def __init__(self): super(spiral_model, self).__init__() self.fc1 = nn.linear(2, 16) self.fc2 = nn.linear(16, 16) self.fc3 = nn.linear(16, 2) self.tanh1 = nn.tanh() self.tanh2 = nn.tanh() self.sig = nn.relu()
def __init__(self): super(cnn_mnist_model, self).__init__() self.conv1 = nn.conv2d(1, 32, 3, padding=1) self.pool = nn.maxpool2d(2, 2) self.conv2 = nn.conv2d(32, 48, 3) self.fc1 = nn.linear(48 * 2 * 2, 120) # (599, 192) self.fc2 = nn.linear(120, 84) self.fc3 = nn.linear(84, 10) self.relu1 = nn.relu() self.relu2 = nn.relu() self.relu3 = nn.relu() self.relu4 = nn.relu()
def test_linear(): a = np.random.ranf([3, 5]).astype(np.float32) t1 = madml.tensor(a) module = nn.linear(5, 5, use_gpu=True) t2 = module._forward_cpu(t1) y = t2.host_data t3 = module._forward_gpu(t1) y_hat = t3.download() t1.gradient.host_data = a print(y_hat == y) input()
def test_linear(self): import madml import madml.nn as nn a = np.random.ranf([3, 5]).astype(np.float32) t1 = madml.tensor(a) self.assertTrue((t1.host_data == a).all()) module = nn.linear(5, 5) t2 = module.forward(t1) y = t2.host_data module.to(0) t3 = module.forward(t1) y_hat = t3.download() self.assertTrue((y == y_hat).all()) t2.gradient.host_data = a t2.gradient.upload() dx = module.backward() dx_hat = dx.download() print(dx_hat) self.assertTrue((dx_hat != 0.0).all())
def __init__(self): super(identity_model, self).__init__() self.fc1 = nn.linear(32, 32) self.fc2 = nn.linear(32, 32)
def __init__(self): super(dnn_mnist_model, self).__init__() self.fc1 = nn.linear(8 * 8, 256) self.fc2 = nn.linear(256, 10) self.relu1 = nn.relu() self.relu2 = nn.relu()