Ejemplo n.º 1
0
 def residual_z_(z, zp):
     """
     z : observation, [r, alpha]
     zp : predicted observation
     """
     r_z = z - zp
     r_z[1] = util.wrap_around(r_z[1])
     return r_z
Ejemplo n.º 2
0
    def get_control(self, odom):
        R = np.array([[np.cos(self.th), -np.sin(self.th)],
                      [np.sin(self.th), np.cos(self.th)]])
        p_b = -np.matmul(R.T, self.init_org) + np.matmul(R.T, odom[:2])
        p_b_tp1 = [
            p_b[0] + self.x_interval,
            self.b * np.sin(self.a * (p_b[0] + self.x_interval))
        ]
        p_g_tp1 = self.init_org + np.matmul(R, p_b_tp1)
        th_b_tp1 = np.arctan(self.b * self.a * np.cos(p_b_tp1[0] * self.a))
        th_g_tp1 = util.wrap_around(th_b_tp1 + self.th)

        ang_vel = util.wrap_around(th_g_tp1 - odom[2]) / self.sampling_period
        lin_vel = np.sqrt(np.sum(
            (p_g_tp1 - odom[:2])**2)) / self.sampling_period

        return np.clip(np.array([lin_vel, ang_vel]), self.limit[0],
                       self.limit[1])
Ejemplo n.º 3
0
 def residual_x_(x, xp):
     """
     x : state, [x, y, theta]
     xp : predicted state
     """
     if dim == 3 or dim == 5:
         r_x = x - xp
         r_x[2] = util.wrap_around(r_x[2])
         return r_x
     else:
         return None
Ejemplo n.º 4
0
 def get_control(self, odom):
     th = self.d_th / 180.0 * np.pi
     r = np.sqrt((odom[0] - self.maporigin[0])**2 +
                 (odom[1] - self.maporigin[1])**2)
     alpha = np.arctan2(odom[1] - self.maporigin[0],
                        odom[0] - self.maporigin[1])
     x = r * np.cos(alpha +
                    th) + self.maporigin[0] + np.random.random() - 0.5
     y = r * np.sin(alpha +
                    th) + self.maporigin[1] + np.random.random() - 0.5
     v = np.sqrt((x - odom[0])**2 + (y - odom[1])**2) / self.sampling_period
     w = util.wrap_around(np.arctan2(y - odom[1], x - odom[0]) -
                          odom[2]) / self.sampling_period
     return np.clip(np.array([v, w]), self.limit[0], self.limit[1])
Ejemplo n.º 5
0
def SE2Dynamics(x, dt, u):
    assert (len(x) == 3)
    tw = dt * u[1]
    # Update the agent state
    if abs(tw) < 0.001:
        diff = np.array([
            dt * u[0] * np.cos(x[2] + tw / 2),
            dt * u[0] * np.sin(x[2] + tw / 2), tw
        ])
    else:
        diff = np.array([
            u[0] / u[1] * (np.sin(x[2] + tw) - np.sin(x[2])),
            u[0] / u[1] * (np.cos(x[2]) - np.cos(x[2] + tw)), tw
        ])
    new_x = x + diff
    new_x[2] = util.wrap_around(new_x[2])
    return new_x
Ejemplo n.º 6
0
    def update(self, z_t, x_t):
        """
        Parameters
        --------
        z_t : observation - radial and angular distances from the agent.
        x_t : agent state (x, y, orientation) in the global frame.
        """
        # Kalman Filter Update
        r_pred, alpha_pred = util.relative_distance_polar(
            self.state[:2], x_t[:2], x_t[2])
        diff_pred = self.state[:2] - x_t[:2]
        if self.dim == 2:
            Hmat = np.array([[diff_pred[0], diff_pred[1]],
                             [-diff_pred[1] / r_pred, diff_pred[0] / r_pred]
                             ]) / r_pred
        elif self.dim == 4:
            Hmat = np.array([
                [diff_pred[0], diff_pred[1], 0.0, 0.0],
                [-diff_pred[1] / r_pred, diff_pred[0] / r_pred, 0.0, 0.0]
            ]) / r_pred
        else:
            raise ValueError('target dimension for KF must be either 2 or 4')
        innov = z_t - np.array([r_pred, alpha_pred])
        innov[1] = util.wrap_around(innov[1])

        R = np.matmul(np.matmul(Hmat, self.cov), Hmat.T) \
                                + self.obs_noise_func((r_pred, alpha_pred))
        K = np.matmul(np.matmul(self.cov, Hmat.T), LA.inv(R))
        C = np.eye(self.dim) - np.matmul(K, Hmat)

        cov_new = np.matmul(C, self.cov)
        state_new = self.state + np.matmul(K, innov)

        if True:  #LA.det(cov_new) < 1e6:
            self.cov = cov_new
        self.state = np.clip(state_new, self.limit[0], self.limit[1])
Ejemplo n.º 7
0
 def collision(self, odom):
     self.init_org = odom[:2]
     self.th = util.wrap_around(odom[2] + np.random.random() * np.pi / 2 -
                                np.pi / 4)