Ejemplo n.º 1
0
    def test_learning(self):
        pol_net = PolNet(self.env.observation_space,
                         self.env.action_space,
                         h1=32,
                         h2=32,
                         deterministic=True)
        noise = OUActionNoise(self.env.action_space)
        pol = DeterministicActionNoisePol(self.env.observation_space,
                                          self.env.action_space, pol_net,
                                          noise)

        targ_pol_net = PolNet(self.env.observation_space,
                              self.env.action_space,
                              32,
                              32,
                              deterministic=True)
        targ_pol_net.load_state_dict(pol_net.state_dict())
        targ_noise = OUActionNoise(self.env.action_space)
        targ_pol = DeterministicActionNoisePol(self.env.observation_space,
                                               self.env.action_space,
                                               targ_pol_net, targ_noise)

        qf_net = QNet(self.env.observation_space,
                      self.env.action_space,
                      h1=32,
                      h2=32)
        qf = DeterministicSAVfunc(self.env.observation_space,
                                  self.env.action_space, qf_net)

        targ_qf_net = QNet(self.env.observation_space, self.env.action_space,
                           32, 32)
        targ_qf_net.load_state_dict(targ_qf_net.state_dict())
        targ_qf = DeterministicSAVfunc(self.env.observation_space,
                                       self.env.action_space, targ_qf_net)

        sampler = EpiSampler(self.env, pol, num_parallel=1)

        optim_pol = torch.optim.Adam(pol_net.parameters(), 3e-4)
        optim_qf = torch.optim.Adam(qf_net.parameters(), 3e-4)

        epis = sampler.sample(pol, max_steps=32)

        traj = Traj()
        traj.add_epis(epis)

        traj = ef.add_next_obs(traj)
        traj.register_epis()

        result_dict = ddpg.train(traj, pol, targ_pol, qf, targ_qf, optim_pol,
                                 optim_qf, 1, 32, 0.01, 0.9)

        del sampler
Ejemplo n.º 2
0
    with measure('train'):
        on_traj = Traj()
        on_traj.add_epis(epis)

        on_traj = ef.add_next_obs(on_traj)
        on_traj.register_epis()

        off_traj.add_traj(on_traj)

        total_epi += on_traj.num_epi
        step = on_traj.num_step
        total_step += step

        result_dict = ddpg.train(
            off_traj,
            pol, targ_pol, qf, targ_qf,
            optim_pol, optim_qf, step, args.batch_size,
            args.tau, args.gamma
        )

    rewards = [np.sum(epi['rews']) for epi in epis]
    mean_rew = np.mean(rewards)
    logger.record_results(args.log, result_dict, score_file,
                          total_epi, step, total_step,
                          rewards,
                          plot_title=args.env_name)

    if mean_rew > max_rew:
        torch.save(pol.state_dict(), os.path.join(
            args.log, 'models', 'pol_max.pkl'))
        torch.save(qf.state_dict(), os.path.join(
            args.log, 'models',  'qf_max.pkl'))