space to cone sensors (hpe):
    rgbwp = math.dot23(mhpe_x_invmcat, rgbwc).T

    #--------------------------------------------
    # apply Naka_rushton repsonse compression to white:
    NK = lambda x, forward: naka_rushton(x,
                                         scaling=400,
                                         n=0.42,
                                         sig=27.13**(1 / 0.42),
                                         noise=0.1,
                                         forward=forward)

    pw = np.where(rgbwp < 0)

    # if requested apply yellow-blue correction:
    if (yellowbluepurplecorrect == 'brill-suss'
        ):  # Brill & Susstrunck approach, for purple line problem
        rgbwp[pw] = 0.0
    rgbwpa = NK(FL * rgbwp / 100.0, True)
    rgbwpa[pw] = 0.1 - (NK(FL * np.abs(rgbwp[pw]) / 100.0, True) - 0.1)

    #--------------------------------------------
    # Calculate achromatic signal of white:
    Aw = (2.0 * rgbwpa[..., 0] + rgbwpa[..., 1] +
          (1.0 / 20.0) * rgbwpa[..., 2] - 0.305) * Nbb

    # massage shape of data for broadcasting:
    original_ndim = data.ndim
    if data.ndim == 2: data = data[:, None]

    #===================================================================
    # STIMULUS transformations
    if forward:

        #--------------------------------------------
        # Normalize xyz (keep transpose for matrix multiplication in next step):
        xyz = (Yw / yw)[..., None] * data.T

        #--------------------------------------------
        # transform from xyz to cat sensor space:
        rgb = math.dot23(mcat, xyz)

        #--------------------------------------------
        # apply von Kries cat:
        rgbc = (
            (D * Yw / rgbw)[..., None] + (1 - D)
        ) * rgb  # factor 100 from ciecam02 is replaced with Yw[i] in ciecam16, but see 'note' in Fairchild's "Color Appearance Models" (p291 ni 3ed.)

        #--------------------------------------------
        # convert from cat02 sensor space to cone sensors (hpe):
        rgbp = math.dot23(mhpe_x_invmcat, rgbc).T

        #--------------------------------------------
        # apply Naka_rushton repsonse compression:
        p = np.where(rgbp < 0)
        if (yellowbluepurplecorrect == 'brill-suss'
            ):  # Brill & Susstrunck approach, for purple line problem
            rgbp[p] = 0.0
        rgbpa = NK(FL * rgbp / 100.0, forward)
        rgbpa[p] = 0.1 - (NK(FL * np.abs(rgbp[p]) / 100.0, forward) - 0.1)

        #--------------------------------------------
        # Calculate achromatic signal:
        A = (2.0 * rgbpa[..., 0] + rgbpa[..., 1] +
             (1.0 / 20.0) * rgbpa[..., 2] - 0.305) * Nbb

        #--------------------------------------------
        # calculate initial opponent channels:
        a = rgbpa[..., 0] - 12.0 * rgbpa[..., 1] / 11.0 + rgbpa[..., 2] / 11.0
        b = (1.0 / 9.0) * (rgbpa[..., 0] + rgbpa[..., 1] - 2.0 * rgbpa[..., 2])

        #--------------------------------------------
        # calculate hue h and eccentricity factor, et:
        h = hue_angle(a, b, htype='deg')
        et = (1.0 / 4.0) * (np.cos(h * np.pi / 180 + 2.0) + 3.8)

        #--------------------------------------------
        # calculate Hue quadrature (if requested in 'out'):
        if 'H' in outin:
            H = hue_quadrature(h, unique_hue_data=_UNIQUE_HUE_DATA)
        else:
            H = None

        #--------------------------------------------
        # calculate lightness, J:
        J = 100.0 * (A / Aw)**(c * z)

        #--------------------------------------------
        # calculate brightness, Q:
        Q = (4.0 / c) * ((J / 100.0)**0.5) * (Aw + 4.0) * (FL**0.25)

        #--------------------------------------------
        # calculate chroma, C:
        t = ((50000.0 / 13.0) * Nc * Ncb * et *
             ((a**2.0 + b**2.0)**0.5)) / (rgbpa[..., 0] + rgbpa[..., 1] +
                                          (21.0 / 20.0 * rgbpa[..., 2]))
        C = (t**0.9) * ((J / 100.0)**0.5) * (1.64 - 0.29**n)**0.73

        #--------------------------------------------
        # calculate colorfulness, M:
        M = C * FL**0.25

        #--------------------------------------------
        # calculate saturation, s:
        s = 100.0 * (M / Q)**0.5
        S = s  # make extra variable, jsut in case 'S' is called

        #--------------------------------------------
        # calculate cartesian coordinates:
        if ('aS' in outin):
            aS = s * np.cos(h * np.pi / 180.0)
            bS = s * np.sin(h * np.pi / 180.0)

        if ('aC' in outin):
            aC = C * np.cos(h * np.pi / 180.0)
            bC = C * np.sin(h * np.pi / 180.0)

        if ('aM' in outin):
            aM = M * np.cos(h * np.pi / 180.0)
            bM = M * np.sin(h * np.pi / 180.0)

        #--------------------------------------------
        if outin != ['J', 'aM', 'bM']:
            camout = eval('ajoin((' + ','.join(outin) + '))')
        else:
            camout = ajoin((J, aM, bM))

        if (camout.shape[1] == 1) & (original_ndim < 3):
            camout = camout[:, 0, :]

        return camout

    elif forward == False:

        #--------------------------------------------
        # Get Lightness J from data:
        if ('J' in outin[0]):
            J = data[..., 0].copy()
        elif ('Q' in outin[0]):
            Q = data[..., 0].copy()
            J = 100.0 * (Q / ((Aw + 4.0) * (FL**0.25) * (4.0 / c)))**2.0
        else:
            raise Exception(
                'No lightness or brightness values in data. Inverse CAM-transform not possible!'
            )

        #--------------------------------------------
        if 'a' in outin[1]:
            # calculate hue h:
            h = hue_angle(data[..., 1], data[..., 2], htype='deg')

            #--------------------------------------------
            # calculate Colorfulness M or Chroma C or Saturation s from a,b:
            MCs = (data[..., 1]**2.0 + data[..., 2]**2.0)**0.5
        else:
            h = data[..., 2]
            MCs = data[..., 1]

        if ('S' in outin[1]):
            Q = (4.0 / c) * ((J / 100.0)**0.5) * (Aw + 4.0) * (FL**0.25)
            M = Q * (MCs / 100.0)**2.0
            C = M / (FL**0.25)

        if ('M' in outin[1]):  # convert M to C:
            C = MCs / (FL**0.25)

        if ('C' in outin[1]):
            C = MCs

        #--------------------------------------------
        # calculate t from J, C:
        t = (C / ((J / 100.0)**(1.0 / 2.0) * (1.64 - 0.29**n)**0.73))**(1.0 /
                                                                        0.9)

        #--------------------------------------------
        # calculate eccentricity factor, et:
        et = (np.cos(h * np.pi / 180.0 + 2.0) + 3.8) / 4.0

        #--------------------------------------------
        # calculate achromatic signal, A:
        A = Aw * (J / 100.0)**(1.0 / (c * z))

        #--------------------------------------------
        # calculate temporary cart. co. at, bt and p1,p2,p3,p4,p5:
        at = np.cos(h * np.pi / 180.0)
        bt = np.sin(h * np.pi / 180.0)
        p1 = (50000.0 / 13.0) * Nc * Ncb * et / t
        p2 = A / Nbb + 0.305
        p3 = 21.0 / 20.0
        p4 = p1 / bt
        p5 = p1 / at

        #--------------------------------------------
        #q = np.where(np.abs(bt) < np.abs(at))[0]
        q = (np.abs(bt) < np.abs(at))

        b = p2 * (2.0 + p3) * (460.0 / 1403.0) / (p4 + (2.0 + p3) *
                                                  (220.0 / 1403.0) *
                                                  (at / bt) -
                                                  (27.0 / 1403.0) + p3 *
                                                  (6300.0 / 1403.0))
        a = b * (at / bt)

        a[q] = p2[q] * (2.0 + p3) * (460.0 / 1403.0) / (p5[q] + (2.0 + p3) *
                                                        (220.0 / 1403.0) -
                                                        ((27.0 / 1403.0) - p3 *
                                                         (6300.0 / 1403.0)) *
                                                        (bt[q] / at[q]))
        b[q] = a[q] * (bt[q] / at[q])

        #--------------------------------------------
        # calculate post-adaptation values
        rpa = (460.0 * p2 + 451.0 * a + 288.0 * b) / 1403.0
        gpa = (460.0 * p2 - 891.0 * a - 261.0 * b) / 1403.0
        bpa = (460.0 * p2 - 220.0 * a - 6300.0 * b) / 1403.0

        #--------------------------------------------
        # join values:
        rgbpa = ajoin((rpa, gpa, bpa))

        #--------------------------------------------
        # decompress signals:
        rgbp = (100.0 / FL) * NK(rgbpa, forward)

        # apply yellow-blue correction:
        if (yellowbluepurplecorrect == 'brill-suss'
            ):  # Brill & Susstrunck approach, for purple line problem
            p = np.where(rgbp < 0.0)
            rgbp[p] = 0.0

        #--------------------------------------------
        # convert from to cone sensors (hpe) cat02 sensor space:
        rgbc = math.dot23(mcat_x_invmhpe, rgbp.T)

        #--------------------------------------------
        # apply inverse von Kries cat:
        rgb = rgbc / ((D * Yw / rgbw)[..., None] + (1.0 - D))

        #--------------------------------------------
        # transform from cat sensor space to xyz:
        xyz = math.dot23(invmcat, rgb)

        #--------------------------------------------
        # unnormalize xyz:
        xyz = ((yw / Yw)[..., None] * xyz).T

        return xyz
Ejemplo n.º 2
0
def run(data,
        xyzw=None,
        outin='J,aM,bM',
        cieobs=_CIEOBS,
        conditions=None,
        forward=True,
        mcat='cat16',
        **kwargs):
    """ 
    Run the Jz,az,bz based color appearance model in forward or backward modes.
    
    Args:
        :data:
            | ndarray with relative sample xyz values (forward mode) or J'a'b' coordinates (inverse mode)
        :xyzw:
            | ndarray with relative white point tristimulus values
            | None defaults to D65
        :cieobs:
            | _CIEOBS, optional
            | CMF set to use when calculating :xyzw: if this is None.
        :conditions:
            | None, optional
            | Dictionary with viewing condition parameters for:
            |       La, Yb, D and surround.
            |  surround can contain:
            |      - str (options: 'avg','dim','dark') or 
            |      - dict with keys c, Nc, F.
            | None results in:
            |   {'La':100, 'Yb':20, 'D':1, 'surround':'avg'}
        :forward:
            | True, optional
            | If True: run in CAM in forward mode, else: inverse mode.
        :outin:
            | 'J,aM,bM', optional
            | String with requested output (e.g. "J,aM,bM,M,h") [Forward mode]
            | String with inputs in data. 
            | Input must have data.shape[-1]==3 and last dim of data must have 
            | the following structure: 
            |  * data[...,0] = J or Q,
            |  * data[...,1:] = (aM,bM) or (aC,bC) or (aS,bS)
        :mcat:
            | 'cat16', optional
            | Specifies CAT sensor space.
            | - options:
            |    - None defaults to 'cat16'
            |    - str: see see luxpy.cat._MCATS.keys() for options 
            |         (details on type, ?luxpy.cat)
            |    - ndarray: matrix with sensor primaries
    Returns:
        :camout: 
            | ndarray with color appearance correlates (forward mode) 
            |  or 
            | XYZ tristimulus values (inverse mode)
     
    References:
        1. `Safdar, M., Cui, G., Kim,Y. J., and  Luo, M. R.(2017).
        Perceptually uniform color space for image signals including high dynamic range and wide gamut.
        Opt. Express, vol. 25, no. 13, pp. 15131–15151, Jun. 2017. 
        <https://www.opticsexpress.org/abstract.cfm?URI=oe-25-13-15131>`_
    
        2. `Safdar, M., Hardeberg, J., Cui, G., Kim, Y. J., and Luo, M. R.(2018).
        A Colour Appearance Model based on Jzazbz Colour Space, 
        26th Color and Imaging Conference (2018), Vancouver, Canada, November 12-16, 2018, pp96-101.
        <https://doi.org/10.2352/ISSN.2169-2629.2018.26.96>`_
    """
    outin = outin.split(',') if isinstance(outin, str) else outin

    #--------------------------------------------
    # Get condition parameters:
    if conditions is None:
        conditions = _DEFAULT_CONDITIONS

    D, Dtype, La, Yb, surround = (conditions[x]
                                  for x in sorted(conditions.keys()))

    surround_parameters = _SURROUND_PARAMETERS
    if isinstance(surround, str):
        surround = surround_parameters[conditions['surround']]
    F, FLL, Nc, c = [surround[x] for x in sorted(surround.keys())]

    # Define cone/chromatic adaptation sensor space:
    if (mcat is None) | (mcat == 'cat16'):
        mcat = cat._MCATS['cat16']
    elif isinstance(mcat, str):
        mcat = cat._MCATS[mcat]
    invmcat = np.linalg.inv(mcat)

    #--------------------------------------------
    # Get white point of D65 fro chromatic adaptation transform (CAT)
    xyzw_d65 = np.array([[
        9.5047e+01, 1.0000e+02, 1.0888e+02
    ]]) if cieobs == '1931_2' else spd_to_xyz(_CIE_D65, cieobs=cieobs)

    #--------------------------------------------
    # Get default white point:
    if xyzw is None:
        xyzw = xyzw_d65.copy()

