Ejemplo n.º 1
0
    def __init__(
        self,
        n_conditionals,
        n_inputs,
        n_hiddens,
        n_mades,
        n_components=10,
        activation="relu",
        batch_norm=True,
        input_order="sequential",
        mode="sequential",
        alpha=0.1,
    ):

        super(ConditionalMixtureMaskedAutoregressiveFlow, self).__init__(n_conditionals, n_inputs)

        # save input arguments
        self.n_conditionals = n_conditionals
        self.n_inputs = n_inputs
        self.n_hiddens = n_hiddens
        self.n_mades = n_mades
        self.activation = activation
        self.batch_norm = batch_norm
        self.mode = mode
        self.alpha = alpha
        self.n_components = n_components

        # Dtype and GPU / CPU management
        self.to_args = None
        self.to_kwargs = None

        # Build MADEs
        self.mades = nn.ModuleList()
        for i in range(n_mades - 1):
            made = ConditionalGaussianMADE(
                n_conditionals, n_inputs, n_hiddens, activation=activation, input_order=input_order, mode=mode
            )
            self.mades.append(made)
            if not (isinstance(input_order, str) and input_order != "random"):
                input_order = made.input_order[::-1]

        # Last MADE MoG
        self.made_mog = ConditionalMixtureMADE(
            n_conditionals,
            n_inputs,
            n_hiddens,
            n_components=n_components,
            activation=activation,
            input_order=input_order,
            mode=mode,
        )

        # Batch normalizatino
        self.bns = None
        if self.batch_norm:
            self.bns = nn.ModuleList()
            for i in range(n_mades):
                bn = BatchNorm(n_inputs, alpha=self.alpha)
                self.bns.append(bn)
Ejemplo n.º 2
0
    def __init__(self,
                 n_inputs,
                 n_hiddens,
                 n_mades,
                 activation='relu',
                 batch_norm=True,
                 input_order='sequential',
                 mode='sequential',
                 alpha=0.1):

        super(MaskedAutoregressiveFlow, self).__init__(n_inputs)

        # save input arguments
        self.n_inputs = n_inputs
        self.n_hiddens = n_hiddens
        self.n_mades = n_mades
        self.activation = activation
        self.batch_norm = batch_norm
        self.mode = mode
        self.alpha = alpha

        # Dtype and GPU / CPU management
        self.to_args = None
        self.to_kwargs = None

        # Build MADEs
        self.mades = nn.ModuleList()
        for i in range(n_mades):
            made = GaussianMADE(n_inputs,
                                n_hiddens,
                                activation=activation,
                                input_order=input_order,
                                mode=mode)
            self.mades.append(made)
            if not (isinstance(input_order, str) and input_order == 'random'):
                input_order = made.input_order[::-1]

        # Batch normalization
        self.bns = None
        if self.batch_norm:
            self.bns = nn.ModuleList()
            for i in range(n_mades):
                bn = BatchNorm(n_inputs, alpha=self.alpha)
                self.bns.append(bn)