Ejemplo n.º 1
0
 def test_torque_tracking(self, auto=False):
     if not auto and not self.is_dpm3_ready():
         return
     res = {}
     for k in self.test_default[self.jid]['test_torques'].keys():
         amp = self.test_default[self.jid]['test_torques'][k]
         print '------------------'
         print 'Tracking test:', k, ':', amp
         log_torque_mNm, log_load_mNm = self.sweep_torque_sine(
             amp, zero=True, loadcell=True)
         err = utt.measure_avg_error(log_torque_mNm, log_load_mNm)
         acc = utt.measure_accuracy(log_torque_mNm, log_load_mNm)
         print 'Average err', err
         print 'Accuracy (%)', acc
         res[k] = {
             'tracking_err_mNm': err,
             'tracking_accuracy_pct': acc,
             'log_torque_mNm': log_torque_mNm,
             'log_load_mNm': log_load_mNm
         }
         m3t.mplot2(range(len(log_torque_mNm)),
                    log_load_mNm,
                    log_torque_mNm,
                    xlabel='Samples',
                    ylabel='Torque (mNm)',
                    y1name='loadcell',
                    y2name='actuator')
     self.write_test_results({'test_torque_tracking': res})
	def experiment_b(self):
		print 'Hello B!'
		# Command motor to run sine curvature
		print 'Prepare experiment. Hit enter when ready'
		raw_input()
		print 'Enable power. Hit enter when ready'
		raw_input()
		self.step() #send current commands out to dsp and read sensors
		adc_zero=self.comp_ec.status.adc_torque
		
		ns=100.0
		amp = 100;
		# Generate Sine curvature as
		x_temp=nu.arange(0,50.0,1/ns)
		sin_curvature = nu.sin(x_temp)*amp
		
		#Place actuator in torque mode
		self.comp_ec.command.mode=aec.ACTUATOR_EC_MODE_TORQUE
		log_adc_torque=[]
		log_load_mNm=[]
		self.comp_ec.command.t_desire=0 #Initial desired torque
		#Send out intial configuration (zero torque) and wait 1 second
		self.step(time_sleep=1.0)
		
		for f in sin_curvature:
			self.comp_ec.command.t_desire=int(f+adc_zero) #send out command torque
			self.step(time_sleep=0.05) #send new desired out and wait
			lmNm=self.dpm3.get_load_mNm()#read load-cell
			tq=self.comp_ec.status.adc_torque #read raw torque sensor (ticks)
			print '------------------------'
			print 'Fwd',f
			print 'Adc SEA',tq
			print 'mNm Load Cell',lmNm
			log_adc_torque.append(tq) #log data
			log_load_mNm.append(lmNm)
		self.comp_ec.command.mode=aec.ACTUATOR_EC_MODE_OFF #Turn off actuator
		self.step()#send out command
		