    #--------------------------------------------
    # calculate condition dependent parameters:
    Yw = xyzw[..., 1].T
    k = 1.0 / (5.0 * La + 1.0)
    FL = 0.2 * (k**4.0) * (5.0 * La) + 0.1 * ((1.0 - k**4.0)**2.0) * (
        (5.0 * La)**(1.0 / 3.0))  # luminance adaptation factor
    n = Yb / Yw
    Nbb = 0.725 * (1 / n)**0.2
    z = 1.48 + FLL * n**0.5

    #--------------------------------------------
    # Calculate degree of chromatic adaptation:
    if D is None:
        D = F * (1.0 - (1.0 / 3.6) * np.exp((-La - 42.0) / 92.0))

    #===================================================================
    # WHITE POINT transformations (common to forward and inverse modes):

    #--------------------------------------------
    # Apply CAT to white point:
    xyzwc = cat.apply_vonkries1(xyzw,
                                xyzw,
                                xyzw_d65,
                                D=D,
                                mcat=mcat,
                                invmcat=invmcat)

    #--------------------------------------------
    # Get Iz,az,bz coordinates:
    iabzw = xyz_to_jabz(xyzwc, ztype='iabz')

    #===================================================================
    # STIMULUS transformations:

    #--------------------------------------------
    # massage shape of data for broadcasting:
    original_ndim = data.ndim
    if data.ndim == 2: data = data[:, None]

    if forward:
        # Apply CAT to D65:
        xyzc = cat.apply_vonkries1(data,
                                   xyzw,
                                   xyzw_d65,
                                   D=D,
                                   mcat=mcat,
                                   invmcat=invmcat)

        # Get Iz,az,bz coordinates:
        iabz = xyz_to_jabz(xyzc, ztype='iabz')

        #--------------------------------------------
        # calculate hue h and eccentricity factor, et:
        h = hue_angle(iabz[..., 1], iabz[..., 2], htype='deg')
        et = 1.01 + np.cos(h * np.pi / 180 + 1.55)

        #--------------------------------------------
        # calculate Hue quadrature (if requested in 'out'):
        if 'H' in outin:
            H = hue_quadrature(h, unique_hue_data=_UNIQUE_HUE_DATA)
        else:
            H = None

        #--------------------------------------------
        # calculate lightness, J:
        if ('J' in outin) | ('Q' in outin) | ('C' in outin) | (
                'M' in outin) | ('s' in outin) | ('aS' in outin) | (
                    'aC' in outin) | ('aM' in outin):
            J = 100.0 * (iabz[..., 0] / iabzw[..., 0])**(c * z)

        #--------------------------------------------
        # calculate brightness, Q:
        if ('Q' in outin) | ('s' in outin) | ('aS' in outin):
            Q = 192.5 * (J / c) * (FL**0.64)

        #--------------------------------------------
        # calculate chroma, C:
        if ('C' in outin) | ('M' in outin) | ('s' in outin) | (
                'aS' in outin) | ('aC' in outin) | ('aM' in outin):
            C = ((1 / n)**0.074) * (
                (iabz[..., 1]**2.0 + iabz[..., 2]**2.0)**0.37) * (et**0.067)

        #--------------------------------------------
        # calculate colorfulness, M:
        if ('M' in outin) | ('s' in outin) | ('aM' in outin) | ('aS' in outin):
            M = 1.42 * C * FL**0.25

        #--------------------------------------------
        # calculate saturation, s:
        if ('s' in outin) | ('aS' in outin):
            s = 100.0 * (M / Q)**0.5

        #--------------------------------------------
        # calculate cartesian coordinates:
        if ('aS' in outin):
            aS = s * np.cos(h * np.pi / 180.0)
            bS = s * np.sin(h * np.pi / 180.0)

        if ('aC' in outin):
            aC = C * np.cos(h * np.pi / 180.0)
            bC = C * np.sin(h * np.pi / 180.0)

        if ('aM' in outin):
            aM = M * np.cos(h * np.pi / 180.0)
            bM = M * np.sin(h * np.pi / 180.0)

        #--------------------------------------------
        if outin != ['J', 'aM', 'bM']:
            camout = eval('ajoin((' + ','.join(outin) + '))')
        else:
            camout = ajoin((J, aM, bM))

        if (camout.shape[1] == 1) & (original_ndim < 3):
            camout = camout[:, 0, :]

        return camout

    elif forward == False:
        #--------------------------------------------
        # Get Lightness J from data:
        if ('J' in outin[0]):
            J = data[..., 0].copy()
        elif ('Q' in outin[0]):
            Q = data[..., 0].copy()
            J = c * (Q / (192.25 * FL**0.64))
        else:
            raise Exception(
                'No lightness or brightness values in data[...,0]. Inverse CAM-transform not possible!'
            )

        #--------------------------------------------
        if 'a' in outin[1]:
            # calculate hue h:
            h = hue_angle(data[..., 1], data[..., 2], htype='deg')

            #--------------------------------------------
            # calculate Colorfulness M or Chroma C or Saturation s from a,b:
            MCs = (data[..., 1]**2.0 + data[..., 2]**2.0)**0.5
        else:
            h = data[..., 2]
            MCs = data[..., 1]

        if ('aS' in outin):
            Q = 192.5 * (J / c) * (FL**0.64)
            M = Q * (MCs / 100.0)**2.0
            C = M / (1.42 * FL**0.25)

        if ('aM' in outin):  # convert M to C:
            C = MCs / (1.42 * FL**0.25)

        if ('aC' in outin):
            C = MCs

        #--------------------------------------------
        # calculate achromatic signal, Iz:
        Iz = iabzw[..., 0] * (J / 100.0)**(1.0 / (c * z))

        #--------------------------------------------
        # calculate eccentricity factor, et:
        et = 1.01 + np.cos(h * np.pi / 180 + 1.55)

        #--------------------------------------------
        # calculate t (=a**2+b**2) from C:
        t = (n**0.074 * C * (1 / et)**0.067)**(1 / 0.37)

        #--------------------------------------------
        # Calculate az, bz:
        az = (t / (1 + np.tan(h * np.pi / 180)**2))**0.5
        bz = az * np.tan(h * np.pi / 180)

        #--------------------------------------------
        # join values and convert to xyz:
        xyzc = jabz_to_xyz(ajoin((Iz, az, bz)), ztype='iabz')

        #-------------------------------------------
        # Apply CAT from D65:
        xyz = cat.apply_vonkries1(xyzc,
                                  xyzw_d65,
                                  xyzw,
                                  D=D,
                                  mcat=mcat,
                                  invmcat=invmcat)

        return xyz
Ejemplo n.º 3
0
def run(data,
        xyzw=_DEFAULT_WHITE_POINT,
        Yw=None,
        conditions=None,
        ucstype='ucs',
        forward=True,
        yellowbluepurplecorrect=False,
        mcat='cat02'):
    """ 
    Run the CAM02-UCS[,-LCD,-SDC] color appearance difference model in forward or backward modes.
    
    Args:
        :data:
            | ndarray with sample xyz values (forward mode) or J'a'b' coordinates (inverse mode)
        :xyzw:
            | ndarray with white point tristimulus values  
        :conditions:
            | None, optional
            | Dictionary with viewing conditions.
            | None results in:
            |   {'La':100, 'Yb':20, 'D':1, 'surround':'avg'}
            | For more info see luxpy.cam.ciecam02()?
        :ucstype:
            | 'ucs', optional
            | String with type of color difference appearance space
            | options: 'ucs', 'scd', 'lcd'
        :forward:
            | True, optional
            | If True: run in CAM in forward mode, else: inverse mode.
        :yellowbluepurplecorrect:
            | False, optional
            | If False: don't correct for yellow-blue and purple problems in ciecam02. 
            | If 'brill-suss': 
            |       for yellow-blue problem, see: 
            |          - Brill [Color Res Appl, 2006; 31, 142-145] and 
            |          - Brill and Süsstrunk [Color Res Appl, 2008; 33, 424-426] 
            | If 'jiang-luo': 
            |       for yellow-blue problem + purple line problem, see:
            |          - Jiang, Jun et al. [Color Res Appl 2015: 40(5), 491-503] 
        :mcat:
            | 'cat02', optional
            | Specifies CAT sensor space.
            | - options:
            |    - None defaults to 'cat02' 
            |         (others e.g. 'cat02-bs', 'cat02-jiang',
            |         all trying to correct gamut problems of original cat02 matrix)
            |    - str: see see luxpy.cat._MCATS.keys() for options 
            |         (details on type, ?luxpy.cat)
            |    - ndarray: matrix with sensor primaries
    Returns:
        :camout:
            | ndarray with J'a'b' coordinates (forward mode) 
            |  or 
            | XYZ tristimulus values (inverse mode)
    
    References:
        1. `M.R. Luo, G. Cui, and C. Li, 
        'Uniform colour spaces based on CIECAM02 colour appearance model,' 
        Color Res. Appl., vol. 31, no. 4, pp. 320–330, 2006.
        <http://onlinelibrary.wiley.com/doi/10.1002/col.20227/abstract)>`_
    """
    # get ucs parameters:
    if isinstance(ucstype, str):
        ucs_pars = _CAM_UCS_PARAMETERS
        ucs = ucs_pars[ucstype]
    else:
        ucs = ucstype
    KL, c1, c2 = ucs['KL'], ucs['c1'], ucs['c2']

    # set conditions to use in CIECAM02 (overrides None-default in ciecam02() !!!)
    if conditions is None:
        conditions = _DEFAULT_CONDITIONS

    if forward == True:

        # run ciecam02 to get JMh:
        data = ciecam02(data,
                        xyzw,
                        outin='J,M,h',
                        conditions=conditions,
                        forward=True,
                        mcat=mcat,
                        yellowbluepurplecorrect=yellowbluepurplecorrect)

        camout = np.zeros_like(data)  # for output

        #--------------------------------------------
        # convert to cam02ucs J', aM', bM':
        camout[...,
               0] = (1.0 + 100.0 * c1) * data[...,
                                              0] / (1.0 + c1 * data[..., 0])
        Mp = ((1.0 / c2) *
              np.log(1.0 + c2 * data[..., 1])) if (c2 != 0) else data[..., 1]
        camout[..., 1] = Mp * np.cos(data[..., 2] * np.pi / 180)
        camout[..., 2] = Mp * np.sin(data[..., 2] * np.pi / 180)

        return camout

    else:
        #--------------------------------------------
        # convert cam02ucs J', aM', bM' to xyz:

        # calc ciecam02 hue angle
        #Jp, aMp, bMp = asplit(data)
        h = np.arctan2(data[..., 2], data[..., 1])

        # calc cam02ucs and CIECAM02 colourfulness
        Mp = (data[..., 1]**2.0 + data[..., 2]**2.0)**0.5
        M = ((np.exp(c2 * Mp) - 1.0) / c2) if (c2 != 0) else Mp

        # calculate ciecam02 aM, bM:
        aM = M * np.cos(h)
        bM = M * np.sin(h)

        # calc ciecam02 lightness
        J = data[..., 0] / (1.0 + (100.0 - data[..., 0]) * c1)

        # run ciecam02 in inverse mode to get xyz:
        return ciecam02(ajoin((J, aM, bM)),
                        xyzw,
                        outin='J,aM,bM',
                        conditions=conditions,
                        forward=False,
                        mcat=mcat,
                        yellowbluepurplecorrect=yellowbluepurplecorrect)
Ejemplo n.º 4
0
def run(data, xyzw, out = 'J,aM,bM', conditions = None, forward = True):
    """ 
    Run CIECAM02 color appearance model in forward or backward modes.
    
    Args:
        :data:
            | ndarray with relative sample xyz values (forward mode) or J'a'b' coordinates (inverse mode)
        :xyzw:
            | ndarray with relative white point tristimulus values  
        :conditions:
            | None, optional
            | Dictionary with viewing conditions.
            | None results in:
            |   {'La':100, 'Yb':20, 'D':1, 'surround':'avg'}
            | For more info see luxpy.cam.ciecam02()?
        :forward:
            | True, optional
            | If True: run in CAM in forward mode, else: inverse mode.
        :out:
            | 'J,aM,bM', optional
            | String with requested output (e.g. "J,aM,bM,M,h") [Forward mode]
            | String with inputs in data. 
            | Input must have data.shape[-1]==3 and last dim of data must have 
            | the following structure: 
            |  * data[...,0] = J or Q,
            |  * data[...,1:] = (aM,bM) or (aC,bC) or (aS,bS)
    Returns:
        :camout:
            | ndarray with Jab coordinates or whatever correlates requested in out.
    
    Note:
        * This is a simplified, less flexible, but faster version than the main ciecam02().
    
    References:
        1. `N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, (2002), 
        "The CIECAM02 color appearance model,” 
        IS&T/SID Tenth Color Imaging Conference. p. 23, 2002.
        <http://rit-mcsl.org/fairchild/PDFs/PRO19.pdf>`_
    """
    outin = out.split(',') if isinstance(out,str) else out
    
    #--------------------------------------------
    # Get/ set conditions parameters:
    if conditions is not None:
        surround_parameters =  {'surrounds': ['avg', 'dim', 'dark'], 
                                'avg' : {'c':0.69, 'Nc':1.0, 'F':1.0,'FLL': 1.0}, 
                                'dim' : {'c':0.59, 'Nc':0.9, 'F':0.9,'FLL':1.0} ,
                                'dark' : {'c':0.525, 'Nc':0.8, 'F':0.8,'FLL':1.0}}
        La = conditions['La']
        Yb = conditions['Yb']
        D = conditions['D']
        surround = conditions['surround']
        if isinstance(surround, str):
            surround = surround_parameters[conditions['surround']]
        F, FLL, Nc, c = [surround[x] for x in sorted(surround.keys())]
    else:
        # set defaults:
        La, Yb, D, F, FLL, Nc, c = 100, 20, 1, 1, 1, 1, 0.69
        
    #--------------------------------------------
    # Define sensor space and cat matrices:        
    mhpe = np.array([[0.38971,0.68898,-0.07868],
                     [-0.22981,1.1834,0.04641],
                     [0.0,0.0,1.0]]) # Hunt-Pointer-Estevez sensors (cone fundamentals)
    
    mcat = np.array([[0.7328, 0.4296, -0.1624],
                       [ -0.7036, 1.6975,  0.0061],
                       [ 0.0030, 0.0136,  0.9834]]) # CAT02 sensor space
    
    #--------------------------------------------
    # pre-calculate some matrices:
    invmcat = np.linalg.inv(mcat)
    mhpe_x_invmcat = np.dot(mhpe,invmcat)
    if not forward: mcat_x_invmhpe = np.dot(mcat,np.linalg.inv(mhpe))
    
    #--------------------------------------------
    # calculate condition dependent parameters:
    Yw = xyzw[...,1:2].T
    k = 1.0 / (5.0*La + 1.0)
    FL = 0.2*(k**4.0)*(5.0*La) + 0.1*((1.0 - k**4.0)**2.0)*((5.0*La)**(1.0/3.0)) # luminance adaptation factor
    n = Yb/Yw 
    Nbb = 0.725*(1/n)**0.2   
    Ncb = Nbb
    z = 1.48 + FLL*n**0.5
    
    if D is None:
        D = F*(1.0-(1.0/3.6)*np.exp((-La-42.0)/92.0))
        
    #===================================================================
    # WHITE POINT transformations (common to forward and inverse modes):
    
    #--------------------------------------------
    # transform from xyzw to cat sensor space:
    rgbw = mcat @ xyzw.T
    
    #--------------------------------------------  
    # apply von Kries cat:
    rgbwc = ((D*Yw/rgbw) + (1 - D))*rgbw # factor 100 from ciecam02 is replaced with Yw[i] in cam16, but see 'note' in Fairchild's "Color Appearance Models" (p291 ni 3ed.)

    #--------------------------------------------
    # convert from cat02 sensor space to cone sensors (hpe):
    rgbwp = (mhpe_x_invmcat @ rgbwc).T
    
    #--------------------------------------------
    # apply Naka_rushton repsonse compression to white:
    NK = lambda x, forward: naka_rushton(x, scaling = 400, n = 0.42, sig = 27.13**(1/0.42), noise = 0.1, forward = forward)
    
    rgbwpa = NK(FL*rgbwp/100.0, True)
    pw = np.where(rgbwp<0)
    rgbwpa[pw] = 0.1 - (NK(FL*np.abs(rgbwp[pw])/100.0, True) - 0.1)
    
    #--------------------------------------------
    # Calculate achromatic signal of white:
    Aw =  (2.0*rgbwpa[...,0] + rgbwpa[...,1] + (1.0/20.0)*rgbwpa[...,2] - 0.305)*Nbb
    
    # massage shape of data for broadcasting:
    if data.ndim == 2: data = data[:,None]

    #===================================================================
    # STIMULUS transformations 
    if forward:
        
        #--------------------------------------------
        # transform from xyz to cat sensor space:
        rgb = math.dot23(mcat, data.T)
        
        #--------------------------------------------  
        # apply von Kries cat:
        rgbc = ((D*Yw/rgbw)[...,None] + (1 - D))*rgb # factor 100 from ciecam02 is replaced with Yw[i] in cam16, but see 'note' in Fairchild's "Color Appearance Models" (p291 ni 3ed.)
        
        #--------------------------------------------
        # convert from cat02 sensor space to cone sensors (hpe):
        rgbp = math.dot23(mhpe_x_invmcat,rgbc).T
        
        #--------------------------------------------
        # apply Naka_rushton repsonse compression:        
        rgbpa = NK(FL*rgbp/100.0, forward)
        p = np.where(rgbp<0)
        rgbpa[p] = 0.1 - (NK(FL*np.abs(rgbp[p])/100.0, forward) - 0.1)
        
        #--------------------------------------------
        # Calculate achromatic signal:
        A  =  (2.0*rgbpa[...,0] + rgbpa[...,1] + (1.0/20.0)*rgbpa[...,2] - 0.305)*Nbb
                
        #--------------------------------------------
        # calculate initial opponent channels:
        a = rgbpa[...,0] - 12.0*rgbpa[...,1]/11.0 + rgbpa[...,2]/11.0
        b = (1.0/9.0)*(rgbpa[...,0] + rgbpa[...,1] - 2.0*rgbpa[...,2])

        #--------------------------------------------
        # calculate hue h and eccentricity factor, et:
        h = hue_angle(a,b, htype = 'deg')
        et = (1.0/4.0)*(np.cos(h*np.pi/180 + 2.0) + 3.8)
        
        #-------------------------------------------- 
        # calculate Hue quadrature (if requested in 'out'):
        if 'H' in outin:    
            H = hue_quadrature(h, unique_hue_data = 'ciecam02')
        else:
            H = None
        
        #--------------------------------------------   
        # calculate lightness, J:
        if ('J' in outin) | ('Q' in outin) | ('C' in outin) | ('M' in outin) | ('s' in outin) | ('aS' in outin) | ('aC' in outin) | ('aM' in outin):
            J = 100.0* (A / Aw)**(c*z)
         
        #-------------------------------------------- 
        # calculate brightness, Q:
        if ('Q' in outin) | ('s' in outin) | ('aS' in outin):
            Q = (4.0/c)* ((J/100.0)**0.5) * (Aw + 4.0)*(FL**0.25)
          
        #-------------------------------------------- 
        # calculate chroma, C:
        if ('C' in outin) | ('M' in outin) | ('s' in outin) | ('aS' in outin) | ('aC' in outin) | ('aM' in outin):
            t = ((50000.0/13.0)*Nc*Ncb*et*((a**2.0 + b**2.0)**0.5)) / (rgbpa[...,0] + rgbpa[...,1] + (21.0/20.0*rgbpa[...,2]))
            C = (t**0.9)*((J/100.0)**0.5) * (1.64 - 0.29**n)**0.73
               
        #-------------------------------------------- 
        # calculate colorfulness, M:
        if ('M' in outin) | ('s' in outin) | ('aM' in outin) | ('aS' in outin):
            M = C*FL**0.25
        
        #--------------------------------------------         
        # calculate saturation, s:
        if ('s' in outin) | ('aS' in outin):
            s = 100.0* (M/Q)**0.5
        
        #--------------------------------------------            
        # calculate cartesian coordinates:
        if ('aS' in outin):
             aS = s*np.cos(h*np.pi/180.0)
             bS = s*np.sin(h*np.pi/180.0)
        
        if ('aC' in outin):
             aC = C*np.cos(h*np.pi/180.0)
             bC = C*np.sin(h*np.pi/180.0)
             
        if ('aM' in outin):
             aM = M*np.cos(h*np.pi/180.0)
             bM = M*np.sin(h*np.pi/180.0)
         
        #-------------------------------------------- 
        if outin != ['J','aM','bM']:
            camout = eval('ajoin(('+','.join(outin)+'))')
        else:
            camout = ajoin((J,aM,bM))
        
        if camout.shape[1] == 1:
            camout = camout[:,0,:]

        
        return camout
        
    elif forward == False:

                       
            #--------------------------------------------
            # Get Lightness J from data:
            if ('J' in outin):
                J = data[...,0].copy()
            elif ('Q' in outin):
                Q = data[...,0].copy()
                J = 100.0*(Q / ((Aw + 4.0)*(FL**0.25)*(4.0/c)))**2.0
            else:
                raise Exception('No lightness or brightness values in data. Inverse CAM-transform not possible!')
                
                
            #--------------------------------------------
            # calculate hue h:
            h = hue_angle(data[...,1],data[...,2], htype = 'deg')
            
            #--------------------------------------------
            # calculate Colorfulness M or Chroma C or Saturation s from a,b:
            MCs = (data[...,1]**2.0 + data[...,2]**2.0)**0.5    
            
            
            if ('aS' in outin):
                Q = (4.0/c)* ((J/100.0)**0.5) * (Aw + 4.0)*(FL**0.25)
                M = Q*(MCs/100.0)**2.0 
                C = M/(FL**0.25)
             
            if ('aM' in outin): # convert M to C:
                C = MCs/(FL**0.25)
            
            if ('aC' in outin):
                C = MCs
                
            #--------------------------------------------
            # calculate t from J, C:
            t = (C / ((J/100.0)**(1.0/2.0) * (1.64 - 0.29**n)**0.73))**(1.0/0.9)

            #--------------------------------------------
            # calculate eccentricity factor, et:
            et = (np.cos(h*np.pi/180.0 + 2.0) + 3.8) / 4.0
            
            #--------------------------------------------
            # calculate achromatic signal, A:
            A = Aw*(J/100.0)**(1.0/(c*z))

            #--------------------------------------------
            # calculate temporary cart. co. at, bt and p1,p2,p3,p4,p5:
            at = np.cos(h*np.pi/180.0)
            bt = np.sin(h*np.pi/180.0)
            p1 = (50000.0/13.0)*Nc*Ncb*et/t
            p2 = A/Nbb + 0.305
            p3 = 21.0/20.0
            p4 = p1/bt
            p5 = p1/at

            #--------------------------------------------
            #q = np.where(np.abs(bt) < np.abs(at))[0]
            q = (np.abs(bt) < np.abs(at))

            b = p2*(2.0 + p3) * (460.0/1403.0) / (p4 + (2.0 + p3) * (220.0/1403.0) * (at/bt) - (27.0/1403.0) + p3*(6300.0/1403.0))
            a = b * (at/bt)
            
            a[q] = p2[q]*(2.0 + p3) * (460.0/1403.0) / (p5[q] + (2.0 + p3) * (220.0/1403.0) - ((27.0/1403.0) - p3*(6300.0/1403.0)) * (bt[q]/at[q]))
            b[q] = a[q] * (bt[q]/at[q])
            
            #--------------------------------------------
            # calculate post-adaptation values
            rpa = (460.0*p2 + 451.0*a + 288.0*b) / 1403.0
            gpa = (460.0*p2 - 891.0*a - 261.0*b) / 1403.0
            bpa = (460.0*p2 - 220.0*a - 6300.0*b) / 1403.0
            
            #--------------------------------------------
            # join values:
            rgbpa = ajoin((rpa,gpa,bpa))

            #--------------------------------------------
            # decompress signals:
            rgbp = (100.0/FL)*NK(rgbpa, forward)

            #--------------------------------------------
            # convert from to cone sensors (hpe) cat02 sensor space:
            rgbc = math.dot23(mcat_x_invmhpe,rgbp.T)
                            
            #--------------------------------------------
            # apply inverse von Kries cat:
            rgb = rgbc / ((D*Yw/rgbw)[...,None] + (1.0 - D))
            
            #--------------------------------------------
            # transform from cat sensor space to xyz:
            xyz = math.dot23(invmcat,rgb).T
            
            
            return xyz
Ejemplo n.º 5
0
def cam15u(data,
           fov=10.0,
           inputtype='xyz',
           direction='forward',
           outin='Q,aW,bW',
           parameters=None):
    """
    Convert between CIE 2006 10°  XYZ tristimulus values (or spectral data) 
    and CAM15u color appearance correlates.
    
    Args:
        :data: 
            | ndarray of CIE 2006 10°  XYZ tristimulus values or spectral data
            |  or color appearance attributes
        :fov: 
            | 10.0, optional
            | Field-of-view of stimulus (for size effect on brightness)
        :inputtpe:
            | 'xyz' or 'spd', optional
            | Specifies the type of input: 
            |     tristimulus values or spectral data for the forward mode.
        :direction:
            | 'forward' or 'inverse', optional
            |   -'forward': xyz -> cam15u
            |   -'inverse': cam15u -> xyz 
        :outin:
            | 'Q,aW,bW' or str, optional
            | 'Q,aW,bW' (brightness and opponent signals for amount-of-neutral)
            |  other options: 'Q,aM,bM' (colorfulness) and 'Q,aS,bS' (saturation)
            | Str specifying the type of 
            |     input (:direction: == 'inverse') and 
            |     output (:direction: == 'forward')
        :parameters:
            | None or dict, optional
            | Set of model parameters.
            |   - None: defaults to luxpy.cam._CAM15U_PARAMETERS 
            |    (see references below)
    
    Returns:
        :returns: 
            | ndarray with color appearance correlates (:direction: == 'forward')
            |  or 
            | XYZ tristimulus values (:direction: == 'inverse')

    References: 
        1. `M. Withouck, K. A. G. Smet, W. R. Ryckaert, and P. Hanselaer, 
        “Experimental driven modelling of the color appearance of 
        unrelated self-luminous stimuli: CAM15u,” 
        Opt. Express, vol. 23, no. 9, pp. 12045–12064, 2015.
        <https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-9-12045&origin=search>`_
        2. `M. Withouck, K. A. G. Smet, and P. Hanselaer, (2015), 
        “Brightness prediction of different sized unrelated self-luminous stimuli,” 
        Opt. Express, vol. 23, no. 10, pp. 13455–13466. 
        <https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-10-13455&origin=search>`_  
     """

    if parameters is None:
        parameters = _CAM15U_PARAMETERS

    outin = outin.split(',')

    #unpack model parameters:
    Mxyz2rgb, cA, cAlms, cHK, cM, cW, ca, calms, cb, cblms, cfov, cp, k, unique_hue_data = [
        parameters[x] for x in sorted(parameters.keys())
    ]