		#Least squares fit to get nominal calibration
		poly,inv_poly=self.get_polyfit_to_data(x=log_adc_torque,y=log_load_mNm,n=1,draw=False)
		#Compute calibrated view of raw torque data
		s=m3tc.PolyEval(poly,log_adc_torque)
		#Draw the comparison between loadcell and torque sensor
		m3t.mplot2(range(len(log_adc_torque)),log_load_mNm,s,xlabel='Samples',ylabel='Torque (mNm)',
			   y1name='loadcell',y2name='actuator')
		#Save raw data
		self.write_raw_calibration({'log_adc_torque':log_adc_torque,\
		                            'log_load_mNm':log_load_mNm})
	def test_torque_tracking(self,auto=False):
		if not auto and not self.is_dpm3_ready():
			return 
		res={}
		for k in self.test_default[self.jid]['test_torques'].keys():
			amp=self.test_default[self.jid]['test_torques'][k]
			print '------------------'
			print 'Tracking test:',k,':',amp
			log_torque_mNm, log_load_mNm=self.sweep_torque_sine(amp,zero=True,loadcell=True)
			err=utt.measure_avg_error(log_torque_mNm, log_load_mNm)
			acc=utt.measure_accuracy(log_torque_mNm, log_load_mNm)
			print 'Average err',err
			print 'Accuracy (%)',acc
			res[k]={'tracking_err_mNm':err,'tracking_accuracy_pct':acc,'log_torque_mNm':log_torque_mNm,'log_load_mNm':log_load_mNm}
			m3t.mplot2(range(len(log_torque_mNm)),log_load_mNm,log_torque_mNm,xlabel='Samples',ylabel='Torque (mNm)',
				   y1name='loadcell',y2name='actuator')
		self.write_test_results({'test_torque_tracking':res})
	exit()
comp=m3f.create_component(name_ec)
proxy.subscribe_status(comp)
proxy.make_operational(name_ec)
q_log=[]
tq_log=[]
print 'Ready to generate motion? Hit any key to start'
m3t.get_keystroke()
ts=time.time()
try:
	while time.time()-ts>5.0:
		proxy.step()
		q=comp.status.qei_on
		tq=comp.status.adc_torque
		time.sleep(0.25)
		print 'DT',time.time()-ts, 'Q',q,'TQ',tq
		q_log.append(q)
		tq_log.append(tq)
except (KeyboardInterrupt,EOFError):
	proxy.stop()		

poly,inv_poly=m3tc.get_polyfit_to_data(q_log,tq_log,n=1)	
print 'Poly',poly
s=m3t.PolyEval(poly,log_tq)
m3t.mplot2(range(len(log_q)),log_load_mNm,s,xlabel='Samples',ylabel='Torque (mNm)',
			   y1name='loadcell',y2name='actuator')



		
Ejemplo n.º 5
0
    print 'No calibration files found'
    exit()
comps = []
for f in files:
    comps.append(f[f.find('calibration_data_raw') + 21:len(f) - 4])
print 'Enter component ID'
print '------------------'
for i in range(len(comps)):
    print i, ' : ', comps[i]
idd = m3t.get_int()
if idd < 0 or idd >= len(comps):
    print 'Invalid ID'
    exit()

fn = files[idd]
print 'Display calibration file: ', fn
try:
    f = file(fn, 'r')
    d = yaml.safe_load(f.read())
    f.close()
    n = len(d['cb_torque']) - 1
    #poly,inv_poly=m3tc.get_polyfit_to_data(x,y,n)
    s = m3tc.PolyEval(d['cb_torque'], d['log_adc_torque'])
    m3t.mplot2(range(len(d['log_adc_torque'])),
               d['log_load_mNm'],
               s,
               xlabel='Samples',
               ylabel='Torque (mNm)')
except (IOError, EOFError):
    print 'Raw data file', fn, 'not available'
path= m3t.get_m3_config_path()+'data/'
files=glob.glob(path+'calibration_data_raw_m3actuator_ec_*.yml')
files.sort()
if len(files)==0:
	print 'No calibration files found'
	exit()
comps=[]
for f in files:
	comps.append(f[f.find('calibration_data_raw')+21:len(f)-4])
print 'Enter component ID'
print '------------------'
for i in range(len(comps)):
	print i,' : ',comps[i]
idd=m3t.get_int()
if idd<0 or idd>=len(comps):
	print 'Invalid ID'
	exit()

fn=files[idd]
print 'Display calibration file: ',fn
try:
	f=file(fn,'r')
	d= yaml.safe_load(f.read())
	f.close()
	n=len(d['cb_torque'])-1
	#poly,inv_poly=m3tc.get_polyfit_to_data(x,y,n)
	s=m3tc.PolyEval(d['cb_torque'],d['log_adc_torque'])
	m3t.mplot2(range(len(d['log_adc_torque'])),d['log_load_mNm'],s,xlabel='Samples',ylabel='Torque (mNm)')
except (IOError, EOFError):
	print 'Raw data file',fn,'not available'
	def experiment_a(self):
		