    # precomputations:
    invMxyz2rgb = np.linalg.inv(Mxyz2rgb)
    MAab = np.array([cAlms, calms, cblms])
    invMAab = np.linalg.inv(MAab)

    #initialize data and camout:
    data = np2d(data)
    if len(data.shape) == 2:
        data = np.expand_dims(data, axis=0)  # avoid looping if not necessary

    if (data.shape[0] > data.shape[1]):  # loop over shortest dim.
        flipaxis0and1 = True
        data = np.transpose(data, axes=(1, 0, 2))
    else:
        flipaxis0and1 = False

    dshape = list(data.shape)
    dshape[-1] = len(outin)  # requested number of correlates
    if (inputtype != 'xyz') & (direction == 'forward'):
        dshape[-2] = dshape[
            -2] - 1  # wavelength row doesn't count & only with forward can the input data be spectral

    camout = np.zeros(dshape)
    camout.fill(np.nan)

    for i in range(data.shape[0]):

        if (inputtype != 'xyz') & (direction == 'forward'):
            xyz = spd_to_xyz(data[i], cieobs='2006_10', relative=False)
            lms = np.dot(_CMF['2006_10']['M'], xyz.T).T  # convert to l,m,s
            rgb = (lms /
                   _CMF['2006_10']['K']) * k  # convert to rho, gamma, beta
        elif (inputtype == 'xyz') & (direction == 'forward'):
            rgb = np.dot(Mxyz2rgb, data[i].T).T

        if direction == 'forward':

            # apply cube-root compression:
            rgbc = rgb**(cp)

            # calculate achromatic and color difference signals, A, a, b:
            Aab = np.dot(MAab, rgbc.T).T
            A, a, b = asplit(Aab)
            A = cA * A
            a = ca * a
            b = cb * b

            # calculate colorfullness like signal M:
            M = cM * ((a**2.0 + b**2.0)**0.5)

            # calculate brightness Q:
            Q = A + cHK[0] * M**cHK[
                1]  # last term is contribution of Helmholtz-Kohlrausch effect on brightness

            # calculate saturation, s:
            s = M / Q

            # calculate amount of white, W:
            W = 100.0 / (1.0 + cW[0] * (s**cW[1]))

            #  adjust Q for size (fov) of stimulus (matter of debate whether to do this before or after calculation of s or W, there was no data on s, M or W for different sized stimuli: after)
            Q = Q * (fov / 10.0)**cfov

            # calculate hue, h and Hue quadrature, H:
            h = hue_angle(a, b, htype='deg')

            if 'H' in outin:
                H = hue_quadrature(h, unique_hue_data=unique_hue_data)
            else:
                H = None

            # calculate cart. co.:
            if 'aM' in outin:
                aM = M * np.cos(h * np.pi / 180.0)
                bM = M * np.sin(h * np.pi / 180.0)

            if 'aS' in outin:
                aS = s * np.cos(h * np.pi / 180.0)
                bS = s * np.sin(h * np.pi / 180.0)

            if 'aW' in outin:
                aW = W * np.cos(h * np.pi / 180.0)
                bW = W * np.sin(h * np.pi / 180.0)

            if (outin != ['Q', 'aW', 'bW']):
                camout[i] = eval('ajoin((' + ','.join(outin) + '))')
            else:
                camout[i] = ajoin((Q, aW, bW))

        elif direction == 'inverse':

            # get Q, M and a, b depending on input type:
            if 'aW' in outin:
                Q, a, b = asplit(data[i])
                Q = Q / (
                    (fov / 10.0)**cfov
                )  #adjust Q for size (fov) of stimulus back to that 10° ref
                W = (a**2.0 + b**2.0)**0.5
                s = (((100 / W) - 1.0) / cW[0])**(1.0 / cW[1])
                M = s * Q

            if 'aM' in outin:
                Q, a, b = asplit(data[i])
                Q = Q / (
                    (fov / 10.0)**cfov
                )  #adjust Q for size (fov) of stimulus back to that 10° ref
                M = (a**2.0 + b**2.0)**0.5

            if 'aS' in outin:
                Q, a, b = asplit(data[i])
                Q = Q / (
                    (fov / 10.0)**cfov
                )  #adjust Q for size (fov) of stimulus back to that 10° ref
                s = (a**2.0 + b**2.0)**0.5
                M = s * Q

            if 'h' in outin:
                Q, WsM, h = asplit(data[i])
                Q = Q / (
                    (fov / 10.0)**cfov
                )  #adjust Q for size (fov) of stimulus back to that 10° ref
                if 'W' in outin:
                    s = (((100.0 / WsM) - 1.0) / cW[0])**(1.0 / cW[1])
                    M = s * Q
                elif 's' in outin:
                    M = WsM * Q
                elif 'M' in outin:
                    M = WsM

            # calculate achromatic signal, A from Q and M:
            A = Q - cHK[0] * M**cHK[1]
            A = A / cA

            # calculate hue angle:
            h = hue_angle(a, b, htype='rad')

            # calculate a,b from M and h:
            a = (M / cM) * np.cos(h)
            b = (M / cM) * np.sin(h)
            a = a / ca
            b = b / cb

            # create Aab:
            Aab = ajoin((A, a, b))

            # calculate rgbc:
            rgbc = np.dot(invMAab, Aab.T).T

            # decompress rgbc to rgb:
            rgb = rgbc**(1 / cp)

            # convert rgb to xyz:
            xyz = np.dot(invMxyz2rgb, rgb.T).T

            camout[i] = xyz

    if flipaxis0and1 == True:  # loop over shortest dim.
        camout = np.transpose(camout, axes=(1, 0, 2))

    if camout.shape[0] == 1:
        camout = np.squeeze(camout, axis=0)

    return camout
Ejemplo n.º 6
0
def apply_ciecat94(xyz,
                   xyzw,
                   xyzwr=None,
                   E=1000,
                   Er=1000,
                   Yb=20,
                   D=1,
                   cat94_old=True):
    """ 
    Calculate corresponding color tristimulus values using the CIECAT94 chromatic adaptation transform.
    
    Args:
        :xyz:
            | ndarray with sample 1931 2° XYZ tristimulus values under the test illuminant
        :xyzw:
            | ndarray with white point tristimulus values of the test illuminant
        :xyzwr:
            | None, optional
            | ndarray with white point tristimulus values of the reference illuminant
            | None defaults to D65.
        :E:
            | 100, optional
            | Illuminance (lx) of test illumination
        :Er:
            | 63.66, optional
            | Illuminance (lx) of the reference illumination
        :Yb:
            | 20, optional
            | Relative luminance of the adaptation field (background) 
        :D:
            | 1, optional
            | Degree of chromatic adaptation.
            | For object colours D = 1,  
            | and for luminous colours (typically displays) D=0
            
    Returns:
        :xyzc:
            | ndarray with corresponding tristimlus values.

    Reference:
        1. CIE160-2004. (2004). A review of chromatic adaptation transforms (Vols. CIE160-200). CIE.
    """
    #--------------------------------------------
    # Define cone/chromatic adaptation sensor space:
    mcat = _MCATS['kries']
    invmcat = np.linalg.inv(mcat)

    #--------------------------------------------
    # Define default ref. white point:
    if xyzwr is None:
        xyzwr = np.array(
            [[9.5047e+01, 1.0000e+02, 1.0888e+02]]
        )  #spd_to_xyz(_CIE_D65, cieobs = '1931_2', relative = True, rfl = None)

    #--------------------------------------------
    # Calculate Y,x,y of white:
    Yxyw = xyz_to_Yxy(xyzw)
    Yxywr = xyz_to_Yxy(xyzwr)

    #--------------------------------------------
    # Calculate La, Lar:
    La = Yb * E / np.pi / 100
    Lar = Yb * Er / np.pi / 100

    #--------------------------------------------
    # Calculate CIELAB L* of samples:
    Lstar = xyz_to_lab(xyz, xyzw)[..., 0]

    #--------------------------------------------
    # Define xi_, eta_ and zeta_ functions:
    xi_ = lambda Yxy: (0.48105 * Yxy[..., 1] + 0.78841 * Yxy[..., 2] - 0.080811
                       ) / Yxy[..., 2]
    eta_ = lambda Yxy: (-0.27200 * Yxy[..., 1] + 1.11962 * Yxy[..., 2] +
                        0.04570) / Yxy[..., 2]
    zeta_ = lambda Yxy: 0.91822 * (1 - Yxy[..., 1] - Yxy[..., 2]) / Yxy[..., 2]

    #--------------------------------------------
    # Calculate intermediate values for test and ref. illuminants:
    xit, etat, zetat = xi_(Yxyw), eta_(Yxyw), zeta_(Yxyw)
    xir, etar, zetar = xi_(Yxywr), eta_(Yxywr), zeta_(Yxywr)

    #--------------------------------------------
    # Calculate alpha:
    if cat94_old == False:
        alpha = 0.1151 * np.log10(La) + 0.0025 * (Lstar - 50) + (0.22 * D +
                                                                 0.510)
        alpha[alpha > 1] = 1
    else:
        alpha = 1

    #--------------------------------------------
    # Calculate adapted intermediate xip, etap zetap:
    xip = alpha * xit - (1 - alpha) * xir
    etap = alpha * etat - (1 - alpha) * etar
    zetap = alpha * zetat - (1 - alpha) * zetar

    #--------------------------------------------
    # Calculate effective adapting response Rw, Gw, Bw and Rwr, Gwr, Bwr:
    #Rw, Gw, Bw = La*xit, La*etat, La*zetat # according to westland's book: Computational Colour Science wirg Matlab
    Rw, Gw, Bw = La * xip, La * etap, La * zetap  # according to CIE160-2004
    Rwr, Gwr, Bwr = Lar * xir, Lar * etar, Lar * zetar

    #--------------------------------------------
    # Calculate beta1_ and beta2_ exponents for (R,G) and B:
    beta1_ = lambda x: (6.469 + 6.362 * x**0.4495) / (6.469 + x**0.4495)
    beta2_ = lambda x: 0.7844 * (8.414 + 8.091 * x**0.5128) / (8.414 + x**
                                                               0.5128)
    b1Rw, b1Rwr, b1Gw, b1Gwr = beta1_(Rw), beta1_(Rwr), beta1_(Gw), beta1_(Gwr)
    b2Bw, b2Bwr = beta2_(Bw), beta2_(Bwr)

    #--------------------------------------------
    # Noise term:
    n = 1 if cat94_old else 0.1

    #--------------------------------------------
    # K factor = p/q (for correcting the difference between
    # the illuminance of the test and references conditions)
    # calculate q:
    p = ((Yb * xip + n) /
         (20 * xip + n))**(2 / 3 * b1Rw) * ((Yb * etap + n) /
                                            (20 * etap + n))**(1 / 3 * b1Gw)
    q = ((Yb * xir + n) /
         (20 * xir + n))**(2 / 3 * b1Rwr) * ((Yb * etar + n) /
                                             (20 * etar + n))**(1 / 3 * b1Gwr)
    K = p / q

    #--------------------------------------------
    # transform sample xyz to cat sensor space:
    rgb = math.dot23(mcat, xyz.T).T

    #--------------------------------------------
    # Calculate corresponding colors:
    Rc = (Yb * xir + n) * K**(1 / b1Rwr) * ((rgb[..., 0] + n) /
                                            (Yb * xip + n))**(b1Rw / b1Rwr) - n
    Gc = (Yb * etar + n) * K**(1 / b1Gwr) * (
        (rgb[..., 1] + n) / (Yb * etap + n))**(b1Gw / b1Gwr) - n
    Bc = (Yb * zetar + n) * K**(1 / b2Bwr) * (
        (rgb[..., 2] + n) / (Yb * zetap + n))**(b2Bw / b2Bwr) - n

    #--------------------------------------------
    # transform to xyz and return:
    xyzc = math.dot23(invmcat, ajoin((Rc, Gc, Bc)).T).T

    return xyzc
Ejemplo n.º 7
0
def run(data,
        xyzw=None,
        outin='J,aM,bM',
        cieobs=_CIEOBS,
        conditions=None,
        forward=True,
        mcat='cat02',
        **kwargs):
    """ 
    Run the Jz,az,bz based color appearance model in forward or backward modes.
    
    Args:
        :data:
            | ndarray with relative sample xyz values (forward mode) or J'a'b' coordinates (inverse mode)
        :xyzw:
            | ndarray with relative white point tristimulus values
            | None defaults to D65
        :cieobs:
            | _CIEOBS, optional
            | CMF set to use when calculating :xyzw: if this is None.
        :conditions:
            | None, optional
            | Dictionary with viewing condition parameters for:
            |       La, Yb, D and surround.
            |  surround can contain:
            |      - str (options: 'avg','dim','dark') or 
            |      - dict with keys c, Nc, F.
            | None results in:
            |   {'La':100, 'Yb':20, 'D':1, 'surround':'avg'}
        :forward:
            | True, optional
            | If True: run in CAM in forward mode, else: inverse mode.
        :outin:
            | 'J,aM,bM', optional
            | String with requested output (e.g. "J,aM,bM,M,h") [Forward mode]
            | - attributes: 'J': lightness,'Q': brightness,
            |               'M': colorfulness,'C': chroma, 's': saturation,
            |               'h': hue angle, 'H': hue quadrature/composition,
            |               'Wz': whiteness, 'Kz':blackness, 'Sz': saturation, 'V': vividness
            | String with inputs in data [inverse mode]. 
            | Input must have data.shape[-1]==3 and last dim of data must have 
            | the following structure for inverse mode: 
            |  * data[...,0] = J or Q,
            |  * data[...,1:] = (aM,bM) or (aC,bC) or (aS,bS) or (M,h) or (C, h), ...
        :mcat:
            | 'cat02', optional
            | Specifies CAT sensor space.
            | - options:
            |    - None defaults to 'cat02'
            |    - str: see see luxpy.cat._MCATS.keys() for options 
            |         (details on type, ?luxpy.cat)
            |    - ndarray: matrix with sensor primaries
    Returns:
        :camout: 
            | ndarray with color appearance correlates (forward mode) 
            |  or 
            | XYZ tristimulus values (inverse mode)
     
    References:
        1. `Safdar, M., Cui, G., Kim,Y. J., and  Luo, M. R.(2017).
        Perceptually uniform color space for image signals including high dynamic range and wide gamut.
        Opt. Express, vol. 25, no. 13, pp. 15131–15151, Jun. 2017. 
        <https://www.opticsexpress.org/abstract.cfm?URI=oe-25-13-15131>`_
    
        2. `Safdar, M., Hardeberg, J., Cui, G., Kim, Y. J., and Luo, M. R.(2018).
        A Colour Appearance Model based on Jzazbz Colour Space, 
        26th Color and Imaging Conference (2018), Vancouver, Canada, November 12-16, 2018, pp96-101.
        <https://doi.org/10.2352/ISSN.2169-2629.2018.26.96>`_
        
        3. Safdar, M., Hardeberg, J.Y., Luo, M.R. (2021) 
        "ZCAM, a psychophysical model for colour appearance prediction", 
        Optics Express.
    """
    print(
        "WARNING: Z-CAM is as yet unpublished and under development, so parameter values might change! (07 Oct, 2020"
    )
    outin = outin.split(',') if isinstance(outin, str) else outin

    #--------------------------------------------
    # Get condition parameters:
    if conditions is None:
        conditions = _DEFAULT_CONDITIONS

    D, Dtype, La, Yb, surround = (conditions[x]
                                  for x in sorted(conditions.keys()))

    surround_parameters = _SURROUND_PARAMETERS
    if isinstance(surround, str):
        surround = surround_parameters[conditions['surround']]
    F, FLL, Nc, c = [surround[x] for x in sorted(surround.keys())]

    # Define cone/chromatic adaptation sensor space:
    if (mcat is None):
        mcat = cat._MCATS['cat02']
    elif isinstance(mcat, str):
        mcat = cat._MCATS[mcat]
    invmcat = np.linalg.inv(mcat)

    #--------------------------------------------
    # Get white point of D65 fro chromatic adaptation transform (CAT)
    xyzw_d65 = np.array([[
        9.5047e+01, 1.0000e+02, 1.08883e+02
    ]]) if cieobs == '1931_2' else spd_to_xyz(_CIE_D65, cieobs=cieobs)

    #--------------------------------------------
    # Get default white point:
    if xyzw is None:
        xyzw = xyzw_d65.copy()

    #--------------------------------------------
    # calculate condition dependent parameters:
    Yw = xyzw[..., 1].T
    FL = 0.171 * La**(1 / 3) * (1 - np.exp(-48 / 9 * La)
                                )  # luminance adaptation factor
    n = Yb / Yw
    Fb = 1.045 + 1.46 * n**0.5  # background factor
    Fs = c  # surround factor

    #--------------------------------------------
    # Calculate degree of chromatic adaptation:
    if D is None:
        D = F * (1.0 - (1.0 / 3.6) * np.exp((-La - 42.0) / 92.0))

    #===================================================================
    # WHITE POINT transformations (common to forward and inverse modes):

    #--------------------------------------------
    # Apply CAT to white point:
    xyzwc = cat.apply_vonkries2(xyzw,
                                xyzw1=xyzw,
                                xyzw2=xyzw_d65,
                                D=D,
                                mcat=mcat,
                                invmcat=invmcat,
                                use_Yw=True)

    #--------------------------------------------
    # Get Iz,az,bz coordinates:
    iabzw = xyz_to_jabz(xyzwc, ztype='iabz', use_zcam_parameters=True)

    # Get brightness of white point:
    Qw = 925 * iabzw[..., 0]**1.17 * (FL / Fs)**0.5

    #===================================================================
    # STIMULUS transformations:

    #--------------------------------------------
    # massage shape of data for broadcasting:
    original_ndim = data.ndim
    if data.ndim == 2: data = data[:, None]

    if forward:
        # Apply CAT to D65:
        xyzc = cat.apply_vonkries2(data,
                                   xyzw1=xyzw,
                                   xyzw2=xyzw_d65,
                                   D=D,
                                   mcat=mcat,
                                   invmcat=invmcat,
                                   use_Yw=True)

        # Get Iz,az,bz coordinates:
        iabz = xyz_to_jabz(xyzc, ztype='iabz', use_zcam_parameters=True)

        #--------------------------------------------
        # calculate hue h and eccentricity factor, et:
        h = hue_angle(iabz[..., 1], iabz[..., 2], htype='deg')
        ez = 1.014 + np.cos((h + 89.038) * np.pi / 180)
        # ez = 1.014 + np.cos((h*np.pi/180) + 89.038)

        #--------------------------------------------
        # calculate Hue quadrature (if requested in 'out'):
        if 'H' in outin:
            H = hue_quadrature(h, unique_hue_data=_UNIQUE_HUE_DATA)
        else:
            H = None

        #--------------------------------------------
        # calculate brightness, Q:
        Q = 925 * iabz[..., 0]**1.17 * (FL / Fs)**0.5

        #--------------------------------------------
        # calculate lightness, J:
        J = 100.0 * (Q / Qw)**(Fs * Fb)

        #--------------------------------------------
        # calculate colorfulness, M:
        M = 50 * ((iabz[..., 1]**2.0 + iabz[..., 2]**2.0)**
                  0.368) * (ez**0.068) * (FL**0.2) / ((iabzw[..., 0]**2.52) *
                                                      (Fb**0.3))

        #--------------------------------------------
        # calculate chroma, C:
        C = 100 * M / Qw

        #--------------------------------------------
        # calculate saturation, s:
        s = 100.0 * (M / Q)
        S = s  # make extra variable, jsut in case 'S' is called

        #--------------------------------------------
        # calculate whiteness, W:
        if ('Wz' in outin) | ('aWz' in outin):
            Wz = 100 - 0.68 * ((100 - J)**2 + C**2)**0.5

        #--------------------------------------------
        # calculate blackness, K:
        if ('Kz' in outin) | ('aKz' in outin):
            Kz = 100 - 0.82 * (J**2 + C**2)**0.5

        #--------------------------------------------
        # calculate saturation, S:
        if ('Sz' in outin) | ('aSz' in outin):
            Sz = 8 + 0.5 * ((J - 55)**2 + C**2)**0.5

        #--------------------------------------------
        # calculate vividness, V:
        if ('Vz' in outin) | ('aVz' in outin):
            Sz = 8 + 0.4 * ((J - 70)**2 + C**2)**0.5

        #--------------------------------------------
        # calculate cartesian coordinates:
        if ('aS' in outin):
            aS = s * np.cos(h * np.pi / 180.0)
            bS = s * np.sin(h * np.pi / 180.0)

        if ('aC' in outin):
            aC = C * np.cos(h * np.pi / 180.0)
            bC = C * np.sin(h * np.pi / 180.0)

        if ('aM' in outin):
            aM = M * np.cos(h * np.pi / 180.0)
            bM = M * np.sin(h * np.pi / 180.0)

        #--------------------------------------------
        if outin != ['J', 'aM', 'bM']:
            camout = eval('ajoin((' + ','.join(outin) + '))')
        else:
            camout = ajoin((J, aM, bM))

        if (camout.shape[1] == 1) & (original_ndim < 3):
            camout = camout[:, 0, :]

        return camout

    elif forward == False:
        #--------------------------------------------
        # Get Lightness J and brightness Q from data:
        if ('J' in outin[0]):
            J = data[..., 0].copy()
            Q = Qw * (J / 100)**(1 / (Fs * Fb))
        elif ('Q' in outin[0]):
            Q = data[..., 0].copy()
            J = 100.0 * (Q / Qw)**(Fs * Fb)
        else:
            raise Exception(
                'No lightness or brightness values in data[...,0]. Inverse CAM-transform not possible!'
            )

        #--------------------------------------------
        # calculate achromatic signal, Iz:
        Iz = (Qw / 925 * ((J / 100)**(1 / (Fs * Fb))) * (Fs / FL)**0.5)**(1 /
                                                                          1.17)

        #--------------------------------------------
        if 'a' in outin[1]:
            # calculate hue h:
            h = hue_angle(data[..., 1], data[..., 2], htype='deg')

            #--------------------------------------------
            # calculate Colorfulness M or Chroma C or Saturation s from a,b:
            MCs = (data[..., 1]**2.0 + data[..., 2]**2.0)**0.5
        else:
            h = data[..., 2]
            MCs = data[..., 1]

        if ('aS' in outin) | ('S' in outin):
            Q = Qw * (J / 100)**(1 / (Fs * Fb))
            M = Q * (MCs / 100.0)
            C = 100 * M / Qw

        if ('aM' in outin) | ('M' in outin):
            C = 100 * MCs / Qw

        if ('aC' in outin) | ('C' in outin):  # convert C to M:
            C = MCs

        if ('Wz' in outin) | ('aWz' in outin):  #whiteness
            C = ((100 / 68 * (100 - MCs))**2 - (J - 100)**2)**0.5

        if ('Kz' in outin) | ('aKz' in outin):  # blackness
            C = ((100 / 82 * (100 - MCs))**2 - (J)**2)**0.5

        if ('Sz' in outin) | ('aSz' in outin):  # saturation
            C = ((10 / 5 * (MCs - 8))**2 - (J - 55)**2)**0.5

        if ('Vz' in outin) | ('aVz' in outin):  # vividness
            C = ((10 / 4 * (MCs - 8))**2 - (J - 70)**2)**0.5

        #--------------------------------------------
        # Calculate colorfulness, M:
        M = Qw * C / 100

        #--------------------------------------------
        # calculate eccentricity factor, et:
        # ez = 1.014 + np.cos(h*np.pi/180 + 89.038)
        ez = 1.014 + np.cos((h + 89.038) * np.pi / 180)

        #--------------------------------------------
        # calculate t (=sqrt(a**2+b**2)) from M:
        t = (((M / 50) * (iabzw[..., 0]**2.52) * (Fb**0.3)) /
             ((ez**0.068) * (FL**0.2)))**(1 / 0.368 / 2)

        #--------------------------------------------
        # Calculate az, bz:
        az = t * np.cos(h * np.pi / 180)
        bz = t * np.sin(h * np.pi / 180)

        #--------------------------------------------
        # join values and convert to xyz:
        xyzc = jabz_to_xyz(ajoin((Iz, az, bz)),
                           ztype='iabz',
                           use_zcam_parameters=True)

        #-------------------------------------------
        # Apply CAT from D65:
        xyz = cat.apply_vonkries2(xyzc,
                                  xyzw_d65,
                                  xyzw,
                                  D=D,
                                  mcat=mcat,
                                  invmcat=invmcat,
                                  use_Yw=True)

        return xyz
Ejemplo n.º 8
0
def cam_sww16(data, dataw = None, Yb = 20.0, Lw = 400.0, Ccwb = None, relative = True, \
              parameters = None, inputtype = 'xyz', direction = 'forward', \
              cieobs = '2006_10'):
    """
    A simple principled color appearance model based on a mapping 
    of the Munsell color system.
    
    | This function implements the JOSA A (parameters = 'JOSA') published model. 
    