		print 'Prepare experiment. Hit enter when ready'
		raw_input()
		print 'Enable power. Hit enter when ready'
		raw_input()
		self.step() #send current commands out to dsp and read sensors
		adc_zero=self.comp_ec.status.adc_torque
		
		print 'Enter amplitude (ticks)[100]'
		amp=m3t.get_float(100)
		ns=100.0
		#Sawtooth torque profile
		fwd=nu.arange(0,1.0,1/ns)*amp
		rev=nu.arange(0,-1.0,-1/ns)*amp
		zero=nu.zeros(int(ns))
		fwd=fwd.tolist()+zero.tolist()
		rev=rev.tolist()+zero.tolist()
		#Place actuator in torque mode
		self.comp_ec.command.mode=aec.ACTUATOR_EC_MODE_TORQUE
		log_adc_torque=[]
		log_load_mNm=[]
		self.comp_ec.command.t_desire=0 #Initial desired torque
		#Send out intial configuration (zero torque) and wait 1 second
		self.step(time_sleep=1.0)
		
		for f in fwd:
			self.comp_ec.command.t_desire=int(f+adc_zero) #send out command torque
			self.step(time_sleep=0.05) #send new desired out and wait
			lmNm=self.dpm3.get_load_mNm()#read load-cell
			tq=self.comp_ec.status.adc_torque #read raw torque sensor (ticks)
			print '------------------------'
			print 'Fwd',f
			print 'Adc SEA',tq
			print 'mNm Load Cell',lmNm
			log_adc_torque.append(tq) #log data
			log_load_mNm.append(lmNm)
		
		for r in rev:
			self.comp_ec.command.t_desire=int(r+adc_zero) #send out command torque
			self.step(time_sleep=0.05)
			lmNm=self.dpm3.get_load_mNm()#-load_zero
			tq=self.comp_ec.status.adc_torque
			print '------------------------'
			print 'Rev',r
			print 'Adc SEA',tq
			print 'mNm Load Cell',lmNm
			log_adc_torque.append(tq)
			log_load_mNm.append(lmNm)
		
		self.comp_ec.command.mode=aec.ACTUATOR_EC_MODE_OFF #Turn off actuator
		self.step()#send out command
		
		#Least squares fit to get nominal calibration
		poly,inv_poly=self.get_polyfit_to_data(x=log_adc_torque,y=log_load_mNm,n=1,draw=False)
		#Compute calibrated view of raw torque data
		s=m3tc.PolyEval(poly,log_adc_torque)
		#Draw the comparison between loadcell and torque sensor
		m3t.mplot2(range(len(log_adc_torque)),log_load_mNm,s,xlabel='Samples',ylabel='Torque (mNm)',
			   y1name='loadcell',y2name='actuator')
		#Save raw data
		self.write_raw_calibration({'log_adc_torque':log_adc_torque,\
		                            'log_load_mNm':log_load_mNm})
Ejemplo n.º 8
0
comp = m3f.create_component(name_ec)
proxy.subscribe_status(comp)
proxy.make_operational(name_ec)
q_log = []
tq_log = []
print 'Ready to generate motion? Hit any key to start'
m3t.get_keystroke()
ts = time.time()
try:
    while time.time() - ts > 5.0:
        proxy.step()
        q = comp.status.qei_on
        tq = comp.status.adc_torque
        time.sleep(0.25)
        print 'DT', time.time() - ts, 'Q', q, 'TQ', tq
        q_log.append(q)
        tq_log.append(tq)
except (KeyboardInterrupt, EOFError):
    proxy.stop()

poly, inv_poly = m3tc.get_polyfit_to_data(q_log, tq_log, n=1)
print 'Poly', poly
s = m3t.PolyEval(poly, log_tq)
m3t.mplot2(range(len(log_q)),
           log_load_mNm,
           s,
           xlabel='Samples',
           ylabel='Torque (mNm)',
           y1name='loadcell',
           y2name='actuator')