    Args:
        :data: 
            | ndarray with input tristimulus values 
            | or spectral data 
            | or input color appearance correlates
            | Can be of shape: (N [, xM], x 3), whereby: 
            | N refers to samples and M refers to light sources.
            | Note that for spectral input shape is (N x (M+1) x wl) 
        :dataw: 
            | None or ndarray, optional
            | Input tristimulus values or spectral data of white point.
            | None defaults to the use of CIE illuminant C.
        :Yb: 
            | 20.0, optional
            | Luminance factor of background (perfect white diffuser, Yw = 100)
        :Lw:
            | 400.0, optional
            | Luminance (cd/m²) of white point.
        :Ccwb:
            | None,  optional
            | Degree of cognitive adaptation (white point balancing)
            | If None: use [..,..] from parameters dict.
        :relative:
            | True or False, optional
            | True: xyz tristimulus values are relative (Yw = 100)
        :parameters:
            | None or str or dict, optional
            | Dict with model parameters.
            |    - None: defaults to luxpy.cam._CAM_SWW_2016_PARAMETERS['JOSA']
            |    - str: 'best-fit-JOSA' or 'best-fit-all-Munsell'
            |    - dict: user defined model parameters 
            |            (dict should have same structure)
        :inputtype:
            | 'xyz' or 'spd', optional
            | Specifies the type of input: 
            |     tristimulus values or spectral data for the forward mode.
        :direction:
            | 'forward' or 'inverse', optional
            |   -'forward': xyz -> cam_sww_2016
            |   -'inverse': cam_sww_2016 -> xyz 
        :cieobs:
            | '2006_10', optional
            | CMF set to use to perform calculations where spectral data 
              is involved (inputtype == 'spd'; dataw = None)
            | Other options: see luxpy._CMF['types']
    
    Returns:
        :returns: 
            | ndarray with color appearance correlates (:direction: == 'forward')
            |  or 
            | XYZ tristimulus values (:direction: == 'inverse')
    
    Notes:
        | This function implements the JOSA A (parameters = 'JOSA') 
          published model. 
        | With:
        |    1. A correction for the parameter 
        |         in Eq.4 of Fig. 11: 0.952 --> -0.952 
        |         
        |     2. The delta_ac and delta_bc white-balance shifts in Eq. 5e & 5f 
        |         should be: -0.028 & 0.821 
        |  
        |     (cfr. Ccwb = 0.66 in: 
        |         ab_test_out = ab_test_int - Ccwb*ab_gray_adaptation_field_int))
             
    References:
        1. `Smet, K. A. G., Webster, M. A., & Whitehead, L. A. (2016). 
        A simple principled approach for modeling and understanding uniform color metrics. 
        Journal of the Optical Society of America A, 33(3), A319–A331. 
        <https://doi.org/10.1364/JOSAA.33.00A319>`_

    """

    # get model parameters
    args = locals().copy()
    if parameters is None:
        parameters = _CAM_SWW16_PARAMETERS['JOSA']
    if isinstance(parameters, str):
        parameters = _CAM_SWW16_PARAMETERS[parameters]
    parameters = put_args_in_db(
        parameters,
        args)  #overwrite parameters with other (not-None) args input

    #unpack model parameters:
    Cc, Ccwb, Cf, Mxyz2lms, cLMS, cab_int, cab_out, calpha, cbeta, cga1, cga2, cgb1, cgb2, cl_int, clambda, lms0 = [
        parameters[x] for x in sorted(parameters.keys())
    ]

    # setup default adaptation field:
    if (dataw is None):
        dataw = _CIE_ILLUMINANTS['C'].copy()  # get illuminant C
        xyzw = spd_to_xyz(dataw, cieobs=cieobs,
                          relative=False)  # get abs. tristimulus values
        if relative == False:  #input is expected to be absolute
            dataw[1:] = Lw * dataw[
                1:] / xyzw[:, 1:2]  #dataw = Lw*dataw # make absolute
        else:
            dataw = dataw  # make relative (Y=100)
        if inputtype == 'xyz':
            dataw = spd_to_xyz(dataw, cieobs=cieobs, relative=relative)

    # precomputations:
    Mxyz2lms = np.dot(
        np.diag(cLMS),
        math.normalize_3x3_matrix(Mxyz2lms, np.array([[1, 1, 1]]))
    )  # normalize matrix for xyz-> lms conversion to ill. E weighted with cLMS
    invMxyz2lms = np.linalg.inv(Mxyz2lms)
    MAab = np.array([clambda, calpha, cbeta])
    invMAab = np.linalg.inv(MAab)

    #initialize data and camout:
    data = np2d(data).copy(
    )  # stimulus data (can be upto NxMx3 for xyz, or [N x (M+1) x wl] for spd))
    dataw = np2d(dataw).copy(
    )  # white point (can be upto Nx3 for xyz, or [(N+1) x wl] for spd)

    # make axis 1 of dataw have 'same' dimensions as data:
    if (data.ndim == 2):
        data = np.expand_dims(data, axis=1)  # add light source axis 1

    if inputtype == 'xyz':
        if dataw.shape[
                0] == 1:  #make dataw have same lights source dimension size as data
            dataw = np.repeat(dataw, data.shape[1], axis=0)
    else:
        if dataw.shape[0] == 2:
            dataw = np.vstack(
                (dataw[0], np.repeat(dataw[1:], data.shape[1], axis=0)))

    # Flip light source dim to axis 0:
    data = np.transpose(data, axes=(1, 0, 2))

    # Initialize output array:
    dshape = list(data.shape)
    dshape[-1] = 3  # requested number of correlates: l_int, a_int, b_int
    if (inputtype != 'xyz') & (direction == 'forward'):
        dshape[-2] = dshape[
            -2] - 1  # wavelength row doesn't count & only with forward can the input data be spectral
    camout = np.zeros(dshape)
    camout.fill(np.nan)

    # apply forward/inverse model for each row in data:
    for i in range(data.shape[0]):

        # stage 1: calculate photon rates of stimulus and adapting field, lmst & lmsf:
        if (inputtype != 'xyz'):
            if relative == True:
                xyzw_abs = spd_to_xyz(np.vstack((dataw[0], dataw[i + 1])),
                                      cieobs=cieobs,
                                      relative=False)
                dataw[i +
                      1] = Lw * dataw[i + 1] / xyzw_abs[0, 1]  # make absolute
            xyzw = spd_to_xyz(np.vstack((dataw[0], dataw[i + 1])),
                              cieobs=cieobs,
                              relative=False)
            lmsw = 683.0 * np.dot(Mxyz2lms, xyzw.T).T / _CMF[cieobs]['K']
            lmsf = (Yb / 100.0
                    ) * lmsw  # calculate adaptation field and convert to l,m,s
            if (direction == 'forward'):
                if relative == True:
                    data[i, 1:, :] = Lw * data[i, 1:, :] / xyzw_abs[
                        0, 1]  # make absolute
                xyzt = spd_to_xyz(data[i], cieobs=cieobs,
                                  relative=False) / _CMF[cieobs]['K']
                lmst = 683.0 * np.dot(Mxyz2lms, xyzt.T).T  # convert to l,m,s
            else:
                lmst = lmsf  # put lmsf in lmst for inverse-mode

        elif (inputtype == 'xyz'):
            if relative == True:
                dataw[i] = Lw * dataw[i] / 100.0  # make absolute
            lmsw = 683.0 * np.dot(
                Mxyz2lms, dataw[i].T).T / _CMF[cieobs]['K']  # convert to lms
            lmsf = (Yb / 100.0) * lmsw
            if (direction == 'forward'):
                if relative == True:
                    data[i] = Lw * data[i] / 100.0  # make absolute
                lmst = 683.0 * np.dot(
                    Mxyz2lms,
                    data[i].T).T / _CMF[cieobs]['K']  # convert to lms
            else:
                lmst = lmsf  # put lmsf in lmst for inverse-mode

        # stage 2: calculate cone outputs of stimulus lmstp
        lmstp = math.erf(Cc * (np.log(lmst / lms0) + Cf * np.log(lmsf / lms0)))
        lmsfp = math.erf(Cc * (np.log(lmsf / lms0) + Cf * np.log(lmsf / lms0)))
        lmstp = np.vstack(
            (lmsfp, lmstp)
        )  # add adaptation field lms temporarily to lmsp for quick calculation

        # stage 3: calculate optic nerve signals, lam*, alphp, betp:
        lstar, alph, bet = asplit(np.dot(MAab, lmstp.T).T)

        alphp = cga1[0] * alph
        alphp[alph < 0] = cga1[1] * alph[alph < 0]
        betp = cgb1[0] * bet
        betp[bet < 0] = cgb1[1] * bet[bet < 0]

        # stage 4: calculate recoded nerve signals, alphapp, betapp:
        alphpp = cga2[0] * (alphp + betp)
        betpp = cgb2[0] * (alphp - betp)

        # stage 5: calculate conscious color perception:
        lstar_int = cl_int[0] * (lstar + cl_int[1])
        alph_int = cab_int[0] * (np.cos(cab_int[1] * np.pi / 180.0) * alphpp -
                                 np.sin(cab_int[1] * np.pi / 180.0) * betpp)
        bet_int = cab_int[0] * (np.sin(cab_int[1] * np.pi / 180.0) * alphpp +
                                np.cos(cab_int[1] * np.pi / 180.0) * betpp)
        lstar_out = lstar_int

        if direction == 'forward':
            if Ccwb is None:
                alph_out = alph_int - cab_out[0]
                bet_out = bet_int - cab_out[1]
            else:
                Ccwb = Ccwb * np.ones((2))
                Ccwb[Ccwb < 0.0] = 0.0
                Ccwb[Ccwb > 1.0] = 1.0
                alph_out = alph_int - Ccwb[0] * alph_int[
                    0]  # white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation
                bet_out = bet_int - Ccwb[1] * bet_int[0]

            camout[i] = np.vstack(
                (lstar_out[1:], alph_out[1:], bet_out[1:])
            ).T  # stack together and remove adaptation field from vertical stack
        elif direction == 'inverse':
            labf_int = np.hstack((lstar_int[0], alph_int[0], bet_int[0]))

            # get lstar_out, alph_out & bet_out for data:
            lstar_out, alph_out, bet_out = asplit(data[i])

            # stage 5 inverse:
            # undo cortical white-balance:
            if Ccwb is None:
                alph_int = alph_out + cab_out[0]
                bet_int = bet_out + cab_out[1]
            else:
                Ccwb = Ccwb * np.ones((2))
                Ccwb[Ccwb < 0.0] = 0.0
                Ccwb[Ccwb > 1.0] = 1.0
                alph_int = alph_out + Ccwb[0] * alph_int[
                    0]  #  inverse white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation
                bet_int = bet_out + Ccwb[1] * bet_int[0]

            lstar_int = lstar_out
            alphpp = (1.0 / cab_int[0]) * (
                np.cos(-cab_int[1] * np.pi / 180.0) * alph_int -
                np.sin(-cab_int[1] * np.pi / 180.0) * bet_int)
            betpp = (1.0 / cab_int[0]) * (
                np.sin(-cab_int[1] * np.pi / 180.0) * alph_int +
                np.cos(-cab_int[1] * np.pi / 180.0) * bet_int)
            lstar_int = lstar_out
            lstar = (lstar_int / cl_int[0]) - cl_int[1]

            # stage 4 inverse:
            alphp = 0.5 * (alphpp / cga2[0] + betpp / cgb2[0]
                           )  # <-- alphpp = (Cga2.*(alphp+betp));
            betp = 0.5 * (alphpp / cga2[0] - betpp / cgb2[0]
                          )  # <-- betpp = (Cgb2.*(alphp-betp));

            # stage 3 invers:
            alph = alphp / cga1[0]
            bet = betp / cgb1[0]
            sa = np.sign(cga1[1])
            sb = np.sign(cgb1[1])
            alph[(sa * alphp) < 0.0] = alphp[(sa * alphp) < 0] / cga1[1]
            bet[(sb * betp) < 0.0] = betp[(sb * betp) < 0] / cgb1[1]
            lab = ajoin((lstar, alph, bet))

            # stage 2 inverse:
            lmstp = np.dot(invMAab, lab.T).T
            lmstp[lmstp < -1.0] = -1.0
            lmstp[lmstp > 1.0] = 1.0

            lmstp = math.erfinv(lmstp) / Cc - Cf * np.log(lmsf / lms0)
            lmst = np.exp(lmstp) * lms0

            # stage 1 inverse:
            xyzt = np.dot(invMxyz2lms, lmst.T).T

            if relative == True:
                xyzt = (100.0 / Lw) * xyzt

            camout[i] = xyzt

#    if flipaxis0and1 == True: # loop over shortest dim.
#        camout = np.transpose(camout, axes = (1,0,2))

# Flip light source dim back to axis 1:
    camout = np.transpose(camout, axes=(1, 0, 2))

    if camout.shape[0] == 1:
        camout = np.squeeze(camout, axis=0)

    return camout
Ejemplo n.º 9
0
def cam_sww16(data,
              dataw=None,
              Yb=20.0,
              Lw=400.0,
              Ccwb=None,
              relative=True,
              inputtype='xyz',
              direction='forward',
              parameters=None,
              cieobs='2006_10',
              match_to_conversionmatrix_to_cieobs=True):
    """
    A simple principled color appearance model based on a mapping of 
    the Munsell color system.
    
    | This function implements the JOSA A (parameters = 'JOSA') published model. 
    
    Args:
        :data: 
            | ndarray with input tristimulus values 
            | or spectral data 
            | or input color appearance correlates
            | Can be of shape: (N [, xM], x 3), whereby: 
            | N refers to samples and M refers to light sources.
            | Note that for spectral input shape is (N x (M+1) x wl) 
        :dataw: 
            | None or ndarray, optional
            | Input tristimulus values or spectral data of white point.
            | None defaults to the use of CIE illuminant C.
        :Yb: 
            | 20.0, optional
            | Luminance factor of background (perfect white diffuser, Yw = 100)
        :Lw:
            | 400.0, optional
            | Luminance (cd/m²) of white point.
        :Ccwb:
            | None,  optional
            | Degree of cognitive adaptation (white point balancing)
            | If None: use [..,..] from parameters dict.
        :relative:
            | True or False, optional
            | True: xyz tristimulus values are relative (Yw = 100)
        :parameters:
            | None or str or dict, optional
            | Dict with model parameters.
            |    - None: defaults to luxpy.cam._CAM_SWW_2016_PARAMETERS['JOSA']
            |    - str: 'best-fit-JOSA' or 'best-fit-all-Munsell'
            |    - dict: user defined model parameters 
            |            (dict should have same structure)
        :inputtype:
            | 'xyz' or 'spd', optional
            | Specifies the type of input: 
            |     tristimulus values or spectral data for the forward mode.
        :direction:
            | 'forward' or 'inverse', optional
            |   -'forward': xyz -> cam_sww_2016
            |   -'inverse': cam_sww_2016 -> xyz 
        :cieobs:
            | '2006_10', optional
            | CMF set to use to perform calculations where spectral data 
            | is involved (inputtype == 'spd'; dataw = None)
            | Other options: see luxpy._CMF['types']
        :match_to_conversionmatrix_to_cieobs:
            | When channging to a different CIE observer, change the xyz-to_lms
            | matrix to the one corresponding to that observer. If False: use 
            | the one set in parameters or _CAM_SWW16_PARAMETERS
    
    Returns:
        :returns: 
            | ndarray with color appearance correlates (:direction: == 'forward')
            |  or 
            | XYZ tristimulus values (:direction: == 'inverse')
    
    Notes:
        | This function implements the JOSA A (parameters = 'JOSA') 
        | published model. 
        | With:
        |    1. A correction for the parameter 
        |         in Eq.4 of Fig. 11: 0.952 --> -0.952 
        |         
        |     2. The delta_ac and delta_bc white-balance shifts in Eq. 5e & 5f 
        |         should be: -0.028 & 0.821 
        |  
        |     (cfr. Ccwb = 0.66 in: 
        |         ab_test_out = ab_test_int - Ccwb*ab_gray_adaptation_field_int))
             
    References:
        1. `Smet, K. A. G., Webster, M. A., & Whitehead, L. A. (2016). 
        A simple principled approach for modeling and understanding uniform color metrics. 
        Journal of the Optical Society of America A, 33(3), A319–A331. 
        <https://doi.org/10.1364/JOSAA.33.00A319>`_

    """
    #--------------------------------------------------------------------------
    # Get model parameters:
    #--------------------------------------------------------------------------
    args = locals().copy()
    parameters = _update_parameter_dict(
        args,
        parameters=parameters,
        match_to_conversionmatrix_to_cieobs=match_to_conversionmatrix_to_cieobs
    )

    #unpack model parameters:
    Cc, Ccwb, Cf, Mxyz2lms, cLMS, cab_int, cab_out, calpha, cbeta, cga1, cga2, cgb1, cgb2, cl_int, clambda, lms0 = [
        parameters[x] for x in sorted(parameters.keys())
    ]

    #--------------------------------------------------------------------------
    # Setup default adaptation field:
    #--------------------------------------------------------------------------
    dataw = _setup_default_adaptation_field(dataw=dataw,
                                            Lw=Lw,
                                            inputtype=inputtype,
                                            relative=relative,
                                            cieobs=cieobs)

    #--------------------------------------------------------------------------
    # Redimension input data to ensure most appropriate sizes
    # for easy and efficient looping and initialize output array:
    #--------------------------------------------------------------------------
    data, dataw, camout, originalshape = _massage_input_and_init_output(
        data, dataw, inputtype=inputtype, direction=direction)

    #--------------------------------------------------------------------------
    # Do precomputations needed for both the forward and inverse model,
    # and which do not depend on sample or light source data:
    #--------------------------------------------------------------------------
    Mxyz2lms = np.dot(
        np.diag(cLMS), Mxyz2lms
    )  # weight the xyz-to-lms conversion matrix with cLMS (cfr. stage 1 calculations)
    invMxyz2lms = np.linalg.inv(
        Mxyz2lms)  # Calculate the inverse lms-to-xyz conversion matrix
    MAab = np.array(
        [clambda, calpha, cbeta]
    )  # Create matrix with scale factors for L, M, S for quick matrix multiplications
    invMAab = np.linalg.inv(
        MAab)  # Pre-calculate its inverse to avoid repeat in loop.

    #--------------------------------------------------------------------------
    # Apply forward/inverse model by looping over each row (=light source dim.)
    # in data:
    #--------------------------------------------------------------------------
    N = data.shape[0]
    for i in range(N):
        #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        #  START FORWARD MODE and common part of inverse mode
        #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

        #-----------------------------------------------------------------------------
        # Get absolute tristimulus values for stimulus field and white point for row i:
        #-----------------------------------------------------------------------------
        xyzt, xyzw, xyzw_abs = _get_absolute_xyz_xyzw(data,
                                                      dataw,
                                                      i=i,
                                                      Lw=Lw,
                                                      direction=direction,
                                                      cieobs=cieobs,
                                                      inputtype=inputtype,
                                                      relative=relative)

        #-----------------------------------------------------------------------------
        # stage 1: calculate photon rates of stimulus and white white, and
        # adapting field: i.e. lmst, lmsw and lmsf
        #-----------------------------------------------------------------------------
        # Convert to white point l,m,s:
        lmsw = 683.0 * np.dot(Mxyz2lms, xyzw.T).T / _CMF[cieobs]['K']

        # Calculate adaptation field and convert to l,m,s:
        lmsf = (Yb / 100.0) * lmsw

        # Calculate lms of stimulus
        # or put adaptation lmsf in test field lmst for later use in inverse-mode (no xyz in 'inverse' mode!!!):
        lmst = (683.0 * np.dot(Mxyz2lms, xyzt.T).T /
                _CMF[cieobs]['K']) if (direction == 'forward') else lmsf

        #-----------------------------------------------------------------------------
        # stage 2: calculate cone outputs of stimulus lmstp
        #-----------------------------------------------------------------------------
        lmstp = math.erf(Cc *
                         (np.log(lmst / lms0) +
                          Cf * np.log(lmsf / lms0)))  # stimulus test field
        lmsfp = math.erf(Cc * (np.log(lmsf / lms0) +
                               Cf * np.log(lmsf / lms0)))  # adaptation field

        # add adaptation field lms temporarily to lmstp for quick calculation
        lmstp = np.vstack((lmsfp, lmstp))

        #-----------------------------------------------------------------------------
        # stage 3: calculate optic nerve signals, lam*, alphp, betp:
        #-----------------------------------------------------------------------------
        lstar, alph, bet = asplit(np.dot(MAab, lmstp.T).T)

        alphp = cga1[0] * alph
        alphp[alph < 0] = cga1[1] * alph[alph < 0]
        betp = cgb1[0] * bet
        betp[bet < 0] = cgb1[1] * bet[bet < 0]

        #-----------------------------------------------------------------------------
        #  stage 4: calculate recoded nerve signals, alphapp, betapp:
        #-----------------------------------------------------------------------------
        alphpp = cga2[0] * (alphp + betp)
        betpp = cgb2[0] * (alphp - betp)

        #-----------------------------------------------------------------------------
        #  stage 5: calculate conscious color perception:
        #-----------------------------------------------------------------------------
        lstar_int = cl_int[0] * (lstar + cl_int[1])
        alph_int = cab_int[0] * (np.cos(cab_int[1] * np.pi / 180.0) * alphpp -
                                 np.sin(cab_int[1] * np.pi / 180.0) * betpp)
        bet_int = cab_int[0] * (np.sin(cab_int[1] * np.pi / 180.0) * alphpp +
                                np.cos(cab_int[1] * np.pi / 180.0) * betpp)
        lstar_out = lstar_int

        #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        #  stage 5 continued but SPLIT IN FORWARD AND INVERSE MODES:
        #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

        #--------------------------------------
        # FORWARD MODE TO PERCEPTUAL SIGNALS:
        #--------------------------------------
        if direction == 'forward':
            if Ccwb is None:
                alph_out = alph_int - cab_out[0]
                bet_out = bet_int - cab_out[1]

            else:
                Ccwb = Ccwb * np.ones((2))
                Ccwb[Ccwb < 0.0] = 0.0
                Ccwb[Ccwb > 1.0] = 1.0

                # white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation:
                alph_out = alph_int - Ccwb[0] * alph_int[0]
                bet_out = bet_int - Ccwb[1] * bet_int[0]

            # stack together and remove adaptation field from vertical stack
            # camout is an ndarray with perceptual signals:
            camout[i] = np.vstack((lstar_out[1:], alph_out[1:], bet_out[1:])).T

        #--------------------------------------
        # INVERSE MODE FROM PERCEPTUAL SIGNALS:
        #--------------------------------------
        elif direction == 'inverse':

            # stack cognitive pre-adapted adaptation field signals (first on stack) together:
            #labf_int = np.hstack((lstar_int[0],alph_int[0],bet_int[0]))

            # get lstar_out, alph_out & bet_out for data
            #(contains model perceptual signals in inverse mode!!!):
            lstar_out, alph_out, bet_out = asplit(data[i])

            #------------------------------------------------------------------------
            #  Inverse stage 5: undo cortical white-balance:
            #------------------------------------------------------------------------
            if Ccwb is None:
                alph_int = alph_out + cab_out[0]
                bet_int = bet_out + cab_out[1]
            else:
                Ccwb = Ccwb * np.ones((2))
                Ccwb[Ccwb < 0.0] = 0.0
                Ccwb[Ccwb > 1.0] = 1.0

                #  inverse white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation
                alph_int = alph_out + Ccwb[0] * alph_int[0]
                bet_int = bet_out + Ccwb[1] * bet_int[0]

            alphpp = (1.0 / cab_int[0]) * (
                np.cos(-cab_int[1] * np.pi / 180.0) * alph_int -
                np.sin(-cab_int[1] * np.pi / 180.0) * bet_int)
            betpp = (1.0 / cab_int[0]) * (
                np.sin(-cab_int[1] * np.pi / 180.0) * alph_int +
                np.cos(-cab_int[1] * np.pi / 180.0) * bet_int)
            lstar_int = lstar_out
            lstar = (lstar_int / cl_int[0]) - cl_int[1]

            #---------------------------------------------------------------------------
            #  Inverse stage 4: pre-adapted perceptual signals to recoded nerve signals:
            #---------------------------------------------------------------------------
            alphp = 0.5 * (alphpp / cga2[0] + betpp / cgb2[0]
                           )  # <-- alphpp = (Cga2.*(alphp+betp));
            betp = 0.5 * (alphpp / cga2[0] - betpp / cgb2[0]
                          )  # <-- betpp = (Cgb2.*(alphp-betp));

            #---------------------------------------------------------------------------
            #  Inverse stage 3: recoded nerve signals to optic nerve signals:
            #---------------------------------------------------------------------------
            alph = alphp / cga1[0]
            bet = betp / cgb1[0]
            sa = np.sign(cga1[1])
            sb = np.sign(cgb1[1])
            alph[(sa * alphp) < 0.0] = alphp[(sa * alphp) < 0] / cga1[1]
            bet[(sb * betp) < 0.0] = betp[(sb * betp) < 0] / cgb1[1]
            lab = ajoin((lstar, alph, bet))

            #---------------------------------------------------------------------------
            #  Inverse stage 2: optic nerve signals to cone outputs:
            #---------------------------------------------------------------------------
            lmstp = np.dot(invMAab, lab.T).T
            lmstp[lmstp < -1.0] = -1.0
            lmstp[lmstp > 1.0] = 1.0

            #---------------------------------------------------------------------------
            #  Inverse stage 1: cone outputs to photon rates:
            #---------------------------------------------------------------------------
            lmstp = math.erfinv(lmstp) / Cc - Cf * np.log(lmsf / lms0)
            lmst = np.exp(lmstp) * lms0

            #---------------------------------------------------------------------------
            #  Photon rates to absolute or relative tristimulus values:
            #---------------------------------------------------------------------------
            xyzt = np.dot(invMxyz2lms, lmst.T).T * (_CMF[cieobs]['K'] / 683.0)
            if relative == True:
                xyzt = (100 / Lw) * xyzt

            # store in same named variable as forward mode:
            camout[i] = xyzt

            #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
            #  END inverse mode
            #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    return _massage_output_data_to_original_shape(camout, originalshape)
Ejemplo n.º 10
0
def cam18sl(data,
            datab=None,
            Lb=[100],
            fov=10.0,
            inputtype='xyz',
            direction='forward',
            outin='Q,aS,bS',
            parameters=None):
    """
    Convert between CIE 2006 10°  XYZ tristimulus values (or spectral data) 
    and CAM18sl color appearance correlates.
    
    Args:
        :data: 
            | ndarray of CIE 2006 10°  absolute XYZ tristimulus values or spectral data
            |  or color appearance attributes of stimulus
        :datab: 
            | ndarray of CIE 2006 10°  absolute XYZ tristimulus values or spectral data
            |  of stimulus background
        :Lb: 
            | [100], optional
            | Luminance (cd/m²) value(s) of background(s) calculated using the CIE 2006 10° CMFs 
            | (only used in case datab == None and the background is assumed to be an Equal-Energy-White)
        :fov: 
            | 10.0, optional
            | Field-of-view of stimulus (for size effect on brightness)
        :inputtpe:
            | 'xyz' or 'spd', optional
            | Specifies the type of input: 
            |     tristimulus values or spectral data for the forward mode.
        :direction:
            | 'forward' or 'inverse', optional
            |   -'forward': xyz -> cam18sl
            |   -'inverse': cam18sl -> xyz 
        :outin:
            | 'Q,aS,bS' or str, optional
            | 'Q,aS,bS' (brightness and opponent signals for saturation)
            |  other options: 'Q,aM,bM' (colorfulness) 
            |                 (Note that 'Q,aW,bW' would lead to a Cartesian 
            |                  a,b-coordinate system centered at (1,0))
            | Str specifying the type of 
            |     input (:direction: == 'inverse') and 
            |     output (:direction: == 'forward')
        :parameters:
            | None or dict, optional
            | Set of model parameters.
            |   - None: defaults to luxpy.cam._CAM18SL_PARAMETERS 
            |    (see references below)
    
    Returns:
        :returns: 
            | ndarray with color appearance correlates (:direction: == 'forward')
            |  or 
            | XYZ tristimulus values (:direction: == 'inverse')
            
    Notes:
        | * Instead of using the CIE 1964 10° CMFs in some places of the model,
        |   the CIE 2006 10° CMFs are used througout, making it more self_consistent.
        |   This has an effect on the k scaling factors (now different those in CAM15u) 
        |   and the illuminant E normalization for use in the chromatic adaptation transform.
        |   (see future erratum to Hermans et al., 2018)
        | * The paper also used an equation for the amount of white W, which is
        |   based on a Q value not expressed in 'bright' ('cA' = 0.937 instead of 123). 
        |   This has been corrected for in the luxpy version of the model, i.e.
        |   _CAM18SL_PARAMETERS['cW'][0] has been changed from 2.29 to 1/11672.
        |   (see future erratum to Hermans et al., 2018)
        | * Default output was 'Q,aW,bW' prior to March 2020, but since this
        |   is an a,b Cartesian system centered on (1,0), the default output
        |   has been changed to 'Q,aS,bS'.

    References: 
        1. `Hermans, S., Smet, K. A. G., & Hanselaer, P. (2018). 
        "Color appearance model for self-luminous stimuli."
        Journal of the Optical Society of America A, 35(12), 2000–2009. 
        <https://doi.org/10.1364/JOSAA.35.002000>`_ 
     """

    if parameters is None:
        parameters = _CAM18SL_PARAMETERS

    outin = outin.split(',')

    #unpack model parameters:
    cA, cAlms, cHK, cM, cW, ca, calms, cb, cblms, cfov, cieobs, k, naka, unique_hue_data = [
        parameters[x] for x in sorted(parameters.keys())
    ]

    # precomputations:
    Mlms2xyz = np.linalg.inv(_CMF[cieobs]['M'])
    MAab = np.array([cAlms, calms, cblms])
    invMAab = np.linalg.inv(MAab)

    #-------------------------------------------------
    # setup EEW reference field and default background field (Lr should be equal to Lb):
    # Get Lb values:
    if datab is not None:
        if inputtype != 'xyz':
            Lb = spd_to_xyz(datab, cieobs=cieobs, relative=False)[..., 1:2]
        else:
            Lb = datab[..., 1:2]
    else:
        if isinstance(Lb, list):
            Lb = np2dT(Lb)

    # Setup EEW ref of same luminance as datab:
    if inputtype == 'xyz':
        wlr = getwlr(_CAM18SL_WL3)
    else:
        if datab is None:
            wlr = data[0]  # use wlr of stimulus data
        else:
            wlr = datab[0]  # use wlr of background data
    datar = np.vstack((wlr, np.ones(
        (Lb.shape[0], wlr.shape[0]))))  # create eew
    xyzr = spd_to_xyz(datar, cieobs=cieobs,
                      relative=False)  # get abs. tristimulus values
    datar[1:] = datar[1:] / xyzr[..., 1:2] * Lb

    # Create datab if None:
    if (datab is None):
        if inputtype != 'xyz':
            datab = datar.copy()
        else:
            datab = spd_to_xyz(datar, cieobs=cieobs, relative=False)

    # prepare data and datab for loop over backgrounds:
    # make axis 1 of datab have 'same' dimensions as data:
    if (data.ndim == 2):
        data = np.expand_dims(data, axis=1)  # add light source axis 1

    if inputtype == 'xyz':
        datar = spd_to_xyz(datar, cieobs=cieobs,
                           relative=False)  # convert to xyz!!
        if datab.shape[
                0] == 1:  #make datab and datar have same lights source dimension (used to store different backgrounds) size as data
            datab = np.repeat(datab, data.shape[1], axis=0)
            datar = np.repeat(datar, data.shape[1], axis=0)
    else:
        if datab.shape[0] == 2:
            datab = np.vstack(
                (datab[0], np.repeat(datab[1:], data.shape[1], axis=0)))
        if datar.shape[0] == 2:
            datar = np.vstack(
                (datar[0], np.repeat(datar[1:], data.shape[1], axis=0)))

    # Flip light source/ background dim to axis 0:
    data = np.transpose(data, axes=(1, 0, 2))

    #-------------------------------------------------

    #initialize camout:
    dshape = list(data.shape)
    dshape[-1] = len(outin)  # requested number of correlates
    if (inputtype != 'xyz') & (direction == 'forward'):
        dshape[-2] = dshape[
            -2] - 1  # wavelength row doesn't count & only with forward can the input data be spectral
    camout = np.zeros(dshape)
    camout.fill(np.nan)

    for i in range(data.shape[0]):

        # get rho, gamma, beta of background and reference white:
        if (inputtype != 'xyz'):
            xyzb = spd_to_xyz(np.vstack((datab[0], datab[i + 1:i + 2, :])),
                              cieobs=cieobs,
                              relative=False)
            xyzr = spd_to_xyz(np.vstack((datar[0], datar[i + 1:i + 2, :])),
                              cieobs=cieobs,
                              relative=False)
        else:
            xyzb = datab[i:i + 1, :]
            xyzr = datar[i:i + 1, :]

        lmsb = np.dot(_CMF[cieobs]['M'], xyzb.T).T  # convert to l,m,s
        rgbb = (lmsb / _CMF[cieobs]['K']) * k  # convert to rho, gamma, beta
        #lmsr = np.dot(_CMF[cieobs]['M'],xyzr.T).T # convert to l,m,s
        #rgbr = (lmsr / _CMF[cieobs]['K']) * k # convert to rho, gamma, beta
        #rgbr = rgbr/rgbr[...,1:2]*Lb[i] # calculated EEW cone excitations at same luminance values as background
        rgbr = np.ones(xyzr.shape) * Lb[
            i]  # explicitely equal EEW cone excitations at same luminance values as background

        if direction == 'forward':
            # get rho, gamma, beta of stimulus:
            if (inputtype != 'xyz'):
                xyz = spd_to_xyz(data[i], cieobs=cieobs, relative=False)
            elif (inputtype == 'xyz'):
                xyz = data[i]
            lms = np.dot(_CMF[cieobs]['M'], xyz.T).T  # convert to l,m,s
            rgb = (lms / _CMF[cieobs]['K']) * k  # convert to rho, gamma, beta

            # apply von-kries cat with D = 1:
            if (rgbb == 0).any():
                Mcat = np.eye(3)
            else:
                Mcat = np.diag((rgbr / rgbb)[0])
            rgba = np.dot(Mcat, rgb.T).T

            # apply naka-rushton compression:
            rgbc = naka_rushton(rgba,
                                n=naka['n'],
                                sig=naka['sig'](rgbr.mean()),
                                noise=naka['noise'],
                                scaling=naka['scaling'])

            #rgbc = np.ones(rgbc.shape)*rgbc.mean() # test if eew ends up at origin

            # calculate achromatic and color difference signals, A, a, b:
            Aab = np.dot(MAab, rgbc.T).T
            A, a, b = asplit(Aab)
            a = ca * a
            b = cb * b

            # calculate colorfullness like signal M:
            M = cM * ((a**2.0 + b**2.0)**0.5)

            # calculate brightness Q:
            Q = cA * (
                A + cHK[0] * M**cHK[1]
            )  # last term is contribution of Helmholtz-Kohlrausch effect on brightness

            # calculate saturation, s:
            s = M / Q
            S = s  # make extra variable, jsut in case 'S' is called

            # calculate amount of white, W:
            W = 1 / (1.0 + cW[0] * (s**cW[1]))

            #  adjust Q for size (fov) of stimulus (matter of debate whether to do this before or after calculation of s or W, there was no data on s, M or W for different sized stimuli: after)
            Q = Q * (fov / 10.0)**cfov

            # calculate hue, h and Hue quadrature, H:
            h = hue_angle(a, b, htype='deg')
            if 'H' in outin:
                H = hue_quadrature(h, unique_hue_data=unique_hue_data)
            else:
                H = None

            # calculate cart. co.:
            if 'aM' in outin:
                aM = M * np.cos(h * np.pi / 180.0)
                bM = M * np.sin(h * np.pi / 180.0)

            if 'aS' in outin:
                aS = s * np.cos(h * np.pi / 180.0)
                bS = s * np.sin(h * np.pi / 180.0)

            if 'aW' in outin:
                aW = W * np.cos(h * np.pi / 180.0)
                bW = W * np.sin(h * np.pi / 180.0)

            if (outin != ['Q', 'as', 'bs']):
                camout[i] = eval('ajoin((' + ','.join(outin) + '))')
            else:
                camout[i] = ajoin((Q, aS, bS))

        elif direction == 'inverse':

            # get Q, M and a, b depending on input type:
            if 'aW' in outin:
                Q, a, b = asplit(data[i])
                Q = Q / (
                    (fov / 10.0)**cfov
                )  #adjust Q for size (fov) of stimulus back to that 10° ref
                W = (a**2.0 + b**2.0)**0.5
                s = (((1.0 / W) - 1.0) / cW[0])**(1.0 / cW[1])
                M = s * Q

            if 'aM' in outin:
                Q, a, b = asplit(data[i])
                Q = Q / (
                    (fov / 10.0)**cfov
                )  #adjust Q for size (fov) of stimulus back to that 10° ref
                M = (a**2.0 + b**2.0)**0.5

            if 'aS' in outin:
                Q, a, b = asplit(data[i])
                Q = Q / (
                    (fov / 10.0)**cfov
                )  #adjust Q for size (fov) of stimulus back to that 10° ref
                s = (a**2.0 + b**2.0)**0.5
                M = s * Q

            if 'h' in outin:
                Q, WsM, h = asplit(data[i])
                Q = Q / (
                    (fov / 10.0)**cfov
                )  #adjust Q for size (fov) of stimulus back to that 10° ref
                if 'W' in outin:
                    s = (((1.0 / WsM) - 1.0) / cW[0])**(1.0 / cW[1])
                    M = s * Q
                elif 's' in outin:
                    M = WsM * Q
                elif 'M' in outin:
                    M = WsM

            # calculate achromatic signal, A from Q and M:
            A = Q / cA - cHK[0] * M**cHK[1]

            # calculate hue angle:
            h = hue_angle(a, b, htype='rad')

            # calculate a,b from M and h:
            a = (M / cM) * np.cos(h)
            b = (M / cM) * np.sin(h)

            a = a / ca
            b = b / cb

            # create Aab:
            Aab = ajoin((A, a, b))

            # calculate rgbc:
            rgbc = np.dot(invMAab, Aab.T).T

            # decompress rgbc to (adapted) rgba :
            rgba = naka_rushton(rgbc,
                                n=naka['n'],
                                sig=naka['sig'](rgbr.mean()),
                                noise=naka['noise'],
                                scaling=naka['scaling'],
                                direction='inverse')

            # apply inverse von-kries cat with D = 1:
            rgb = np.dot(np.diag((rgbb / rgbr)[0]), rgba.T).T

            # convert rgb to lms to xyz:
            lms = rgb / k * _CMF[cieobs]['K']
            xyz = np.dot(Mlms2xyz, lms.T).T

            camout[i] = xyz

    camout = np.transpose(camout, axes=(1, 0, 2))

    if camout.shape[1] == 1:
        camout = np.squeeze(camout, axis=1)

    return camout
Ejemplo n.º 11
0
def run(data, xyzw, conditions=None, ucs_type='ucs', forward=True):
    """ 
    Run the CAM02-UCS[,-LCD,-SDC] color appearance difference model in forward or backward modes.
    
    Args:
        :data:
            | ndarray with sample xyz values (forward mode) or J'a'b' coordinates (inverse mode)
        :xyzw:
            | ndarray with white point tristimulus values  
        :conditions:
            | None, optional
            | Dictionary with viewing conditions.
            | None results in:
            |   {'La':100, 'Yb':20, 'D':1, 'surround':'avg'}
            | For more info see luxpy.cam.ciecam02()?
        :ucs_type:
            | 'ucs', optional
            | String with type of color difference appearance space
            | options: 'ucs', 'scd', 'lcd'
        :forward:
            | True, optional
            | If True: run in CAM in forward mode, else: inverse mode.

    Returns:
        :camout:
            | ndarray with J'a'b' coordinates or whatever correlates requested in out.
    
    Note:
        * This is a simplified, less flexible, but faster version than the main cam02ucs().
    """
    # get ucs parameters:
    if isinstance(ucs_type, str):
        ucs_pars = {
            'ucs': {
                'KL': 1.0,
                'c1': 0.007,
                'c2': 0.0228
            },
            'lcd': {
                'KL': 0.77,
                'c1': 0.007,
                'c2': 0.0053
            },
            'scd': {
                'KL': 1.24,
                'c1': 0.007,
                'c2': 0.0363
            }
        }
        ucs = ucs_pars[ucs_type]
    else:
        ucs = ucs_type
    KL, c1, c2 = ucs['KL'], ucs['c1'], ucs['c2']

    if forward == True:

        # run ciecam02 to get JMh:
        data = ciecam02(data,
                        xyzw,
                        out='J,M,h',
                        conditions=conditions,
                        forward=True)

        camout = np.zeros_like(data)  # for output

        #--------------------------------------------
        # convert to cam02ucs J', aM', bM':
        camout[...,
               0] = (1.0 + 100.0 * c1) * data[...,
                                              0] / (1.0 + c1 * data[..., 0])
        Mp = (1.0 / c2) * np.log(1.0 + c2 * data[..., 1])
        camout[..., 1] = Mp * np.cos(data[..., 2] * np.pi / 180)
        camout[..., 2] = Mp * np.sin(data[..., 2] * np.pi / 180)

        return camout

    else:
        #--------------------------------------------
        # convert cam02ucs J', aM', bM' to xyz:

        # calc CAM02 hue angle
        #Jp, aMp, bMp = asplit(data)
        h = np.arctan2(data[..., 2], data[..., 1])

        # calc CAM02 and CIECAM02 colourfulness
        Mp = (data[..., 1]**2.0 + data[..., 2]**2.0)**0.5
        M = (np.exp(c2 * Mp) - 1.0) / c2

        # calculate ciecam02 aM, bM:
        aM = M * np.cos(h)
        bM = M * np.sin(h)

        # calc CAM02 lightness
        J = data[..., 0] / (1.0 + (100.0 - data[..., 0]) * c1)

        # run ciecam02 in inverse mode to get xyz:
        return ciecam02(ajoin((J, aM, bM)),
                        xyzw,
                        out='J,aM,bM',
                        conditions=conditions,
                        forward=False)